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Questions

Question
What are the faithful representations of Sym(n) and Alt(n) of minimal
dimension?

And as a first step, what is the minimal dimension?

There are a variety of contexts to consider. . .

Actions on abelian groups

linear representations (see Dickson 1908, Wagner 1976/77)
fMr representations (see Borovik-Cherlin 2008, Borovik 2020)
many others

Actions on solvable groups

tightly tied to abelian case, especially when n ≥ 5

Actions on nonsolvable groups

algebraic case
fMr case (including potential simple 2⊥ groups)
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Motivation: permutation groups of fMr

Fact (Borovik-Cherlin 2008)
There exist ρ, τ : N→ N such that for any primitive G y X of fMr

rk G ≤ ρ(rk X )

gtd(G y X ) ≤ τ(rk X )

where gtd = “degree of generic transitivity.”

Fact (Borovik-Cherlin 2008)
For any primitive G y X of fMr, if d = rk X, then

d · gtd(G y X ) ≤ rk G ≤ d · gtd(G y X ) +

(
d
2

)
.

Problem (Borovik-Cherlin 2008)
Better understand optimal ρ and τ :

for G y X of fMr, find a good (natural)
bound on gtd(G y X ) in terms of rk X.
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Generic n-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
n-transitive if there is an orbit O ⊂ X n with rk(X n −O) < rk(X n).

i.e. G has a single orbit on X n modulo a set of smaller rank.

Example: GLn(K ) y K n

generically n-transitive

O is the set of bases of K n: orbit of (e1, . . . ,en)

Example: PGLn(K ) y Pn−1(K )

generically (n + 1)-transitive

O is the set bases of Pn−1(K ): orbit of (〈e1〉, . . . , 〈en〉, 〈
∑

ei〉)
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Bounding gtd

1

2

3

4

5

6

1 2 3 d := rk(X)

g
td
(G

y
X
)

PGL2(K )

PGL3(K )

PGL4(K )

AGL1(K )

AGL2(K )

AGL3(K )

GL1(K )

GL2(K )

GL3(K )

PGL2(K )× PGL2(L) y P1(K )× P1(L)

PGLd+1(K ) y Pd (K )

AGLd (K ) y K d

GLd (K ) y K d − {0}

Plotting G y X of fMr

Borovik-Cherlin Problem (2008)

Show (essentially): gtd(G y X ) ≥ d + 2 =⇒ G y X ∼= PGLd+1(K ) y Pd (K )
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Enter the Sym(n)

Suppose G y X is generically n-transitive. Let (1, . . . ,n) ∈ O.

Any permutation of (1, . . . ,n) is again in O.

G{1,...,n}/G1,...,n ∼= Sym(n).

Further assume generic sharp n-transitivity: G1,...,n = 1. Consider:

G{1,...,n−1} ∩Gn ∼= Sym(n − 1).
Then,

Sym(n − 1) acts faithfully on G1,...,n−1.

This is because G1,...,n−1 has a generic orbit containing n.

Observation
If G y X is generically sharply n-transitive with rk(X ) = d . Then there is a
faithful, definable action of Sym(n − 1) on a (connected) group H of rank d .

Real life indicates that d can not be much smaller than n (leading towards the
desired bound of n ≤ d + 2).

So we turn to the study of Sym(n)-representations.
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The abelian case
Context: modules with an additive dimension
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The context: choosing a universe

We are interested in modules V carrying a notion of dimension, but no a priori
(and often no a posteriori!) vector space structure. We would like to cover:

vector spaces with finite linear dimension

abelian groups of finite Morley rank

abelian groups carrying other familiar dimensions/ranks

e.g. o-minimal dimension or finite Prüfer p-rank

Importantly, our methods require only certain groups definable from V to
inherit the dimension.

Notation

UA(V ) := HSP(V ) is obtained by closing under homomorphic images,
substructures, and products.

UD(V ) is the collection of all sets definable/interpretable from V .

We need UA,D(V ) := UA(V ) ∩ UD(V ) (or less) to carry a dimension.
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The context: choosing a universe

Our current approach is (lightly) category theoretic:

Definition
A modular universe is a subcategory U of the category Ab of abelian groups
satisfying expected closure properties:

if V ∈ Ob(U), then Ar(U) contains the addition map σV : V × V → V

if f ∈ Ar(U), then Ob(U) contains the ker f and im f

if W2 ≤W1 are in Ob(U), then Ar(U) contains the corresponding
embedding and quotient morphisms

a handful more (e.g. around products)

Remark
If V is an abelian group (possibly with extra structure), then
UA,D(V ) = UA(V ) ∩ UD(V ) (with definable morphisms) is a modular universe.
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The context: additive dimension

Definition
An additive dimension on a modular universe U is a function dim : Ob(U)→ N
such that if f : A→ B is in Ar(U) (i.e. f is a compatible morphism), then

dim A = dim ker f + dim im f .

V is a module with an additive dimension if V is an object of some
modular universe that carries an additive dimension.

V is a G-module with an additive dimension if, additionally, each g ∈ G
(hence e in the image of Z[G] in End(V )) acts as a compatible morphism.

Remark

We say nothing about the relationship between finiteness and
0-dimensionality.
We say nothing about chain conditions.
We also say nothing about elementary extensions.
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Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension

2. A finitely generated abelian group equipped with torsion-free rank

3. A finite sum
⊕

N Cp∞ equipped with Prüfer p-rank

Prüfer p-rank is the max κ for which the group contains
⊕

κ Cp∞

In all cases, UA,D(V ) has an additive dimension because all of UA(V ) does.

Examples (Logical)

1. An abelian group of finite Morley rank equipped with Morley rank

2. An abelian group definable in an o-minimal structure equipped with
o-minimal dimension

In all cases, UA,D(V ) has an additive dimension because all of UD(V ) does.
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Connectedness and Irreducibility

Definition (Connectedness)
If V has an additive dimension, we say V is dim-connected (dc) if

for all submodules W < V in Ob(U), we have dim W < dim V .

Remark

Dim-connectedness is preserved by images of compatible morphisms.

Sums of dim-connected modules are dim-connected.

Definition (Irreducibility)
A G-module V with an additive dimension is dc-irreducible if

V is dim-connected, and

V as no non-trivial, proper, dim-connected G-submodules (in Ob(U).
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The characteristic

Definition (Characteristic)
Let p be a prime and V be a module. Define the characteristic as follows:

char V = p if V has exponent p;

char V = 0 if V is divisible (∀v ∈ V ,∀n ∈ Z>0, nw = v has a solution);

char V is undefined otherwise.

Examples

1. charC+ = 0 = charC×.

2. If V =
⊕

N Cp∞ , then char V = 0 (and V is torsion).

3. If V = C+ ⊕ F+

2 , then char V is undefined.

Remark
Dc-irreducible modules always have a characteristic.
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First principle: coprimality

Fact (Coprimality)
Let V be a dc-〈g〉-module with |g| = p. Assume char V exists and is not p (or
simply, V is p-divisible). Set

Bg := im(adg) where adg = 1− g ∈ End(V );

Cg := im(trg) where trg = 1 + g + · · ·+ gp−1 ∈ End(V ).

Then V = Bg (+) Cg (meaning V = Bg + Cg and dim(Bg ∩ Cg) = 0).

Remark
The argument is as expected: working with images and kernels of adg and trg
in the presence of additivity (bearing in mind that the image of either one of
these two maps is contained in the kernel of the other).

The context provides
all that is needed for the proof.
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The abelian case
Results
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The standard module for Sym(n)

Definition (Standard Module)
Let perm(n) = Ze1 ⊕ · · · ⊕ Zen be the Sym(n)-module where the ei are
permuted naturally.

There are two obvious submodules:

triv(n) = {ce1 + · · ·+ cen}

std(n) = {c1e1 + · · ·+ cnen |
∑

ci = 0}

For any abelian group L, we define:

perm(n,L) = perm(n)⊗Z L = {e1 ⊗ a1 + · · ·+ en ⊗ an}

triv(n,L) = triv(n)⊗Z L = {e1 ⊗ a + · · ·+ en ⊗ a}

std(n,L) = std(n)⊗Z L = {e1 ⊗ a1 + · · ·+ en ⊗ an |
∑

ai = 0}

std(n,L) = std(n,L)/(std(n,L) ∩ triv(n,L))

Remark
Notice that std(n,L) 6= std(n,L) ⇐⇒ Ωn(L) 6= 0.
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The standard module for Sym(n)

Remarks

1. If L is a module with an additive dimension, then perm(n,L), std(n,L),
and std(n,L) are Sym(n)-modules in the same modular universe.

2. Regarding irreducibility:

stdn
Q is faithful and irreducible

If p - n, std(n,Fp) = std(n,Fp) is faithful and irreducible
If p | n, std(n,Fp) is faithful and irreducible when n ≥ 5

Example
Consider T = Diagn(C) < GLn(C) viewed as a Sym(n)-module via the action
of the Weyl group.

Then, as Sym(n)-modules:
perm(n,C×) ∼= T

std(n,C×) ∼= T ∩ SLn(C)

std(n,C×) ∼= T ∩ SLn(C) ≤ PSLn(C)
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The minimal Sym(n)- and Alt(n)-modules

Theorem (Corredor-Deloro-W 2018–2021)
Let n ≥ 7. Suppose V is a faithful, dc-irreducible Sym(n)-module with an
additive dimension. Set q := char V and d := dim V.

If d < n, then

q d Structure of V

q > 0 and q | n

n − 2 isomorphic to std(n, L) or sgn⊗ std(n, L)

q > 0 and q - n

n − 1 isomorphic to std(n, L) or sgn⊗ std(n, L)

q = 0

n − 1
covered by stdn

L or sgn⊗ stdn
L with kernel

〈
∑n−1

i=1 (ei − en)〉 ⊗ K for some K ≤ Ωn(L).

for some 1-dimensional dc-module L ≤ V (from the modular universe of V ).

Theorem (Corredor-Deloro-W 2018–2021)
The same is true for Alt(n)-modules provided n ≥ 10 when q = 2.
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Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.

Further suppose that

Alt(n − 2) ∼=

Alt({1,2}⊥) centralizes B(12)

= im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules. Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks

One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.
Further suppose that

Alt(n − 2) ∼=

Alt({1,2}⊥) centralizes B(12)

= im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules. Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks

One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.
Further suppose that

Alt(n − 2) ∼= Alt({1,2}⊥) centralizes B(12) = im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules. Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks

One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.
Further suppose that

Alt(n − 2) ∼= Alt({1,2}⊥) centralizes B(12) = im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules.

Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks

One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.
Further suppose that

Alt(n − 2) ∼= Alt({1,2}⊥) centralizes B(12) = im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules. Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks

One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.
Further suppose that

Alt(n − 2) ∼= Alt({1,2}⊥) centralizes B(12) = im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules. Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks

One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.
Further suppose that

Alt(n − 2) ∼= Alt({1,2}⊥) centralizes B(12) = im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules. Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks

One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.
Further suppose that

Alt(n − 2) ∼= Alt({1,2}⊥) centralizes B(12) = im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules. Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks

One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.
Further suppose that

Alt(n − 2) ∼= Alt({1,2}⊥) centralizes B(12) = im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules. Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks
One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 1 - Recognition

Recognition Lemma
Let V be a faithful, dc-irreducible Sym(n)-module with an additive dimension.
Further suppose that

Alt(n − 2) ∼= Alt({1,2}⊥) centralizes B(12) = im(ad(12)).

Then for some abelian group L, there is a surjective morphism
ϕ : std(n,L) � V of Sym(n)-modules. Moreover,

if q = 0, then kerϕ = std(n, L) ∩ triv(n, L) and V ' std(n, L);

if q = 0, then kerϕ = std(n, L) ∩ triv(n,K ) for some 0-dimensional K ≤ Ωn(L).

Remarks
One may take L = B(12), placing all relevant objects (including ϕ) in the
modular universe of V .

We say nothing about the dimension of V .

Joshua Wiscons Representations of Sym(n) and Alt(n) 21 / 32



Step 2 - Extension

Extension Lemma
Let n ≥ 7 and V be a faithful, dc-irreducible Alt(n)-module with an additive
dimension.

Further suppose that

Alt({1,2,3,4}⊥) centralizes B(12)(34).

Then,

if q = 2 there is a unique compatible action of Sym(n) extending the
Alt(n)-structure;

if q 6= 2 there are exactly two such, obtained from each other by
tensoring with the signature.

Moreover, up to tensoring with the signature, the extension satisfies the
assumption of the Recognition Lemma.

Remark
We again say nothing about the dimension of V .
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Step 3 - Geometrization

Geometrization Lemma
Let V be a faithful, dc-irreducible Alt(n)-module with an additive dimension.

Further suppose d < n and that either:

q = 2 and n ≥ 10; or

q 6= 2 and n ≥ 7.

Then V satisfies the assumption of the Extension Lemma.

Remark
The proof of the main theorem is then more-or-less assembled as:

Geometrization→ Extension→ Recognition
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Reflections

Remark
Though our setting is rather general, the minimal modules have (so far) fallen
into the familiar linear-algebraic setting. This is well aligned with the recent
work of Borovik.

Questions

1. What happens in the context of the Theorem for small values of n?

What is the minimal dimension of the faithful Sym(n)- and
Alt(n)-modules for small n?

(Nearing completion with Chin and Yu.)

What about identification for small n? Highlights would include:

Alt(8) ∼= SL4(F2) and Alt(6) ∼= PSL2(F9) (adjoint action)

2. The Theorem assumes d < n; can this be relaxed?

One expects to not
encounter the “second smallest” modules until d ≈

(n
2

)
.

3. What about G-modules for other G?

(See Berkman-Borovik for
hyperoctahedral groups; see Borovik-Cherlin for finite covers of Sym(n).)
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The nonsolvable 2⊥ case
Context: groups of finite Morley rank
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Groups of finite Morley rank

All groups

Groups of
fMr

Algebraic
over ACF

GLn(C)

PSLn(C)

GLn(C)× GLn(Fp)

Cp∞

Baudisch
group

Simple groups of fMr

?

Algebraicity Conjecture:
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All groups

Groups of
fMr

Algebraic
over ACF

GLn(C)

PSLn(C)

GLn(C)× GLn(Fp)

Cp∞

Baudisch
group

Simple groups of fMr

?

Algebraicity Conjecture: the gap, , does not exist.
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Groups of finite Morley rank

All groups

Groups of
fMr

Algebraic
over ACF

GLn(C)

PSLn(C)

GLn(C)× GLn(Fp)

Cp∞

Baudisch
group

Simple groups of fMr

?

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.
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Nonsolvable 2⊥-groups

Remark
The Algebraicity Conjecture would imply that every nonsolvable group of fMr
has involutions, so we are exploring the conjecturally nonexistent.

Work on showing nonsolvable 2⊥-groups don’t exist has had limited success.

Fact (Reineke, Cherlin, Frécon)
Nonsolvable 2⊥ groups of Morley rank at most 3 do not exist; rank 4 is open.

One could also hope to control possible automorphisms.

Fact (Delahan-Nesin)
An infinite simple group of fMr in which all proper connected subgroups are
nilpotent (is necessarily 2⊥ and) has no definable automorphism of order 2.

This provides another point of view on our work exploring representations of
Sym(n) and Alt(n) on nonsolvable 2⊥-groups of fMr.
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The nonsolvable 2⊥ case
Results (in progress)
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Minimal representations on nonsolvable 2⊥-groups

Likely Theorem (Altınel-W 2021)
Let n ≥ 4. Suppose Alt(n) acts definably and faithfully on a connected
nonsolvable 2⊥ group G of fMr. Then

rk G ≥ n.

Remarks

1. There may well be structural implications worth recording when rk G = n.

2. The bound is driven by the abelian case where we found that
rk V ≥ n − 2 (and an extension to the solvable case).

Key ingredients:

1. Reduction to the case of G being simple

2. Results on groups of small Morley rank (to dispense with small n)
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Minimal representations on nonsolvable 2⊥-groups

Key ingredients:

1. Reduction to the case of G being simple.

2. Results on groups of small Morley rank (to dispense with small n).

3. 4-group generation (Borovik-Burdges-Cherlin): if K a Klein 4-group
acting definably on G, then G = 〈C◦G(α) | α ∈ K \ {1}〉.

Then work inductively with Alt({1,2,3,4}⊥) acting on each C◦G(α).
This forces C◦G(α) to be abelian and of relatively large rank.

4. Rank control for 2⊥-permutation groups (Borovik-Cherlin): if H is a
maximal connected subgroup of corank s, then rk G ≤ s(s + 1)/2, so

rk H ≤ rk G +
1
2
−
√

2 rk G +
1
4
.

This forces C◦G(α) to be of relatively small rank.
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Reflections
With an eye on the Borovik-Cherlin problem about limits to generic transitivity,
one would like to treat the following problem in general.

Problem
Let G be a connected group of fMr on which Alt(n) acts faithfully and
definably by automorphisms. Show that, for sufficiently large n, dim G ≥ n − 2
and equality holds only when G is abelian.

Remark
What remains of the problem? We can more-or-less focus on the following:

1. G is simple algebraic

Automorphisms become inner, so we have an embedding of Alt(n).

2. G is simple of “odd type” (perhaps algebraic or not)

Via a Frattini Argument, we end up with a finite cover of Alt(n)
acting on the definable closure of a maximal 2-torus of G.

In both cases, the abelian case (including finite covers) seems relevant.
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Le retour
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