Dimensional and o-minimal Quasi-Frobenius groups 00000000

Ranked Quasi-Frobenius Groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dimensional Quasi-Frobenius Groups

Samuel Zamour Phd under the supervision of Frank Wagner

24/09/2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivation : a specific geometry of involutions

 Work of J.Wiscons and A.Deloro about generalisations of the geometry of involutions in SO₃(ℝ).

Motivation : a specific geometry of involutions

- Work of J.Wiscons and A.Deloro about generalisations of the geometry of involutions in $SO_3(\mathbb{R})$.
- Involutions form a projective plane in $SO_3(\mathbb{R})$ (half-turns) but the axioms are satisfied only "generically" in $PGL_2(\mathbb{C})$.

Motivation : a specific geometry of involutions

- Work of J.Wiscons and A.Deloro about generalisations of the geometry of involutions in $SO_3(\mathbb{R})$.
- Involutions form a projective plane in $SO_3(\mathbb{R})$ (half-turns) but the axioms are satisfied only "generically" in $PGL_2(\mathbb{C})$.
- In terms of the internal structure, we have a subgroup $C \leq C_G(i)$ for an involution *i* such that:
 - 1. $N_G(C) = C \rtimes \langle w \rangle$ for an involution w acting by inversion.
 - 2. $\bigcup_G C^g$ is "generic" in the ambiant group.

Introd	uction
000	

Dimensional and o-minimal Quasi-Frobenius groups

• A common geometry of involutions for two distinct model-theoretic settings : ranked universe and o-minimal structure.

Dimensional and o-minimal Quasi-Frobenius groups

- A common geometry of involutions for two distinct model-theoretic settings : ranked universe and o-minimal structure.
- Two questions (Deloro-Wiscons)
 - 1. Let C < G be a pair of (definably) connected groups definable in an o-minimal structure. Suppose G contains involutions and C is of finite index in $N_G(C)$ and intersects trivially any distinct conjugate. If $\bigcup_G C^g$ contains all translations, i.e., products of involutions, is $G \simeq SO_3(R)$ for a real closed field R?

Dimensional and o-minimal Quasi-Frobenius groups

- A common geometry of involutions for two distinct model-theoretic settings : ranked universe and o-minimal structure.
- Two questions (Deloro-Wiscons)
 - 1. Let C < G be a pair of (definably) connected groups definable in an o-minimal structure. Suppose G contains involutions and C is of finite index in $N_G(C)$ and intersects trivially any distinct conjugate. If $\bigcup_G C^g$ contains all translations, i.e., products of involutions, is $G \simeq SO_3(R)$ for a real closed field R?
 - 2. Let C < G be a pair of ranked connected groups. Suppose G contains involutions and is U_2^{\perp} , and C is of finite index in $N_G(C)$ and intersects trivially any distinct conjugate. Is $G \simeq \text{PGL}_2(K)$ for an algebraically closed field K?

Dimensional and o-minimal Quasi-Frobenius groups 00000000

Ranked Quasi-Frobenius Groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivation : connected Frobenius group

• A pair of groups C < G is a Frobenius group if for all $g \in G$, $C^g \cap C \neq \{1\}$ implies $g \in C$.

Motivation : connected Frobenius group

- A pair of groups C < G is a Frobenius group if for all $g \in G$, $C^g \cap C \neq \{1\}$ implies $g \in C$.
- In a ranked universe we conjecture that a Frobenius group *C* < *G* splits, i.e., *G* = *U* ⋊ *C* for a definable subgroup *U*. If not, we will have a counter-example to the Cherlin-Zilber conjecture.

Motivation : connected Frobenius group

- A pair of groups C < G is a Frobenius group if for all $g \in G$, $C^g \cap C \neq \{1\}$ implies $g \in C$.
- In a ranked universe we conjecture that a Frobenius group *C* < *G* splits, i.e., *G* = *U* ⋊ *C* for a definable subgroup *U*. If not, we will have a counter-example to the Cherlin-Zilber conjecture.
- A ranked sharply 2-transitive group, in particular K⁺ ⋊ K[×] for a ranked field K, is a good example of a connected Frobenius group with involutions.

Dimensional and o-minimal Quasi-Frobenius groups •0000000

We work with dimensional groups, i.e., groups definable in a structure such that definable subsets (taken in cartesian products) carry a dimension *dim* satisfying the following axioms :

• Let $f : A \to B$ be a definable function between definable sets A, B. Then $\{b \in B : f^{-1}(b) = n\}$ is definable.

Dimensional and o-minimal Quasi-Frobenius groups •0000000

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

We work with dimensional groups, i.e., groups definable in a structure such that definable subsets (taken in cartesian products) carry a dimension *dim* satisfying the following axioms :

- Let $f : A \to B$ be a definable function between definable sets A, B. Then $\{b \in B : f^{-1}(b) = n\}$ is definable.
- Let f : A → B be a definable function between definable sets A, B such that fibers are of constant dimension m. Then, dim(A) = dim(B) + dim(f⁻¹(b)).

Dimensional and o-minimal Quasi-Frobenius groups •0000000

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

We work with dimensional groups, i.e., groups definable in a structure such that definable subsets (taken in cartesian products) carry a dimension *dim* satisfying the following axioms :

- Let $f : A \to B$ be a definable function between definable sets A, B. Then $\{b \in B : f^{-1}(b) = n\}$ is definable.
- Let f : A → B be a definable function between definable sets A, B such that fibers are of constant dimension m. Then, dim(A) = dim(B) + dim(f⁻¹(b)).
- dim(A) = 0 if and only if A is finite.

Dimensional and o-minimal Quasi-Frobenius groups •0000000

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

We work with dimensional groups, i.e., groups definable in a structure such that definable subsets (taken in cartesian products) carry a dimension *dim* satisfying the following axioms :

- Let $f : A \to B$ be a definable function between definable sets A, B. Then $\{b \in B : f^{-1}(b) = n\}$ is definable.
- Let f : A → B be a definable function between definable sets A, B such that fibers are of constant dimension m. Then, dim(A) = dim(B) + dim(f⁻¹(b)).
- dim(A) = 0 if and only if A is finite.
- $dim(A \cup B) = max\{dim(A), dim(B)\}.$

Dimensional and o-minimal Quasi-Frobenius groups ••••••••

We work with dimensional groups, i.e., groups definable in a structure such that definable subsets (taken in cartesian products) carry a dimension *dim* satisfying the following axioms :

- Let $f : A \to B$ be a definable function between definable sets A, B. Then $\{b \in B : f^{-1}(b) = n\}$ is definable.
- Let f : A → B be a definable function between definable sets A, B such that fibers are of constant dimension m. Then, dim(A) = dim(B) + dim(f⁻¹(b)).
- dim(A) = 0 if and only if A is finite.
- $dim(A \cup B) = max\{dim(A), dim(B)\}.$

We shall call a definable subset $X \subseteq G$ (weakly) generic if dim(X) = dim(G).

Dimensional and o-minimal Quasi-Frobenius groups 0000000

- We require also the DCC on definable subgroups in order to define the connected component.
- Groups definable in o-minimal structures and ranked groups are dimensional groups (with DCC).
- We have a form of elimination of imaginaries in groups definable in o-minimal structures. Moreover, if G is a ranked group, then G^{eq} is ranked. We can make use of the dimension function for interpretable subsets.

Dimensional and o-minimal Quasi-Frobenius groups

Definitions

Ranked Quasi-Frobenius Groups

Definition

• Let C < G be a pair of definable dimensional connected groups. We say C < G is a *Quasi-Frobenius group* (QF) if Cis of finite index in $N_G(C)$ (almost selfnormalising) and for all $g \notin N_G(C)$, we have $C^g \cap C = \{1\}$ (TI).

Dimensional and o-minimal Quasi-Frobenius groups

Definitions

Ranked Quasi-Frobenius Groups

Definition

- Let C < G be a pair of definable dimensional connected groups. We say C < G is a *Quasi-Frobenius group* (QF) if Cis of finite index in $N_G(C)$ (almost selfnormalising) and for all $g \notin N_G(C)$, we have $C^g \cap C = \{1\}$ (TI).
- We speak of connected Frobenius group if N_G(C)/C is trivial, of Even Quasi-Frobenius (EQF) if N_G(C)/C is even and of Odd Quasi-Frobenius (OQF) if it is odd.

Dimensional and o-minimal Quasi-Frobenius groups

Definitions

Ranked Quasi-Frobenius Groups

Definition

- Let C < G be a pair of definable dimensional connected groups. We say C < G is a *Quasi-Frobenius group* (QF) if Cis of finite index in $N_G(C)$ (almost selfnormalising) and for all $g \notin N_G(C)$, we have $C^g \cap C = \{1\}$ (TI).
- We speak of connected Frobenius group if N_G(C)/C is trivial, of Even Quasi-Frobenius (EQF) if N_G(C)/C is even and of Odd Quasi-Frobenius (OQF) if it is odd.

We have : $N_G(C)^\circ = C$ and $C_G(c)^\circ \leq C$ for all $1 \neq c \in C$.

Dimensional and o-minimal Quasi-Frobenius groups

Definitions

Ranked Quasi-Frobenius Groups

Definition

- Let C < G be a pair of definable dimensional connected groups. We say C < G is a *Quasi-Frobenius group* (QF) if Cis of finite index in $N_G(C)$ (almost selfnormalising) and for all $g \notin N_G(C)$, we have $C^g \cap C = \{1\}$ (TI).
- We speak of connected Frobenius group if N_G(C)/C is trivial, of Even Quasi-Frobenius (EQF) if N_G(C)/C is even and of Odd Quasi-Frobenius (OQF) if it is odd.

We have : $N_G(C)^\circ = C$ and $C_G(c)^\circ \leq C$ for all $1 \neq c \in C$.

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

Identification of $SO_3(R)$

 From now C < G will be a (QF) containing involutions and we suppose all 2-elements and translations are contained in ∪_G C^g.

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

Identification of $SO_3(R)$

- From now C < G will be a (QF) containing involutions and we suppose all 2-elements and translations are contained in ∪_G C^g.
- Notation : I refers to the set of involutions and I.I to the set of translations. For x ∈ G, we note C_x the conjugate of C containing x (if it exists).

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

Identification of $SO_3(R)$

- From now C < G will be a (QF) containing involutions and we suppose all 2-elements and translations are contained in ∪_G C^g.
- Notation : I refers to the set of involutions and I.I to the set of translations. For x ∈ G, we note C_x the conjugate of C containing x (if it exists).

Proposition

The group C < G is a (EQF), and there exists an involution $i \in N_G(C) \setminus C$.

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

Identification of $SO_3(R)$

- From now C < G will be a (QF) containing involutions and we suppose all 2-elements and translations are contained in ∪_G C^g.
- Notation : I refers to the set of involutions and I.I to the set of translations. For x ∈ G, we note C_x the conjugate of C containing x (if it exists).

Proposition

The group C < G is a (EQF), and there exists an involution $i \in N_G(C) \setminus C$.

Proof.

(sketch) Let x = ij be a translation for $i \in C$ and j in $C_j \neq C$. Then $i, j \in N_G(C_G(x)^\circ) \leq N_G(C_x)$. In order to obtain an involution, we consider a 2-element α of minimal order such that $1 \neq \alpha^2 \in C$.

Proposition

G is semi-simple, i.e., Z(G) is finite and there is no abelian normal infinite subgroup.

Proof.

Let A be a normal abelian infinite subgroup; considering $Z(C_G(A))^\circ$, we can suppose it is definable and connected. If there exists $1 \neq c \in A \cap C$, then $A \leq C_G(c)^\circ \leq C$ and so C = G, a contradiction.

Let *i* be an involution acting on A: this action is by inversion (the definable subgroup $\{a \in A : a^i = a^{-1}\}$ is weakly generic so equals A by connectedness). The subgroup A is 2-divisible, so $A \leq I.I$, a contradiction.

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

• There are big differences between the o-minimal and ranked universes concerning the intersection of (weakly) generic definable subsets in connected groups and the characterization of involutive definable automorphism.

- There are big differences between the o-minimal and ranked universes concerning the intersection of (weakly) generic definable subsets in connected groups and the characterization of involutive definable automorphism.
- We suppose from now on that C < G is definable in an o-minimal structure.

Fact

If G is definably simple, then :

1. (Edmundo, Jaligot and Otero) Carter subgroups, i.e., maximal nilpotent connected almost selfnormalising subgroups, are abelian.

- There are big differences between the o-minimal and ranked universes concerning the intersection of (weakly) generic definable subsets in connected groups and the characterization of involutive definable automorphism.
- We suppose from now on that C < G is definable in an o-minimal structure.

Fact

If G is definably simple, then :

- 1. (Edmundo, Jaligot and Otero) Carter subgroups, i.e., maximal nilpotent connected almost selfnormalising subgroups, are abelian.
- 2. (Peterzil, Pillay and Starchenko) If a field K is interpretable in G, then G and K are bi-interpretable.

- There are big differences between the o-minimal and ranked universes concerning the intersection of (weakly) generic definable subsets in connected groups and the characterization of involutive definable automorphism.
- We suppose from now on that C < G is definable in an o-minimal structure.

Fact

If G is definably simple, then :

- 1. (Edmundo, Jaligot and Otero) Carter subgroups, i.e., maximal nilpotent connected almost selfnormalising subgroups, are abelian.
- 2. (Peterzil, Pillay and Starchenko) If a field K is interpretable in G, then G and K are bi-interpretable.
- 3. *G* is definably isomorphic to the semi-algebraic connected component of a algebraic group defined over a real closed field (bi-interpretable with G) or to the k-rational points of a linear algebraic group defined over an algebraically closed field k (also bi-interpretable with G).

Bi-interpretability is with respect to the pure algebraic structure.

Dimensional and o-minimal Quasi-Frobenius groups $\circ\circ\circ\circ\circ\circ\circ$

Ranked Quasi-Frobenius Groups

We suppose now $Z(G) = \{1\}$ and C is nilpotent.

Dimensional and o-minimal Quasi-Frobenius groups

We suppose now $Z(G) = \{1\}$ and C is nilpotent.

Proposition

The group C < G is definably simple, C contains an unique involution and all involutions in $N_G(C) \setminus C$ are in the same coset (action by inversion). Moreover, involutions form a projective plane such that i, j, k are collinear iff ijk is an involution.

Dimensional and o-minimal Quasi-Frobenius groups

We suppose now $Z(G) = \{1\}$ and C is nilpotent.

Proposition

The group C < G is definably simple, C contains an unique involution and all involutions in $N_G(C) \setminus C$ are in the same coset (action by inversion). Moreover, involutions form a projective plane such that i, j, k are collinear iff ijk is an involution.

Using Bachman's theorem, we can define a field k. This field is real closed and bi-interpretable with C < G (at this point, we need the definability of the connected component in the pure group structure, see Frécon).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem

Let C < G be a (QF) definable in an o-minimal structure. Suppose G contains involutions and $\bigcup_G C^g$ contains all 2-elements and translations. Then C < G is semi-simple. If moreover C is nilpotent and Z(G) is trivial, then $G \simeq SO_3(R)$ for a real closed field R.

Analysis of ranked Quasi-Frobenius groups

Two general lemmas :

Lemma

(Conjugation of Quasi-Frobenius complements) Let C < G be a (QF) and H a definable and connected subgroup such that $H \cap C \neq \{1\}$. Then $H \cap C$ is infinite, and $(H \cap C) < H$ is a (QF). Moreover, for a conjugate C' of C, such that $(H \cap C') \neq \{1\}$, there exists $h \in H$ such that $(H \cap C')^h = (H \cap C)$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Analysis of ranked Quasi-Frobenius groups

Two general lemmas :

Lemma

(Conjugation of Quasi-Frobenius complements) Let C < G be a (QF) and H a definable and connected subgroup such that $H \cap C \neq \{1\}$. Then $H \cap C$ is infinite, and $(H \cap C) < H$ is a (QF). Moreover, for a conjugate C' of C, such that $(H \cap C') \neq \{1\}$, there exists $h \in H$ such that $(H \cap C')^h = (H \cap C)$.

Lemma

Let C < G be a solvable (QF). Then $G' = F(G)^{\circ}$ and $G = G' \rtimes C$, with $C \leq K^{\times}$ for an interpretable field K.

Dimensional and o-minimal Quasi-Frobenius groups 00000000

Structure of the 2-torsion

We shall now consider ranked (QF) groups with involutions and U_2^{\perp} (odd type).

Fact

(Borovik-Nesin) Let C < G be a connected Frobenius group of odd type. Then C contains an unique involution.
Dimensional and o-minimal Quasi-Frobenius groups

Structure of the 2-torsion

We shall now consider ranked (QF) groups with involutions and U_2^{\perp} (odd type).

Fact

(Borovik-Nesin) Let C < G be a connected Frobenius group of odd type. Then C contains an unique involution.

Fact

(Deloro-Wiscons) Let C < G be an (EQF) of odd type. Then all 2-elements are in $\bigcup_G C^g$, $N_G(C) = C \rtimes \langle w \rangle$ for w an involution acting by inversion and C contains a unique involution.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Fact

(Deloro-Jaligot) Let G be a connected group of odd type. Suppose the Prüfer rank is equal to one. Let S be a 2-Sylow subgroup. Then one of the following three possibilities holds :

- 1. $S = S^{\circ}$.
- 2. (PGL₂(\mathbb{C}) type) $S = S^{\circ} \rtimes \langle w \rangle$ with w an involution acting by inversion.
- 3. $(SL_2(\mathbb{C}) \text{ type}) S = S^{\circ} \cdot \langle w \rangle$ with w a 4-element such that $w^2 = i \in S^{\circ}$.

Fact

(Deloro-Jaligot) Let G be a connected group of odd type. Suppose the Prüfer rank is equal to one. Let S be a 2-Sylow subgroup. Then one of the following three possibilities holds :

1. $S = S^{\circ}$.

- 2. (PGL₂(\mathbb{C}) type) $S = S^{\circ} \rtimes \langle w \rangle$ with w an involution acting by inversion.
- 3. $(SL_2(\mathbb{C}) \text{ type}) S = S^{\circ} \cdot \langle w \rangle$ with w a 4-element such that $w^2 = i \in S^{\circ}$.

Proposition

Let C < G a connected Frobenius group of odd type. Then its 2-Sylow subgroups are of type $SL_2(\mathbb{C})$, or connected.

Dimensional and o-minimal Quasi-Frobenius groups 00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

(Splitting criterion) Let C < G be an (QF) of odd type with an abelian normal infinite subgroup. Then $G = A \rtimes C$ for an abelian normal definable subgroup A.

Proposition

(Splitting criterion) Let C < G be an (QF) of odd type with an abelian normal infinite subgroup. Then $G = A \rtimes C$ for an abelian normal definable subgroup A.

Proof.

Replacing A with $d(A)^{\circ}$, we can suppose A is definable and connected. We see that $A \cap \bigcup_{G} C^{g} = \{1\}$ and all involutions act on A by inversion. Replacing A by $C_{G}(A)^{\circ}$ (an abelian group) if necessary, we can suppose $A = C_{G}(A)^{\circ}$. For an involution *i*, we have $[i, G] \leq C_{G}(A)^{\circ} = A$. Let $g \in G$, and consider $[i, g] \in A$. By 2-divisibility, there exists $a \in A$ such that $a^{2} = [i, g]$:

$$[i,ga^{-1}] = iag^{-1}iga^{-1} = a^i[i,g]a^{-1} = a^{-1}a^2a^{-1} = 1$$

Finally, we obtain $G = A \rtimes C_G(i) = A \rtimes C$.

Dimensional and o-minimal Quasi-Frobenius groups 00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

Let C < G be an (EQF) of odd type and $(C \cap H) < H$ a definable solvable sub-(QF). Then $(C \cap H) < H$ is a connected Frobenius group (and not only a (QF)).

Dimensional and o-minimal Quasi-Frobenius groups 00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Proposition

Let C < G be an (EQF) of odd type and $(C \cap H) < H$ a definable solvable sub-(QF). Then $(C \cap H) < H$ is a connected Frobenius group (and not only a (QF)).

Corollary

Let C < G be an (EQF) of odd type. Then it is not solvable.

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

The Weyl group

The group $N_G(C)/C$ can be viewed as a form of Weyl group. Following the methods of (Altinel, Burdges and Frécon), we can obtain the following result (Frattini arguments) :

Dimensional and o-minimal Quasi-Frobenius groups

The Weyl group

The group $N_G(C)/C$ can be viewed as a form of Weyl group. Following the methods of (Altinel, Burdges and Frécon), we can obtain the following result (Frattini arguments) :

Proposition

Let C < G a (QF) of odd type with C solvable. Let T be a maximal decent torus, Q a generous Carter subgroup and S a maximal p-torus. Then $N_G(C)/C \simeq N_G(T)/C_G(T) \simeq N_G(Q)/Q \simeq N_G(S)/C_G(S)$. Moreover, a (OQF) of odd type with solvable complement has Prüfer rank at least equal to two.

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A standard" Borel

We try to identify a Borel subgroup whose structure is reminiscent of $K^+ \rtimes K^{\times}$ (the Borel subgroups of PGL₂(K) have precisely this structure).

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

A standard" Borel

We try to identify a Borel subgroup whose structure is reminiscent of $K^+ \rtimes K^{\times}$ (the Borel subgroups of $PGL_2(K)$ have precisely this structure).

Definition

Let *B* be a Borel subgroup of a (QF) C < G of odd type. It is *standard*" if *B* has infinite intersection with *C*, it is standard' if it additionally contains an involution, and *standard* if C < B.

Dimensional and o-minimal Quasi-Frobenius groups 00000000

Fact (Deloro-Wiscons) Let C < G be an (EQF) group of odd type. Then $\bigcup_G C^g$ does not contain all the translations.

Dimensional and o-minimal Quasi-Frobenius groups 00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Fact

(Deloro-Wiscons) Let C < G be an (EQF) group of odd type. Then $\bigcup_G C^g$ does not contain all the translations.

Lemma

(adapted from Deloro-Wiscons) Let C < G be a (QF) of odd type. Let x a translation and i an involution inverting x. If C is $\langle x, i \rangle$ -invariant then x is contained in $\bigcup_G C^g$.

Dimensional and o-minimal Quasi-Frobenius groups 00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

Let C < G a (QF) of odd type such that C is solvable. Then there is standard" borel B. Moreover, if C < G is an (EQF), this standard" borel is a connected Frobenius group.

Theorem

Let C < G a (QF) of odd type such that C is solvable. Then there is standard" borel B. Moreover, if C < G is an (EQF), this standard" borel is a connected Frobenius group.

Proof.

(sketch) Let x = ij be a translation not contained in $\bigcup_G C^g$ and consider $A = C_G(x)^\circ$. Using the preceding lemma and fact, we can see that A is an abelian group inverted by i and j such that $A \cap \bigcup_G C^g = \{1\}$. Taking A maximal for these properties, we can also prove that A is not an almost selfnormalising group, $C_G(A)^\circ = A$ and A is TI (for the last property, we consider $x_0 \in A \cap A^g \leq C_G(x_0)^\circ$).

We can work as before to obtain $N_G(A)^\circ = A \rtimes (A \cap C)$. It suffices now to consider a Borel subgroup containing $N_G(A)^\circ$.

Dimensional and o-minimal Quasi-Frobenius groups

If we suppose that $N_G(A)^\circ$ contains involutions, we can precisely identify a standard' Borel subgroup.

Proposition

The subgroup $N_G(A)^\circ = B$ is a Borel subgroup. Moreover, for $1 \neq g \in G \setminus N_G(B)$, $(B \cap B^g)^\circ$ is trivial or an infinite torus, i.e., an abelian divisible group.

Dimensional and o-minimal Quasi-Frobenius groups

If we suppose that $N_G(A)^\circ$ contains involutions, we can precisely identify a standard' Borel subgroup.

Proposition

The subgroup $N_G(A)^\circ = B$ is a Borel subgroup. Moreover, for $1 \neq g \in G \setminus N_G(B)$, $(B \cap B^g)^\circ$ is trivial or an infinite torus, i.e., an abelian divisible group.

 In a connected Frobenius group of odd type, for any translation x = ij, we have : C_G(x) is abelian 2-divisible and (N_G(C_G(x)) ∩ C_i) is infinite.

Dimensional and o-minimal Quasi-Frobenius groups

If we suppose that $N_G(A)^\circ$ contains involutions, we can precisely identify a standard' Borel subgroup.

Proposition

The subgroup $N_G(A)^\circ = B$ is a Borel subgroup. Moreover, for $1 \neq g \in G \setminus N_G(B)$, $(B \cap B^g)^\circ$ is trivial or an infinite torus, i.e., an abelian divisible group.

- In a connected Frobenius group of odd type, for any translation x = ij, we have : C_G(x) is abelian 2-divisible and (N_G(C_G(x)) ∩ C_i) is infinite.
- If we deal with a sharply 2-transitive group of odd type, the situation is even better : $N_G(C_G(x)) = K^+ \rtimes K^{\times}$.

Dimensional and o-minimal Quasi-Frobenius groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Borel subgroup and generosity

Lemma

Let C < G be a (QF) such that C is abelian (or nilpotent under some additional technical hypothesis). If a standard" Borel subgroup B is generous then it is standard.

Dimensional and o-minimal Quasi-Frobenius groups

Borel subgroup and generosity

Lemma

Let C < G be a (QF) such that C is abelian (or nilpotent under some additional technical hypothesis). If a standard" Borel subgroup B is generous then it is standard.

Proof.

We have $B = B' \rtimes (B \cap C)$ and $(B \cap C) \leq Z(C)$. As $(B \cap C)$ is a (QF)-complement, it is generous in B. But B is generous (in G) so $X = \{b \in B : b \text{ is contained in a finite number of conjugates of B}$ is generic in B. There exists $1 \neq c \in C \cap X$ (conjugating C if necessary) but $c \in B \cap B^{c'}$ for all $c' \in C$. Finally, $N_G(B) \cap C$ is generic in C, and $C \leq N_G(B)^\circ = B$.

Dimensional and o-minimal Quasi-Frobenius groups 00000000

Borel subgroup and generosity

Lemma

Let C < G be a (QF) such that C is abelian (or nilpotent under some additional technical hypothesis). If a standard" Borel subgroup B is generous then it is standard.

Proof.

We have $B = B' \rtimes (B \cap C)$ and $(B \cap C) \leq Z(C)$. As $(B \cap C)$ is a (QF)-complement, it is generous in B. But B is generous (in G) so $X = \{b \in B : b \text{ is contained in a finite number of conjugates of B}$ is generic in B. There exists $1 \neq c \in C \cap X$ (conjugating C if necessary) but $c \in B \cap B^{c'}$ for all $c' \in C$. Finally, $N_G(B) \cap C$ is generic in C, and $C \leq N_G(B)^\circ = B$. Remark : If B is generically disjoint from its conjugates, it is a generous subgroup. Nevertheless, in $PGL_2(K)$, a Borel subgroup is generous but it is not generically disjoint from its conjugates.

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

Classification theorems

Two theorems

Dimensional and o-minimal Quasi-Frobenius groups

Classification theorems

Two theorems

Theorem

Let C < G be an (EQF) of odd type such that Borel subgroups are generous (respect. contains a standard Borel subgroup) then $G \simeq PGL_2(K)$, for an algebraically closed field K.

Dimensional and o-minimal Quasi-Frobenius groups

Classification theorems

Two theorems

Theorem

Let C < G be an (EQF) of odd type such that Borel subgroups are generous (respect. contains a standard Borel subgroup) then $G \simeq PGL_2(K)$, for an algebraically closed field K.

Theorem

Let C < G be a connected Frobenius group of odd type such that Borel subgroups are generous (respect. contains a standard Borel subgroup). Suppose also C is nilpotent (with some technical hypothesis). Then G is solvable and splits.

Dimensional and o-minimal Quasi-Frobenius groups

Two key lemmas

Lemma

Let C < G be a (QF) of odd type with C solvable. Let B a standard' Borel subgroup, $B = B' \rtimes (B \cap C_i)$ and $i \in B$. Suppose $B \cap i^G = N_G(B) \cap i^G$. Then one of the following possibilities holds:

- G is solvable.
- $i^{G} \setminus N_{G}(B)$ and $K_{B} = \{k \in i^{G} \setminus N_{G}(B) : RM(T_{B}(k)) \ge RM(B) - RM(C_{G}(i))\}$ are generic in i^{G} , where $T_{B}(k) = \{b \in B : b^{k} = b^{-1}\}$ for an involution k not normalising B.

Proof.

(sketch) Suppose $B \cap i^G$ is generic in i^G and consider $N = \bigcap_G B^g$ (a definable subgroup containing all involutions). Using the splitting criterion, we can show that $(C \cap N^\circ) < N^\circ$ is a (QF) group. Combining the conjugation of quasi-Frobenius complements and a Frattini argument, we obtain $G = N^\circ \cdot N_G(C)$. It suffices to note that $N_G(C)$ is solvable.

Dimensional and o-minimal Quasi-Frobenius groups

Lemma

Let C < G be a (QF) of odd type. Suppose there exists a standard Borel subgroup $B = B' \rtimes C$. Suppose also $i^G \setminus N_G(B)$ and K_B are generic in i^G . Then for any involution k in K_B , the subgroup $I_k^{\circ} = (B \cap B^k)^{\circ}$ is a conjugate of C containing an involution j_k .

Lemma

Let C < G be a (QF) of odd type. Suppose there exists a standard Borel subgroup $B = B' \rtimes C$. Suppose also $i^G \setminus N_G(B)$ and K_B are generic in i^G . Then for any involution k in K_B , the subgroup $I_k^{\circ} = (B \cap B^k)^{\circ}$ is a conjugate of C containing an involution j_k .

Proof.

(sketch) We notice that $T_k(B) \subseteq I_k$ and so $RM(I_k) \ge RM(F(B))$. Moreover, I_k° is abelian inverted by k (conjugation of (QF)-complements) and we can decompose

$$I_k^{\circ} = d(T) * U_{0,1}(I_K) * ... U_0(I_k) * (U_3(I_k) \times U_{pmax}(I_k))$$

If $I_k^{\circ} \cap \bigcup_G C^g = \{1\}$, by the structure of ρ -Sylow, we can show that $I_k^{\circ} \leq F(B)^{\circ} \cap F(B^k)^{\circ}$ and $F(B)^{\circ} = F(B^k)^{\circ}$. Then, $N_G(F(B)^{\circ})^{\circ}$ contains B, B^k and is a (QF) of odd type with a normal abelian group, so this group splits and is solvable, a contradiction. Finally, $I_k^{\circ} = C_{j_k}$, for an involution j_k .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Consequences for connected Frobenius groups

Corollary

Let C < G be a connected Frobenius of odd type with a standard Borel subgroup B. Then G is solvable and splits.

Proof.

If G is not solvable then I_k° , for an involution $k \in K_B$, is a conjugate of C. But k normalises I_k° and so $k \in N_G(I_k^{\circ}) = I_k^{\circ}$, a contradiction.

Consequences for connected Frobenius groups

Corollary

Let C < G be a connected Frobenius of odd type with a standard Borel subgroup B. Then G is solvable and splits.

Proof.

If G is not solvable then I_k° , for an involution $k \in K_B$, is a conjugate of C. But k normalises I_k° and so $k \in N_G(I_k^{\circ}) = I_k^{\circ}$, a contradiction.

Proposition

Let C < G be a connected Frobenius group of odd type. Suppose $N_G(A)^\circ = N^\circ$ is a standard' Borel subgroup (in particular, this is true for a sharply 2-transitive group). Then G is solvable or $T_{N^\circ}(k)$ and $B \cap B^k$ are finite, for $k \in K_{N^\circ}$.

Dimensional and o-minimal Quasi-Frobenius groups 00000000

Ranked Quasi-Frobenius Groups

Identification of $PGL_2(K)$

 To identify PGL₂(K), we try to find a (B, N)-pair (De Medts-Tent, Wiscons).

Identification of $PGL_2(K)$

- To identify PGL₂(*K*), we try to find a (*B*, *N*)-pair (De Medts-Tent, Wiscons).
- The general strategy is in line with the one used by A.Deloro and E.Jaligot.

Identification of $PGL_2(K)$

- To identify PGL₂(*K*), we try to find a (*B*, *N*)-pair (De Medts-Tent, Wiscons).
- The general strategy is in line with the one used by A.Deloro and E.Jaligot.
- The existence of a standard Borel subgroup is a strong hypothesis : main obstacle for eliminating minimal pathological configurations (Deloro-Jaligot).

Identification of $PGL_2(K)$

- To identify PGL₂(*K*), we try to find a (*B*, *N*)-pair (De Medts-Tent, Wiscons).
- The general strategy is in line with the one used by A.Deloro and E.Jaligot.
- The existence of a standard Borel subgroup is a strong hypothesis : main obstacle for eliminating minimal pathological configurations (Deloro-Jaligot).

Definition

A split (B, N)-pair of rank 1 is a quadruplet of groups B, N, $H = N \cap B$ normal in N and U abelian such that :

- $G = \langle B, N \rangle.$
- [N : H] = 2.
- For all $k \in N \setminus H$, $H = B \cap B^k$, $G = B \cup BkB$ and $B \neq B^k$.
- $B = U \rtimes H$.

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Final Steps

Lemma

Let C < G be an (EQF) of odd type. Let B be a standard borel. Then B is self-normalising.

Dimensional and o-minimal Quasi-Frobenius groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Final Steps

Lemma

Let C < G be an (EQF) of odd type. Let B be a standard borel. Then B is self-normalising.

Lemma

Let C < G be an (EQF) of odd type. Let B be a standard borel. Suppose $i^G \setminus B$ and K_B are generic in i^G and $I_k = (B \cap B^k)^\circ$ is a conjugate of C. Then for all $g \in G \setminus B$, we have $G = B \cup BgB$.
Dimensional and o-minimal Quasi-Frobenius groups

Final Steps

Lemma

Let C < G be an (EQF) of odd type. Let B be a standard borel. Then B is self-normalising.

Lemma

Let C < G be an (EQF) of odd type. Let B be a standard borel. Suppose $i^G \setminus B$ and K_B are generic in i^G and $I_k = (B \cap B^k)^\circ$ is a conjugate of C. Then for all $g \in G \setminus B$, we have $G = B \cup BgB$. Remark : Behind the proof lies a rank computation (Deloro-Jaligot) which uses the full strength of the existence of a standard Borel subgroup.

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion

• Is there a better way to characterize involutive definable automorphisms in o-minimal structures ?

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

- Is there a better way to characterize involutive definable automorphisms in o-minimal structures ?
- How can we prove that our standard" Borel subgroup is standard ?

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

- Is there a better way to characterize involutive definable automorphisms in o-minimal structures ?
- How can we prove that our standard" Borel subgroup is standard ?
- How could we analyse ranked (QF) groups without assuming the complement is solvable ?

Dimensional and o-minimal Quasi-Frobenius groups

Ranked Quasi-Frobenius Groups

Thank you for your attention !

Dimensional and o-minimal Quasi-Frobenius groups

Bibliography

- T.Altinel, J.Burdges and O.Frécon, On Weyl groups in minimal simple groups of finite Morley rank, Isr. J. Math., 197 (1), pp.377-407, 2013
- T.Altinel, A.Berkman and F.O.Wagner, Sharply 2-transitive permutation groups, hal-01935537v2, 2019
- A.Borovik and A.Nesin, Groups of finite Morley rank, Oxford Logic Guides 26, 1994
- T.De Medts and K.Tent, *Special abelian Moufang sets of finite Morley rank*, J.Group Th., 11(5):645–655, 2008
- A.Deloro and E.Jaligot, Small groups of finite Morley Rank with involutions, J. R. Ang. Math., 644:23–45, 2010
- A.Deloro and E.Jaligot, Involutive automorphisms of N_☉^o-groups of finite Morley rank, Pac. J. Math., 285(1), pp. 111–184, 2016
- A.Deloro and J.Wiscons, *The geometry of involutions in ranked groups with TI-subgroups*, prepublication, Hal-01989989v2, 2019
- M.Edmundo, E.Jaligot and M.Otero, Cartan subgroups of groups definable in o-minimal structures, HAL-00625087v2, 2011
- O.Frécon, Linearity of groups definable in o-minimal structures, Sel. Math. (N.S.) 23, no.2, 1563–1598, 2017
- Y.Peterzil, A.Pillay and Y.Starchenko, *Simple algebraic and semialgebraic groups over real closed fields*, Trans.Amer.Math.Soc., 352, p.4421-4450, 2000
- J. Wiscons, On groups of finite Morley rank with a split BN-pair of rank 1, J. Algebra, 330:431–447, 2011