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1. Introduction

1. Introduction
This article presents the emergence of formal methods in the theory of partial differential equations, PDE
for short, in the French school of mathematics through the works of the French mathematician Maurice
Janet in the period from 1913 to 1930. Janet was a very singular mathematician, who had been able
to bring out original algebraic and algorithmic methods for the analysis of linear PDE systems. This
original contribution of Janet is certainly due to his open-mindedness, as is made clear by his scientific
visits to Germany, during a very complex political context in Europe with the events around the First
World War. In particular, this relationship with the Göttingen school led him to appropriate Hilbert’s
constructive ideas from [26] in the algebraic analysis of polynomial systems. In the continuation of the
works of Charles Riquier and Étienne Delassus, he defended a Doctorat és Sciences Mathématiques [32]
in 1920, where he introduced an original formal approach to deal with the solvability of the problem of
initial conditions for finite linear PDE systems.

In this article we briefly survey the historical background of the contribution of Janet and we present
its precursory ideas on the algebraic formulation of completion methods for polynomial systems applied
to the problem of analytic solvability of PDE systems. Certainly influenced by the work of David Hilbert,
[26], its construction implicitly used an interpretation of a monomial PDE system as a generating family
of a multiplicative set of monomials. He introduced an algorithmic method on multiplicative sets to
compute compatibility conditions, and to study the problem on the existence and the uniqueness of a
solution of a linear PDE system with an initial condition. The compatibility conditions are formulated
using a refinement of the division operation on monomials defined with respect to a partition of the set of
variables into multiplicative and non-multiplicative variables. We will explain how Janet’s constructions
were formulated in terms of polynomial systems, but without the modern language of ideals introduced
simultaneously by Emmy Noether in 1921 [61]. Janet was a pioneer in the development of these
algorithmic methods, and the completion procedure that he introduced on polynomials was the first in a
long and rich series of works on completion methods which appeared independently throughout the 20th
century in various algebraic contexts. In this article, we do not present the theory developed by other
pioneers on the formal approaches in the analysis of linear PDE systems, in particular the work of Joseph
Miller Thomas, [74].

1.1. Mathematical context in Europe after first World War. In an early stage of his career, Janet
developed his mathematical project in the context of the first World War, which caused a complicated
political period in Europe. This war, which in particular involved France and Germany, had profoundly
affected the European mathematical community. We refer the reader to [1] and [2] for an exposition of
the impact of this war on the activities of the mathematical community in Paris. This wartime followed
a very active period for mathematics in Paris, and destroyed the dynamism of the French mathematical
school. Indeed, many mathematicians were mobilized and the communications between France and other
countries became difficult, especially between France and Germany, its main enemy. We refer the reader
to [58] which presents an edition of private notes written by Janet in the autumn of 1912 during his visit
to Göttingen. In these notes, Janet revealed his views on the very complex political situation in Europe
during this period.

Thewartime created a very special situation for scientific collaborations between France andGermany.
Indeed, some scientists expressed suspicions about the work of the enemy country’s scientists. In
particular, Charles Émile Picard, whose family was very badly affected by the war due to the death of
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1.2. Maurice Léopold René Janet

three of his five children, published a very critical text on German science in 1916, [64]. He wrote [64,
P.36].

C’est une tendance de la science allemande de poser a priori des notions et des concepts,
et d’en suivre indéfiniment les conséquences, sans se soucier de leur accord avec le réel, et
même en prenant plaisir à s’éloigner du sens commun. Que de travaux sur les géométries les
plus bizarres et les symbolismes les plus étranges pourraient être cités ; ce sont des exercices
de logique formelle, où n’apparaît aucun souci de distinguer ce qui pourra être utile au
développement ultérieur de la science mathématique.

It is a tendency of German science to introduce notions and concepts, and to follow their con-
sequences indefinitely, without worrying about their agreement with reality, and even taking
pleasure in departing from common sense. How many works on the strangest geometries and
the strangest symbolisms could be cited; they are exercises in formal logic, where there is
no concern to distinguish what may be useful for the further developments of mathematical
science?

During this period, Picard had a significant influence on the French school of analysis. Consquently,
such a strong position towards German scientists reflects the atmosphere of the period during which Janet
was conducting his thesis work. Nevertheless, having visited Germany, Janet had privileged relations
with the German mathematical community. Janet’s visit to Göttingen was described with details in [58].
His work on formal methods for the solvability of linear PDE systems was influenced by the algebraic
formalism developed during that period in Germany to deal with finiteness problems in polynomial rings.
Indeed, since Hilbert’s seminal article, [26], these questions have been at the center of many works in
Germany. It was in 1921 that the algebraic structure of ideals emerged, and the Noetherian property was
clearly formulated. This was after a long series of works carried out by the German school, with the
major contributions by D. Hilbert, [26], Richard Dedekind, and finally E. Noether.

In France, the formalist approach was not as well developed as in Germany and the reference text-
books in algebra remained the great classics of the 19th century on the analysis of algebraic equation
systems. In the 1920s, the main references were the book of Camille Jordan on what he called substitution
groups of algebraic equations, [43], and the lectures on higher algebra by Joseph-Alfred Serret, [71]. The
book of J.-A. Serret had a great influence and was re-edited many times until 1928, [72].

1.2. Maurice Léopold René Janet. Janet was born on the 24th of October 1888 in Grenoble. He
was raised in a family of six children that belonged to the French intellectual bourgeoisie. He entered
the science section of the École normale supérieure in Paris in 1907. Jean-Gaston Darboux, Édouard
Goursat, É. Picard and Jacques Hadamard were among his teachers. In September 1912 he made a trip
to Göttingen in Germany for a few months. This stay in Göttingen was thought to have been of great
importance in the mathematical training of Janet. We refer the reader to [58] for more details on his
travels to the University of Göttingen. He found a very rich intellectual community there and had many
exchanges, both with foreign students visitingGöttingen like him: George Pólya, LucienGodeaux, Marcel
Riesz), and with prestigious teachers, Constantin Carathéodory, Richard Courant, Edmund Landau, D.
Hilbert and Felix Klein.[58]. He also met Max Noether and E. Noether, [58].

The first two publications, [31, 30], of Janet appeared inComptes-rendus de l’Académie des sciences in
1913 and deal with the analysis of PDE systems. The second publication [30] concerns a generalization of
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Cauchy-Kowalevsky theorem under the formulation given by Ch. Riquier in [67]. While a lecturer at the
University of Grenoble, he defended his thesis on the analysis of PDE systems, entitled «Sur les systèmes
d’équations aux dérivées partielles», on June 26, 1920 at the Sorbonne in Paris, [32]. The jury was
composed of Gabriel Xavier Paul Koenigs, É. Goursat, Élie Cartan and J. Hadamard. In the preamble of
his thesis dissertation, he payed a respectful tribute (Hommage respectueux et reconnaissant) to Édouard
Goursat and J. Hadamard. Some results of his thesis were published in Journal de mathématiques pures
et appliquées in 1920, [33].

Janet was promoted to Professor in 1920 in Nancy, then in Rennes in 1921. He became a Professor
in Caen in 1924 when Ch. Riquier retired from the University and became Professor Emeritus. Finally,
he became a Professor at the Sorbonne in Paris in 1945. He was an invited speaker at the International
Congress of Mathematicians on three occasions: Toronto in 1924, [39], Zürich in 1932, [41] and Oslo in
1935, [42]. He was President of the Société Mathématiques de France in 1948. He died in 1983.

1.3. Formal methods in commutative algebras throughout the 20th century. Most of the formal
computational methods in commutative algebra and algebraic geometry developed throughout the 20th
century were founded on extensive works in elimination theory in the period 1880-1915. As early as 1882,
Kronecker [48] introduced multivariate resultants providing complete elimination methods for systems
of polynomial equations. Elimination theory culminated with the works of Julius König (1849-1913)
[46], and of Macaulay [53, 54, 55]. For an overview of the works of this period, the reader may consult
an important book on algebra [76] written by Bartel Leendert van der Waerden based on lectures by E.
Noether and E. Artin.

Independently, a computational approach to elimination in commutative algebra that consists to define
a polynomial ideal throughout a generating family satisfying nice computational properties stated with
respect to amonomial order appeared in different forms and in various contexts from the early 20th century.
The first algebraic constructions using such a computational method appeared in [13, 24, 55]. Fifty years
later, the notion of generating set of an ideal satisfying computational propertieswith respect to amonomial
order appeared in the terminology of standard bases in [27] for power series rings by Hironaka. In the
same period, Bruno Buchberger (1942-) developed algorithmic approaches for commutative polynomial
algebras, with effective constructions and a completion algorithm for calculating Gröbner bases, [6].
Similar approaches were developed for non commutative algebras in [73, 3]. Thereafter, developments
of the theory of Gröbner bases has mainly been motivated by algorithmic problems such as computations
with ideals, manipulating algebraic equations, computing linear bases for algebras, Hilbert series, and
homological invariants.

Forty years before the work of B. Buchberger, Janet introduced algorithmic approaches to the com-
pletion of a generating family of a polynomial ideal into a generating family satisfying computational
properties quite similar to Gröbner bases. As we explain in the following sections, the completion meth-
ods constitute the essential part of the theory developed by Janet. He introduced a procedure to compute a
family of generators of an ideal having the involutive property, and called involutive bases in the modern
language. This property is used to obtain a normal form of a linear partial differential equation system.

Janet’s procedure of computation of involutive bases used a refinement of the classical polynomial
division, called involutive division, which is appropriate to the reduction of linear PDE systems. The
completion procedure that he introduced is quite similar to the one defined with respect to classical
division by B. Buchberger in [6] to produce Gröbner bases. Subsequently, another approach to the
reduction of linear PDE systems by involutive divisions was introduced by J. M. Thomas, [74]. The

4



1.4. Conventions and notations

terminology involutive first appeared in [17]. We refer the reader to [57] for a discussion on relation
between this notion and that of involutivity in the work of É. Cartan. We refer also to [70] for a complete
account of algebraic involutivity theory. Finally, note that the work of Janet was forgotten for about a
half-century, and was rediscovered by F. Schwarz in 1992 in [69].

1.4. Conventions and notations. In order to facilitate the reading of the differentmathematical construc-
tions extracted from the publications of Janet, we have chosen to use modern mathematical formulations.
We provide here, a dictionary between the terminology used by Janet and the terminology used nowadays
in the theory of partial differential equations.

Janet terminology
(in French) Modern terminology Subsection

in the article
module de monômes multiplicative cone 5.1

forme homogeneous polynomial 4.4
module de formes polynomial ideal 4.4

famille de monômes de type fini˚ Noetherian property 4.3
système de cotes monomial order 3.2, 7.2

postulation coefficients of Hilbert’s series 4.4

(˚) Janet did not use any specific terminology, but formulated the notion as follows, [40, pp. 11]:
Théorème. - Une suite de monomes M1, M2, . . . telle que chacun d’eux n’est multiple d’aucun des
précédents ne comprend qu’un nombre fini de monomes.
Theorem. - A sequence of monomials M1, M2, . . . such that each monomial is not a multiple of any
preceding one contains only a finite number of monomials.

The following notations will be used in this article. The set of non-negative integers is denoted
by N. The polynomial ring on the variables x1, . . . , xn over a field K of characteristic zero is denoted by
K[x1, . . . , xn]. A polynomial is either zero or it can be written as a sum of a finite number of non-zero
terms, each term being the product of a scalar inK and amonomial. We will denote byM(x1, . . . , xn) the
set of monomials in the ringK[x1, . . . , xn]. For a subset I of {x1, . . . , xn} we will denote byM(I) the set
of monomials in M(x1, . . . , xn) whose variables lie in I. A monomial u in M(x1, . . . , xn) is written as
u = xα11 . . . xαnn , were the αi are non-negative integers. The integer αi is called the degree of the variable
xi in u, it will be also denoted by degi(u). For α = (α1, . . . , αn) in Nn, we denote xα = xα11 . . . xαnn
and |α| = α1 + . . .+ αn.

For a setU of monomials ofM(x1, . . . , xn) and 1 ď i ď n, we denote by degi(U) the largest possible
degree in the variable xi of the monomials in U, that is

degi(U) = max
(
degi(u) | u P U

)
.

We call the cone of the set U the set of all multiples of monomials in U, defined by

cone(U) =
ď

uPU

uM(x1, . . . , xn) = {uv | u P U, v PM(x1, . . . , xn) }.

Finally, to a monomial xα = xα1xα2 . . . xαnn we will associate the differential operator:

Dα =
B|α|

Bxα11 Bx
α2
2 . . . Bxαnn

.
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2. Historical context of Janet’s work
Janet’s contribution discussed in this article is part of a long series of works on partial differential
equation systems. In order to introduce the motivations of Janet’s results, this section outlines the main
contributions on the study of systems of partial differential equations achieved in the 19th century. We
present the historical background of exterior differential systems and of the questions on PDE. For a deeper
discussion of the theory of differential equations and the Pfaff problem, we refer the reader to [15, 77]
or [8].

2.1. Pfaff’s problem. Motivated by problems in analytical mechanics1, Leonhard Euler and Joseph-
Louis Lagrange initiated the so-called variational calculus, cf. [50], which led to the problem of solving
first-order PDE. This theory serves as a guide to the Janet contributions. In 1772, J.-L. Lagrange
considered in [49] a PDE of the following form

F(x, y,ϕ, p, q) = 0 with p =
Bϕ

Bx
and q =

Bϕ

By
, (1)

i.e. a PDE of one unknown function ϕ in two variables x and y. Lagrange’s method to solve this PDE
can be summarized in three steps as follows:

i) Express the PDE (1) in the form

q = F1(x, y,ϕ, p) with p =
Bϕ

Bx
and q =

Bϕ

By
. (2)

ii) Forgetting the fact that p = Bϕ
Bx , we consider the following 1-form

Ω = dϕ− pdx− qdy = dϕ− pdx− F1(x, y,ϕ, p)dy,

by regarding p as some (not yet fixed) function of x, y and ϕ.

iii) If there exist functionsM andΦ in variables x, y andϕ satisfyingMΩ = dΦ, thenΦ(x, y,ϕ) = C
for some constant C. Solving this new equation, we obtain a solution ϕ = ψ(x, y, C) to the given
equation (2).

In 1814-15, Johann Friedrich Pfaff [63] treated the case of a PDE of one unknown function in n variables,
depending on the case when n is even or odd.

Recall that any PDE of any order is equivalent to a first order PDE system, that is involving only first
partial derivatives of the unknown functions. Thus, we exclusively consider systems of first order PDE
withm unknown functions of the form

Fk
(
x1, . . . , xn, ϕ

1, . . . , ϕm,
Bϕa

Bxi
(1 ď a ď m, 1 ď i ď n)

)
= 0, for 1 ď k ď r.

1We refer the reader to [14] concerning history of mechanical problems.
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2.2. Cauchy-Kowalevsky’s theorem

Introducing the new variables pai , the system is defined on the space with coordinates (xi, ϕa, pai ) and is
given by 

Fk(xi, ϕ
a, pai ) = 0,

dϕa −
n

ÿ

i=1

pai dxi = 0,

dx1 ∧ . . .∧ dxn ‰ 0.

Notice that the last condition means that the variables x1, . . . , xn are independent. Such a system is
called a Pfaffian system. One is interested in whether this system admits a solution or not, and whether
or not a solution is unique under some conditions. These questions are Pfaff’s problems. An approach
using differential invariants was one of the key ideas developed, in particular, by Sophus Lie (cf. [52]),
Darboux (cf. [10]), and Georg Frobenius (cf. [16]) etc. before É. Cartan [8]. See, e.g., [15] and [25] for
historical foundations on Pfaff’s problems.

2.2. Cauchy-Kowalevsky’s theorem. A naive approach to Pfaff’s problems, having applications to
mechanics in mind, is the question of the initial conditions. In series of articles published in 1842,
Augustin Louis Cauchy studied systems of PDE of first order in the following form:

Bϕa

Bt
= fa(t, x1, ¨ ¨ ¨ , xn) +

m
ÿ

b=1

n
ÿ

i=1

fia,b(t, x1, . . . , xn)
Bϕb

Bxi
, for 1 ď a ď m, (3)

where fa, fia,b and ϕ1, . . . , ϕm are functions of the n+ 1 variables t, x1, . . . , xn. He showed that under
the hypothesis of analyticity of the coefficients, the PDE system (3) admits a unique analytic local solution
satisfying a given initial condition.

Sophie Kowalevsky in 1875 considered PDE systems of the form

Braϕa

Btra
=

m
ÿ

b=1

ra−1
ÿ

j=0
j+|α|ďra

f
j,α
a,b(t, x1, . . . , xn)

Bj+|α|ϕb

BtjBxα
, (4)

for some ra P Zą0, 1 ď a ď m, and where fj,αa,b and ϕ1, . . . , ϕm are functions of the n + 1 variables
t, x1, . . . , xn, andα = (α1, ¨ ¨ ¨ , αn) in (Zě0)n, with Bxα = Bxα11 . . . Bxαnn . She proved in [47] that under
the hypothesis of analyticity of the coefficients, the system (4) admits a unique analytic local solution
satisfying a given initial condition. This result is now called the Cauchy-Kowalevsky theorem. In her
article [47], she suspected that the form she has obtained was the normal form of any PDE system.
However, she had no proof of this statement. She wrote, [47, pp. 24-25]:

Was dagegen die zweite Bedingung angeht, so bleibt allerdings noch zu untersuchen, ob
ein Gleichungssystem von nicht normaler Form stets durch ein ähnliches Verfahren, wie
es Jacobi bei einem System gewöhnlicher Differentialgleichungen angewandt hat, auf ein
normales zurückgeführt werden könne, worauf ich aber hier nicht eingehen kann.

Regarding the second condition it remains to study the question of whether a system of
equations not in normal form may always be reduced to a normal one by methods similar
to the ones used by Jacobi for systems of ordinary differential equations, which I cannot go
into here.
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3. Emergence of formal methods for linear PDE systems

In his thesis in 1891, [4], Charles Bourlet showed that any PDE system can be transformed into an
equivalent PDE system of first order and proposed a notion of canonical form for such a system. He
showed that for a completely integrable system, there is an analytic solution. He also showed that the
normal form (4) due to S. Kowalevsky is not completely general by providing an example of a PDE
system of one unknown function depending on the two independent variables. Thus, finding a canonical
form of more general PDE systems became an important problem in the context of generalizing the
Cauchy-Kowalevsky theorem. In [4, §17], Bourlet wrote

Ceci nous prouve que le théorème de M me de Kowalewski ne démontre pas l’existence des
intégrales dans tous les cas où, dans le système à intégrer, le nombre des équations est égal
au nombre des fonctions inconnues. Dans son Mémoire (Journal de Crelle, t. 80, pp. 25)
M me de Kowalewski suppose que cette transformation soit possible en faisant, d’ailleurs,
remarquer qu’elle ne peut assurer que cela soit toujours possible.

This shows that Mme. de Kowalewski’s theorem does not establish the existence of the
integrals in all the cases when, in the system to integrate, the number of equations and the
number of unknown functions are equal. In her article (Crelle, vol. 80, pp. 25), Mme. de
Kowalewski supposes that such a transformation is possible, while making a remark that, in
any case, she cannot ensure that this is always possible.

The generalization of the Cauchy-Kowalevsky theorem to wider classes of linear PDE systems was
at the origin of the works of C. Méray, É. Delassus, Ch. Riquier as explained in the next section. It was
Janet who obtained a computational method to reach normal form of linear PDE systems for a class of
systems satisfying a reducibility property recalled in Section 7.6.

2.3. Grassman’s differential rule. In 1844, Hermann Günther Grassmann exhibited the rules of the
exterior algebra computation in his book [20] on linear algebra, that is a relation of the type

ab = −ba.

Although this kind of relation was implicitly used in the computation of the determinant of a square
matrix, as in a work of Carl Jacobi (cf. [29] etc.), this approach was too abstract for the first half of the
19th century.

Cesare Burali-Forti extensively applied this Grassmann’s rule to elementary Geometry, in [7], but
had not treated what are now called differential forms. It was É. Cartan in 1899 [8] who introduced
Grassmann’s rule in differential calculus. This algebraic calculus allowed him to describe a PDE system
by an exterior differential system which is independent of the choice of coordinates. This led to the
so called Cartan-Kähler theory, which is another motivation for the formal methods introduced by
Janet for analysis on linear PDE systems. We refer the reader to [45] for the impact, in many fields of
mathematics, of the introduction of Cartan’s differential forms. See, [44] and [9] for historical accounts
of the Cartan-Kähler theory and [21] and [5] for exposition of this theory in modern language.

3. Emergence of formal methods for linear PDE systems
The Cauchy-Kowalevsky theorem gives conditions for the existence of solutions of the PDE system
defined by (4) and satisfying some initial conditions. Generalizations of this result to wider classes of
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3.1. Principal and parametric derivatives

linear PDE systems were investigated in France by Charles Méray Ch. Riquier and É. Delassus during
the period 1880-1900. The first works in this direction seem to be those of a collaboration between Ch.
Méray and Ch. Riquier, [59, 60]. In the first of a series of three articles on the subject, [65], Ch. Riquier
noted that a very small number of authors had, at that time, addressed the existence of integrals in a
differential system involving any number of unknown functions and independent variables.

3.1. Principal and parametric derivatives. In the beginning of 1890s, following a collaboration with
Ch. Méray, Ch. Riquier initiated his research on finding normal forms of systems of (infinitely many)
PDE for finitely many unknown functions with finitely many independent variables. Ch. Méray and
Ch. Riquier in [60] analyzed S. Kowalevsky’s proof in [47] with the objective of reducing a PDE to some
notion of normal form. It may be regarded as the first algorithmic method applied to the analysis of PDE
systems. They introduced the concept of principal and parametric derivatives, allowing them to make
inductive arguments on sets of derivatives without having an explicit total order on these sets. They
formulated this notion as follows, [60, §2]:

Dans un système d’équations différentielles partielles, il y a, relativement à chaque fonction
inconnue, une distinction essentielle à faire entre les diverses variables indépendantes. Nous
appellerons variables principales d’une fonction inconnue déterminée celles par rapport
auxquelles sont prises les dérivées de cette fonction qui constituent dans le Tableau du
système les premiers membres des équations de la colonne correspondante. Pour la même
fonction, toutes les autres variables seront paramétriques.

In a system of partial differential equations, for each unknown function, there is, for
each unknown function, an essential distinction to make between the various independent
variables. We shall call the principal variables of an unknown function determined with
respect to which the derivatives of this function are taken, that form the first members of the
equations in the corresponding column in the table of the system. For the same function, all
of the other variables are parametric.

The notions of principal and parametric derivatives as appearing in Méray-Riquier’s work were not
formally exposed in [60]. These notions would be formalized later by Janet in the elaboration of an
algorithmic process for the computation of the normal form of a linear PDE system. We will present the
Janet formulation of these derivatives in Section 7.

3.2. The notion of cote. Ch. Riquier noted in [65] that the computation of normal forms for a PDE
system requires defining a total order on the derivatives. In this direction, he introduced the notion of
cote on derivatives in [65, pp. 66-67], the first of a series of three articles published in a same volume of
Annales Scientifiques de l’École Normale Supérieure.

Désignant par

(1) x, y, . . .

les variables indépendantes, et par

(2) u, r, . . .
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3. Emergence of formal methods for linear PDE systems

les fonctions inconnues d’un système différentiel quelconque, faisons correspondre à chacune
des quantités (1), (2) p entiers, positifs, nuls ou négatifs, que nous nommerons respectivement
cote première, cote seconde, ..., cote pième de cette quantité. Considérant ensuite une dérivée
quelconque de l’une des fonctions inconnues, et désignant par q un terme pris à volonté
dans la suite 1, 2, . . . , p, nommons cote qième de la dérivée en question l’entier obtenu en
ajoutant à la cote qième de la fonction inconnue les cotes homologues de toutes les variables
de différentiation, distinctes ou non.

Denoting by

(1) x, y, . . .

the independent variables, and by

(2) u, r, . . .

the unknown functions of any differential system, wemake correspond to each of the quantities
(1), (2) p integers, positive, zero or negative, that we call, respectively, the first ! cote",
second ! cote", . . ., p-th ! cote" of this quantity. Then, considering any derivative of an
unknown function, and denoting by q a term taken freely from the sequence 1, 2, . . . , p, call
the q-th! cote" of the derivative in question the integer obtained by adding the homologous
! cote" of all of the variables, either distinct or not, of differentiation to the q-th ! cote"
of the unknown function.

However, a complete algebraic formalization of this notion of cote wasn’t obtained until 1929 by
Janet in [40, §40], which we will recall in Section 7.2. Moreover, he integrated the notions of principal
and parametric derivatives into a more general theory of orders on sets of derivatives, [40, Chapter II].
The definitions for monomial orders given by Janet clarified the same notion previously introduced by
Ch. Riquier in [65]. In particular, Janet made the notion of parametric and principal derivatives more
explicit in order to distinguish the leading derivative in a polynomial PDE. In this way, he extended his
algorithms on monomial PDE systems to the case of polynomial PDE systems. In particular, using these
notions, he defined the property of completeness for a polynomial PDE system. Namely, a polynomial
PDE system is complete if the associated set of monomials corresponding to leading derivatives of the
system is complete. Moreover, he also extended the notion of complementary monomials to define the
notion of initial conditions for a polynomial PDE system as in the monomial case.

Finally, let us mention that Ch. Riquier summarized known results on PDE systems in several
books: [67] for PDE systems, [68] for techniques of estimation.

3.3. A finiteness result. In 1894, Arthur Tresse showed, as a preliminary result in the article [75] on
differential invariant theory, that PDE systems can be always reduced to systems of finitely many PDE.
This is the first finiteness result relating to a module over a ring of differential operators. In particular, he
showed in [75, Chap. I, Thm I] the following finiteness result:

Un système d’équations aux dérivées partielles étant défini d’une manière quelconque, ce
système est nécessairement limité, c’est-à-dire qu’il existe un ordre fini s, tel que, toutes
les équations d’ordre supérieur à s que comprend le système, se déduisent par de simples
différentiations des équations d’ordre égal ou inférieur à s.
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3.4. Toward a more general normal form for PDE

As a system of PDF might be defined arbitrarily, this system is necessarily limited, i.e., there
exists a finite order, say s, such that all of the equations of order more than s in the system
can be deduced from simple differentiations of the equations whose order is less than or
equal to s.

3.4. Toward a more general normal form for PDE. Using the finiteness result of A. Tresse, in [12] É.
Delassus formalized and simplified„ Riquier’s theory. In these works, one already finds an algorithmic
approach to analysing ideals of the ring K[ B

Bx1
, . . . , B

Bxn
]. É. Delassus wrote [12, pp. 422-423]:

La solution du problème dépend de la recherche d’une forme canonique générale. M.Riquier,
en faisant correspondre aux variables et aux inconnues des nombres entiers qu’il appelle cotes
premières, cotes secondes, etc., est conduit à définir des systèmes orthonomes qu’il prend
pour base de tous ses raisonnements. Il montre que tout système d’équations aux dérivées
partielles peut se ramener à un système orthonome passif linéaire et du premier ordre. Dans
de tels systèmes, la formation par différentiation de toutes les équations, jusque à l’ordre
infini, permet de séparer les dérivées des fonctions inconnues en deux classes, les unes étant
principales et les autres paramétriques, etM. Riquiermontre qu’en se donnant arbitrairement
les valeurs initiales des dérivées paramétriques, on peut reconstruire les développements en
séries des intégrales cherchées et que ces développements sont convergents.

Ces résultats sont établis en toute rigueur par M. Riquier, mais la démonstration, qu’il en
donne, non seulement est très compliquée, mais est bien artificielle à cause de l’introduction
de ces cotes qui interviennent d’une façon bien bizarre dans la question. Ceci justifierait
déjà la publication de ce Travail où les résultats de M. Riquier sont retrouvés d’une façon
beaucoup plus naturelle et plus simple en suivant une voie tout à fait différente; mais il y a
plus, c’est que le Mémoire de M. Riquier n’a pas résolu la question aussi complètement qu’il
est possible de le faire.

The solution of the problem depends on how to find a general canonical form. By making
correspond to variables and to unknown functions integers called first ! cote", second
! cote" etc., Mr. Riquier is led to define the ! système orthonome" which he takes
as the base of his arguments. He shows that any system of partial differential equations
can be reduced to a first-ordered passive linear ! système orthonome". In such systems,
adding differentiations of all of the equations, up to infinite order, allows one to separate the
derivatives of the unknown functions into two classes, the one being principal and the other
parametric. Mr. Riquier shows that given any initial values to the parametric derivatives,
one can reconstruct the (formal) series expansion of the integrals we are looking for and that
such series are convergent.

These results are established completely rigorously by Mr. Riquier, but the proof is not only
very complicated but is quite artificial owing to the introduction of these ! cote" which
play a quite strange role in the question. This already may justify the publication of this
work where the results of Mr. Riquier are recovered in a much more simple and natural way
following a totally different path. But there is more, that is, the article of Mr. Riquier does
not resolve the question as completely as can be done.
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4. Algebraisation of monomial PDE systems

Ch. Riquier answered to É. Delassus in [66, pp. 424]:

Je m’étonne d’avoir été aussi peu compris. Que M. Delassus, retrouvant les résultats que
j’ai le premier obtenus, estime y être arrivé par une voie plus simple, c’est une croyance que
je m’explique chez lui, bien que je ne la partage pas, et que ses démonstrations me paraissent
tout aussi compliquées que les miennes. Libre encore à M. Delassus de trouver « bizarre
» l’attribution de cotes entières aux variables et aux inconnues, bien que cette idée ne me
semble pas, à moi, plus singulière que celle de les ranger, comme il le fait, dans un ordre
déterminé. Mais lorsqu’il soutient, et c’est là le point important de sa critique, que je n’ai pas
résolu la question d’une manière complète, et qu’il est impossible, en suivant ma méthode,
d’apercevoir « comment on pourrait grouper les coefficients arbitraires des développements
des intégrales pour former des fonctions arbitraires, en nombre fini, ayant avec ces dernières
des relations simples », je ne puis, sans protester, laisser passer de semblables affirmations.

I am surprised I was so little understood. Mr. Delassus, recovering the results that I was
the first to obtain, believes that he arrived at the results in a much simpler way, this is what I
believe that I understand of him, even if I don’t really think so and his proofs seem quite as
complicated as mine. M. Delassus is free to find strange, the attribution of total ! cote" to
the variables and unknown functions, even though this idea seems to me no more singular
than to order them, as he does, in a fixed order. But when he supports (his theory), and
this is the important point in his criticism, that I did not solved the question in a complete
manner, and that, by following my method, it is impossible to see “how can one group all of
the arbitrary coefficients of the series expansion of the integrals to form any function, in a
finite number (of steps), having simple relations with these coefficients”, I could not ignore
similar affirmations without protesting.

Apart from works of Ch. Riquier and É. Delassus, there had not been significant progress on the
computation of normal forms for linear PDE systems. However, several monographs appeared on the topic
and had a great influence on the community in the beginning of 20th century: Forsyth [15], Weber [77],
É. Goursat [19], Ch. Riquier [67]. The research of new methods to compute normal forms of linear PDE
systems was taken up by Janet in the period 1920-1930.

4. Algebraisation of monomial PDE systems
The computational approach to reach normal forms for linear PDE systems in the work of Ch. Riquier
and É. Delassus was not complete. The thesis of Janet provides a major contribution to the algebraisation
of the problem considered by Ch. Riquier and É. Delassus by introducing an algorithmic method to
compute normal forms of linear PDE systems. The procedure is based on a computation on a family of
monomials associated to the PDE system. Finiteness properties on the set of monomials guarantee the
termination of the procedure. In this section, we recall these constructions introduce by Janet. We recall
also the results known by Janet on finiteness properties on set of monomials. In Section 7.3, we will
show how the results on monomials can be used to treat the general case of linear PDE systems.
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4.1. Monomial partial differential equation systems

4.1. Monomial partial differential equation systems. In his thesis [32], Janet considered monomial
PDE, that is PDE of the following form

Bα1+α2+...+αnϕ

Bxα11 Bx
α2
2 . . . Bxαnn

= fα1α2...αn(x1, x2, . . . , xn), (5)

whereϕ is an unknown function and the fα1α2...αn are analytic functions in several variables. His objective
was to compute an analytic function ϕ which is a solution of the system. He considered this problem,
using an original algebraic approach, by seeing the differentiation operation as a multiplication operation
on monomials. Tacitly, he used the ring isomorphism from the ring of polynomials in several variables
with coefficients in an arbitrary field K to the ring of differential operators with constant coefficients.
Note that, this isomorphism was established explicitly more than fifteen years later by W. Gröbner in [22,
pp. 128] in a modern algebraic language as follows:

Jedem Polynom p(x) Ă Pn ordnen wir eineindeutig einen Differentialoperator p
(
B
Bx

)
zu, indem wir einfach die einzelnen Potenzprodukte xi11 ¨ ¨ ¨ x

in
n in p(x) durch die Symbole

Bi

Bx
i1
1 ¨¨¨Bx

in
n

, (i = i1 + i2 + ¨ ¨ ¨+ in) ersetzen, was kurz durch p(x)↔ p
(
B
Bx

)
angedeutet sei.

Ist auβerdem auch q(x)↔ q
(
B
Bx

)
, so folgt leicht

p(x) + q(x)↔ p

(
B

Bx

)
+ q

(
B

Bx

)
p(x) ¨ q(x)↔ p

(
B

Bx

)
¨ q

(
B

Bx

)
Da bei dieser Zuordnung der Grundkörper K elementweise festbleibt, unterscheiden sich
die beiden Bereiche Pn = K[x1, ¨ ¨ ¨ , xn] und Dn = K

[
B
Bx1
, ¨ ¨ ¨ , B

Bxn

]
nur durch die ver-

schiedene Bezeichnung ihrer transzendenten Elemente, sind also isomorph.

We assign each polynomial p(x) Ă Pn to a differential operator p
(
B
Bx

)
, by simply replacing

amonomial xi11 ¨ ¨ ¨ x
in
n (appearing) inp(x)with the symbol Bi

Bx
i1
1 ¨¨¨Bx

in
n

, (i = i1+i2+¨ ¨ ¨+in),

which is shortly expressed as p(x) ↔ p
(
B
Bx

)
. If there is also q(x) ↔ q

(
B
Bx

)
, it follows

easily that

p(x) + q(x)↔ p

(
B

Bx

)
+ q

(
B

Bx

)
p(x) ¨ q(x)↔ p

(
B

Bx

)
¨ q

(
B

Bx

)
Since this assignment fixes the ground field K, the two sets Pn = K[x1, ¨ ¨ ¨ , xn] and Dn =

K
[
B
Bx1
, ¨ ¨ ¨ , B

Bxn

]
differ only in the different names of their transcendental elements, they are

isomorphic.

In this article, we will denote by

Φ : K[x1, . . . , xn] −→ K
[
B

Bx1
, . . . ,

B

Bxn

]
,
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4. Algebraisation of monomial PDE systems

the aforementioned ring isomorphism given explicitely by W. Gröbner from the ring of polynomials with
n-variables to the ring of differential operators with constant coefficients. Janet considered monomials in
the variables x1, . . . , xn and implicitly used the isomorphism Φ. In this way, he associated a monomial
xα11 x

α2
2 . . . xαnn to the differential operator

Bα1+α2+...+αn

Bxα11 Bx
α2
2 . . . Bxαnn

.

In his thesis [32, Chapitre I], Janet considered monomial PDE systems, that is those whose equations
are of the form (5), and which have finitely many such equations. Such a system can be written as the
following family:

(Σ)
Bα1+α2+...+αn ϕ

Bxα11 Bx
α2
2 . . . Bxαnn

= fα1,...,αn(x1, x2, . . . , xn), (α1, . . . , αn) P I, (6)

where ϕ is an unknown function and the fα1,...,αn are analytic functions in several variables, and indexed
by a finite subset I of Nn.

4.2. Finiteness properties on monomials. Using the ring isomorphism Φ defined above, Janet associ-
ated a PDE system (Σ) of the form (6) to the set lm(Σ) of monomials defined as follows

lm(Σ) = { xα11 . . . xαnn | (α1, . . . , αn) P I}.

In his hypotheses, Janet excluded the case in which the system has an infinite number of equations. Indeed,
there are finiteness results that he stated as the Théorème général sur certaines suites de monomes, [33,
§1]:

Une suite des monomesM1,M2, . . . telle que chacun d’entre eux n’est multiple d’aucun des
précédents ne comprend qu’un nombre fini de monomes.

A sequence of monomials M1, M2, . . . such that each monomial is not a multiple of any
preceding one contains only a finite number of monomials.

He proved this theorem by induction on the number of variables constituting the monomials. Janet
considered these finiteness properties with the objective of giving an inductive form to his constructions.
Note that the finiteness result on PDE systems was already published in 1894 by Tresse in [75], and
used by É. Delassus as exposed in Section 3.4. However, the finiteness assumption in this context was
formulated algebraically for the first time by Janet. This result had already been known by Leonard
Eugene Dickson in [13, Lemma A].

Lemma A. Any set S of functions of the type

F = xe11 x
e2
2 . . . x

en
n , (e’s integers ŕ 0) (1)

contains a finite number of functions F1, . . . , Fk such that each function F of the set S can be
expressed as a product Fif, where f is of the form (1), but is not necessarily in the set S.
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4.3. On algebraic finiteness properties

This result was published in 1913 in an article on number theory in the American journal American
Journal of Mathematics, but due to the First World War, it would take a long time before these works
were accessible to French mathematical community.

The results presented by Janet in his thesis follows those of Ch. Riquier, with an original algebraic
formulation. The new algebraic approach to this well-studied problem in PDE systems proposed by Janet
was made possible by the influence of the German mathematical school on the academic development of
Janet. In the introduction of his thesis, [32, Introduction §2], he presented his contribution as follows:

Le présent travail a pour objet essentiel l’exposition simple des résultats de M. Riquier.
Cette exposition nous conduira naturellement à certains résultats de nature algébrique qui
complètent la théorie des formes donnée par M. Hilbert.

The main purpose of this work is a simple presentation of the results of Mr. Riquier. This
exposition leads us naturally to certain results of algebraic nature which complete the theory
of polynomials given by Mr. Hilbert.

Here, Janet mentions the finiteness result of D. Hilbert on what we today call the Noetherian character
of the polynomial ring over a Noetherian ring, now called Hilbert’s basis theorem, and published in [26].

4.3. On algebraic finiteness properties. The constructions of Janet are based on some remarkable
properties on monomial ideals that he developed in his thesis, [32], and published in [33] and [34]. In
particular, as explained above, he gave another formulation of Dickson’s Lemma on the finiteness of
generating sets of monomial ideals. This finiteness property is essential for Noetherian properties on the
set of monomials. Note that Janet was not familiar with the axiomatisation of the algebraic structure of
ideal and the property of Noetherianity introduced by E. Noether at the same time in [61] and [62].

The finiteness property Théorème général sur certaines suites de monomes recalled above, was
formulated by Janet by introducing the property, of a family of monomials U, of being multiplicatively
stable, which means that U is closed under multiplication by monomials in M(x1, . . . , xn). By this
finiteness property, if U is a multiplicatively stable, then it contains only finitely many elements which
are not multiples of any other elements in U. Hence, there exists a finite subset Uf of U such that for
any u in U, there exists uf in Uf such that uf divides u. From the finiteness property, Janet deduced the
ascending chain condition on multiplicatively stable monomial sets that he formulated as follows. Any
ascending sequence of multiplicatively stable subsets ofM(x1, . . . , xn)

U1 Ă U2 Ă . . . Ă Uk Ă . . .

is finite. This corresponds to theNoetherian property introduced by E. Noether in [61, §1] in the following
terms

Satz I (Satz von der endlichenKette): IstM,M1,M2, . . . ,Mν, . . . ein abzählbar unendliches
System von Idealen in Σ, von denen jedes durch das folgende teilbar ist, so sind von einem
endlichen Index n an alle Ideale identisch, Mn = Mn+1 = . . . M. a.W.: Bildet M, M1,
M2, . . . ,Mν, . . . eine einfach geordnete Kette von Idealen derart, daβ jedes Ideal ein echter
Teiler des unmittelbar vorangehenden ist, so bricht die Kette im EndIichen ab.
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4. Algebraisation of monomial PDE systems

Theorem I (theorem of finite chain): LetM,M1,M2, . . . ,Mν, . . . be a system of countably
infinite ideals in Σ, each of which is divisible by the next ideal. Then, there exists a finite
index n from which all of the ideals are identical,Mn = Mn+1 = . . . In other words, let us
formM,M1,M2, . . . ,Mν, . . . a simply ordered chain of ideals as above so that each ideal
is divisible by the next ideal, then the chain stops after a finite number of steps.

4.4. On the notion ofmodule. Throughout his work on the analysis of PDE and until hismonograph [40]
appeared in 1929, Janet developed computational methods to deal with monomials and polynomials over
a field. Nowadays, these methods are known and developed in the language of ideals. The use of a formal
definition of the notion of ideal appeared progressively in the series of Janet’s works on formal analysis
of linear PDE systems, [32, 35, 38]. Note that, at this time, Janet knew only the structure of ideal of
the ring of integers of number field. The first formulation of the structure of ideal appeared in the series
of articles by Richard Dedekind, [11], see also [51, §177]. Hilbert investigated in a systematic way the
notion of ideal of a ring of commutative polynomials of several variables in a seminal paper [26] under
the terminology of algebraic forms. In particular, he proved such results as the ring of polynomials over
a field is Noetherian, now called Hilbert’s basis theorem. Notice that N. M. Gunther dealt with such a
structure in [23]. The modern algebraic formulation of the notion of ideal over a general commutative
ring was only introduced in 1921 by E. Noether in [61].

In the case of monomial PDE systems, Janet explained his constructions without using the structure
of monomial ideal in the sense of an ideal generated by monomials. Instead, his results are formulated
using the notion of multiplicative cone. In his thesis, [33, Chapter I, §3], Janet defined the notion of
module de monomes (module of monomials) by specifying its finiteness properties.

Nous dirons qu’un système de monomes forme un module si tout multiple d’un de ces
monomes appartient au système. Un module est toujours constitué par les multiples d’un
nombre fini de monomes. Nous dirons quelquefois que ces monomes forment une base pour
le module.

We say that a system of monomials constitutes a ! module " if any multiple of one of these
monomials belongs to the system. A module always consists of the multiples of a finite
number of monomials. We sometimes say that these monomials form a base of the module.

In this note, module de monomes will be called multiplicative cone, and this notion will be presented in
the next section.

In an article published in 1924, [37], Janet used the notion of algebraic form, introduced by Hilbert,
in his study of linear polynomial PDE systems, that is a PDE system where each equation is defined
by a polynomial in partial differential operators. In this polynomial situation, he used the structure of
polynomial ideal as D. Hilbert did. Indeed, following the approach developed by D. Hilbert in [26,
IV. Die charakteristische Function eines Moduls], Janet recalled in [40, Chapter III, §52] the definition
of polynome caractéristique ou la postulation of the module of forms of a polynomial PDE system.
In modern language, this polynomial corresponds to the coefficients of the Hilbert series of the ideal
generated by a polynomial PDE system. He used such Hilbert series to define the property of involutivity
on polynomial PDE systems in Chapter III of his monograph. In addition to his work on the solvability
of linear PDE systems, in a series of publications [31, 36, 37], Janet studied the notion of character and
involutivity of linear PDE systems. We do not develop the results obtained by Janet in this direction.
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5. Janet’s completion procedure

5. Janet’s completion procedure
We present the main algorithmic ingredient in the construction of Janet, namely the completion procedure
of a set of monomials with respect the notion of multiplicative variable. The completeness property is
formulated using the notion of multiplicative cone, and thus can be characterized using the notion of
involutive division. In this section, we recall these constructions of Janet on a set of monomials, which
were mainly introduced in the memoir of his thesis.

5.1. Multiplicative cone of a set of monomials. For a finite setU of monomials in variables x1, . . . , xn,
Janet gave an inductive construction of the multiplicative cone cone(U) generated by U, that is the set
of monomials u such that there exists u 1 in U that divides u. With the objective of introducing the
involutive cone of a set of monomials as a refinement of the multiplicative cone, Janet gave an inductive
construction of cone(U) as follows. First, he defined, for every 0 ď αn ď degn(U),

[αn] = {u P U | degn(u) = αn },

in such a way, that the family ([0], . . . , [degn(U)]) forms a partition of U. By setting, for every 0 ď αn ď
degn(U),

[αn] = {u PM(x1, . . . , xn−1) | ux
αn
n P U },

he defined for every 0 ď i ď degn(U)

U 1i =
ď

0ďαnďi

{u PM(x1, . . . , xn−1) | there exists u 1 P [αn] such that u 1|uxαnn }.

By denoting

Uk =

{
{uxkn | u P U 1k } if k ă degn(U),
{uxkn | u P U 1degn(U)

} if k ě degn(U).

he constructed the multiplicative cone cone(U) as the set
Ť

kě0

Uk.

5.2. The notion of multiplicative variable. In 1920, Janet introduced the notion of multiplicative
variable, see [33, §7] and [34, §1]. In [34], he wrote

Soit un système formé d’un nombre fini de monomes (M) à n variables x1, x2, . . . , xn ;
xi sera dite multiplicatrice pourM = xαnn x

αn−1
n−1 . . . x

α1
1 dans le système (M) si parmi les

(M) où xn, xn−1, . . . , xi+1 ont les exposants αn, αn−1, . . . , αi+1, il n’y en a pas où xi ait un
exposant supérieur à αi; on dira qu’un monome provient deM s’il est le produit deM par
un monome ne contenant que des variables multiplicatrices deM.

Let (M) be a system made of a finite number of monomials of n variables x1, x2, . . . , xn ;
xi will be multiplicative forM = xαnn x

αn−1
n−1 . . . x

α1
1 in the system (M) if among (M) where

the exponents of xn, xn−1, . . . , xi+1 are αn, αn−1, . . . , αi+1 there is no monomial where xi
has an exponent greater than αi; we say that a monomial comes fromM if it is the product
ofM with a monomial which contains only multiplicative variables ofM.

17



5. Janet’s completion procedure

This definition can be expanded as follows. Given a finite set U of monomials in the variables
x1, . . . , xn, we define, for all 1 ď i ď n, the following subset of U:

[αi, . . . , αn] = {u P U | degj(u) = αj for all i ď j ď n}.

That is [αi, . . . , αn] contains monomials of U of the form vxαii . . . x
αn
n , with v in M(x1, . . . , xi−1). The

sets [αi, . . . , αn], for αi, . . . , αn in N, form a partition of U. Moreover, for all 1 ď i ď n − 1, we
have [αi, αi+1, . . . , αn] Ď [αi+1, . . . , αn] and the sets [αi, . . . , αn], where αi P N, form a partition
of [αi+1, . . . , αn].

The variable xn is said to be multiplicative for a monomial u in U, if degn(u) = degn(U). For
i ď n− 1, the variable xi is said to be multiplicative for u if

u P [αi+1, . . . , αn] and degi(u) = degi([αi+1, . . . , αn]).

We will denote by MultUJ (u) the set of multiplicative variables of u with respect to the set U. The set
of non-multiplicative variables of u with respect to the set U, denoted by NMultUJ (u), is defined as the
complementary set of MultUJ (u) in the set {x1, . . . , xn}.

The notion of multiplicative variable is local in the sense that it is defined with respect to a subset U
of the set of all monomials. A monomial u in U is said to be a Janet divisor of a monomial w with
respect to U, if w = uv and all variables occurring in v are multiplicative with respect to U. In this
way, we distinguish the set coneJ(U) of monomials having a Janet divisor in U, called J-multiplicative
or involutive cone of U, from the set cone(U) of multiple of monomials in U for the classical division.
Explicitly, the involutive cone is defined by

coneJ(U) =
ď

uPU

{uv | v PM(MultUJ (u)) }.

5.3. Completeness of a set of monomials. Janet introduced, in [34, §1], the notion of completeness of
a set of monomials:

Un monome ne peut provenir de deux monomes (M) différents. Pour que tout multiple d’un
monome du système provienne d’un de ces monomes, il faut et il suffit qu’il en soit ainsi de
tous les produits obtenus enmultipliant un (M) par une de ses variables non-multiplicatrices.
Lorsque cette condition sera réalisée, le système (M) sera dit complet.

A monomial cannot come from two different monomials in (M). Any multiple of a monomial
in the system is deduced from one of these monomials if and only if any product of monomials
obtained by multiplying a monomial in (M) with one of its non-multiplicative variables is
deduced from a monomial in (M). When this condition is realized, the system (M) is said
to be complete.

In this formulation, the meaning of provenir (come from) can be explained as follows. A monomial
v comes from a monomial u if v can be decomposed into a product v = uw, where all the variables
in w belong to MultUJ (u). In the above formulation of completeness, the notion of involutive cone of
a set of monomials U appears implicitly. Janet division being a refinement of the classical division,
the set coneJ(U) is a subset of cone(U). Janet called a set of monomials U complete precisely when
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6. Initial value problem

this inclusion is an equality, namely when the involutive cone is equal to the set of all products uv of
monomials such that u is in U and v is an arbitrary monomial. He thus obtained a characterization of
completeness of a finite set of monomials. He proved, cf. [40, pp. 20], that a finite set U of monomials
is complete if and only if, for any u in U and any non-multiplicative variable x of u with respect to U,
ux is in coneJ(U).

Using this characterization, Janet deduced in [40, pp. 21] a completion procedure for any finite set
U of monomials in M(x1, . . . , xn), whose principle consists in adding monomials ux, for all u in U

and x P NMultUJ (u), such that ux is not in coneJ(U) and iterating this process until the set contains no
such ux with this property.

With this constructive approach, he proved, cf. [40, pp. 21], that for any finite set U of monomials
there exists a finite complete set J(U) that contains U and such cone(U) = cone(J(U)). Note that Janet
does not give a proof of the termination of the completion procedure.

In order to illustrate this construction, let us recall an example from [40, pp. 28]. Consider
U = { x3x

2
2, x

3
3x
2
1 }. The following table gives the multiplicative variables for the monomials of U:

x33x
2
1 x3 x2 x1

x3x
2
2 x2 x1

The set U can then be completed as follows. The monomial (x3x22)x3 is not in coneJ(U); we set
rU← UY {x23x

2
2} and we compute the multiplicative variables with respect to rU:

x33x
2
1 x3 x2 x1

x23x
2
2 x2 x1

x3x
2
2 x2 x1

The monomial (x3x22)x3 is in coneJ(rU), but (x23x22)x3 is not in coneJ(rU); we set rU ← rU Y {x33x
2
2}. The

multiplicative variables of this new set of monomials are

x33x
2
2 x3 x2 x1

x33x
2
1 x3 x1

x23x
2
2 x2 x1

x3x
2
2 x2 x1

The monomial (x33x21)x2 is not in coneJ(rU), the other products are in coneJ(rU), and we prove that the
system

rU = { x33x
2
1, x3x

2
2, x

2
3x
2
2, x

3
3x
2
2, x

3
3x2x

2
1 }

is complete, so J(U) = rU.

6. Initial value problem
Given an ideal generated by a set of monomials, Janet distinguished the family of monomials contained
in the ideal and those contained in the complement of the ideal. The notion of multiplicative and non-
multiplicative variables is used to stratify these two families of monomials. This leads to a refinement
of the classical division on monomials. These constructions are based on the notion of complementary
monomial defined as follows.
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6. Initial value problem

6.1. Complementary monomials. The notion of complementary monomial appear for the first time
in [34, §1]. He wrote

[...] étant donné un système quelconque de monomes (M), on est en possession d’un procédé
régulier pour répartir respectivement : Io tous les monomes multiples d’un M au moins ;
2o tous les autres monomes, en un nombre fini d’ensembles sans éléments communs, les
monomes d’un ensemble se déduisant d’un monome déterminé en le multipliant par tous les
monomes ne contenant que certaines variables déterminées.

[...] given any system of monomials (M), one has a regular procedure to divide respectively
to: Io any multiple of at least one monomial inM ; 2o all of the other monomials, to a finite
number of sets without common elements, the monomials of a set can be obtained from a
given monomial by multiplying all of the monomials containing only specific variables.

This notion was made explicit in [35, §2]. The set of complementary monomials of a set of
monomials U is the set of monomials denoted by UK defined by the following disjoint union

UK =
ď

1ďiďn

UK(i), (7)

where
UK(n) = {xβn | 0 ď β ď degn(U) and [β] = ∅},

and for every 1 ď i ă n,

UK(i) =
{
x
β
i x
αi+1
i+1 . . . x

αn
n

∣∣ [αi+1, . . . , αn] ‰ ∅,
0 ď β ă degi([αi+1, . . . , αn]), [β,αi+1, . . . , αn] = ∅

}
.

For any monomial u in UK, we define the set AMultU
K

J (u) of multiplicative variables for u with
respect to complementary monomials in UK as follows. If the monomial u is in UK(n), we set

AMultU
K(n)

J (u) = {x1, . . . , xn−1}.

For 1 ď i ď n− 1, for any monomial u in UK(i), there exists αi+1, . . . , αn such that u P [αi+1, . . . , αn].
Then

AMultU
K(i)

J (u) = {x1, . . . , xi−1}YMultUJ ([αi+1, . . . , αn]).

Finally, for u in UK, there exists an unique 1 ď iu ď n such that u P UK(iu). Then we set

AMultU
K

J (u) = AMultU
K(iu)

J (u).

We define the involutive cone of the complementary family of a family U of monomials as follows

coneAJ(U) =
ď

uPUK

{uv | v PM(AMultU
K

J (u)) }.

Janet proved, cf. [40, pp. 18], that for any finite set U of monomials of M(x1, . . . , xn), we have the
following partition

M(x1, . . . , xn) = cone(U) > coneAJ(U). (8)
An other form of this equality in the case of polynomial ideals was proved by Francis Sowerby Macaulay
in [56].
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6.2. The space of initial conditions

6.2. The space of initial conditions. During the 1920s, Janet’s works are mainly concerned with the
analysis of Cauchy’s problems. That is, the problem of proving the existence and the uniqueness
of solutions for PDE systems under given initial conditions. In [35, 38] he considered the complete
integrability problem of monomial PDE systems. In particular, in [35, pp. 244] he formulated the
problem as follows:

Proposons-nous de déterminer une fonction u telle que celles de ses dérivées qui sont
caractérisées par les monômes (M) d’un système complet donné soient des fonctions données
des n variables indépendantes x1, x2, . . . xn. Nous apercevons immédiatement certaines
conditions de possibilité du problème : à chacune des identitésM.xi = M.xα11 x

α2
2 . . . xαnn

quementionne la définition précédente correspond une relation entre les fonctions auxquelles
on cherche à égaler les dérivées correspondant aux (M):

Bf

Bxi
=

Bα1+α2+...+αn f

Bxα11 Bx
α2
2 . . . Bxαnn

[conditions (I)]

(si du moins on suppose la continuité des dérivées de u que fait intervenir l’égalité précé-
dente).

Let us propose to determine a function u such that those of its derivatives that are charac-
terized by the monomials (M) of a given complete system shall be the given functions of n
independent variables x1, x2, . . . xn. We see immediately certain conditions of possibilities
of the problem: to each identity M.xi = M.xα11 x

α2
2 . . . xαnn that mentions the precedent

definition corresponds a relation between the functions that we are searching for to make the
equality of the corresponding derivatives to (M):

Bf

Bxi
=

Bα1+α2+...+αn f

Bxα11 Bx
α2
2 . . . Bxαnn

[conditions (I)]

(if at least we suppose the continuity of the derivatives of u that appear in above equality).

In [38], Janet considered monomial PDE systems of the form (6), which he supposed to be finite using
the arguments presented in Section 4.2. In Section 4.1, we recalled the way in which Janet associated to
each monomial xα in variables x1, . . . , xn a differential operatorDα via the isomorphismΦ. In this way,
to a monomial PDE system (Σ) on variables x1, . . . , xn he associated a finite set lm(Σ) of monomials.
Using the completion procedure recalled in Section 5.3, he showed that any such set lm(Σ) of monomials
can be completed into a finite complete set J(lm(Σ)) having the same multiplicative cone as lm(Σ).

Suppose that the set of monomials lm(Σ) is finite and complete. We have

cone(lm(Σ)) = coneJ(lm(Σ))

Thus, for any monomial u of lm(Σ) and non-multiplicative variable xi in NMultlm(Σ)
J (u), there exists a

decomposition
uxi = vw,
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6. Initial value problem

where v is in lm(Σ) andw belongs toM(Multlm(Σ)
J (v)). For any such decomposition, it corresponds to a

compatibility condition of the monomial PDE system (Σ), that is, for u = xα, v = xβ and w = xγ with
α,β and γ in Nn,

Bfα

Bxi
= Dγfβ. (9)

This condition corresponds to the conditions (I) above mentioned by Janet. Let us denote by (CΣ) the
set of all such compatibility conditions. Janet showed that with the completeness hypothesis, this set of
compatibility conditions is sufficient for the monomial PDE system (Σ) to be integrable.

Let us consider the set lm(Σ)K of complementary monomials of the finite complete set lm(Σ).
Suppose that the monomial PDE system (Σ) satisfies all the compatibility conditions in (CΣ). Under this
hypothesis, Janet associated to each monomial v = xβ11 . . . x

βn
n of lm(Σ)K an analytic function

ϕβ1,...,βn(xi1 , . . . , xikv ),

where {xi1 , . . . , xikv } =
AMultlm(Σ)K

J (v). As a consequence of the decomposition (8), the set of such
analytic functions provides a compatible initial condition. In [35, §7], he obtained the following solvability
result:

Supposons que ces conditions (I) soient réalisées. Si le problème posé a une solution, cette
solution vérifie bien évidemment, en particulier, les équations obtenues en annulant dans
chacune des équations proposées les variables non multiplicatrices du premier membre.
Réciproquement, considérons une solution des équations ainsi obtenues, je dis qu’elle est
solution des équations proposées.

Suppose that these conditions (I) are realized. If the given problem has a solution, this
solution verifies evidently, in particular, the equations obtained by eliminating, in each of the
given equations, the non-multiplicative variables in the left-hand side. Conversely, consider
a solution of thus obtained equations, I say that it is a solution of the given equations.

Using the notations above on complementary monomials, this result can be formulated as follows.

Theorem 1. Let (Σ) be a finite monomial PDE system such that lm(Σ) is complete. If (Σ) satisfies the
compatibility conditions (CΣ), then it always admits a unique solution with initial conditions given for
any v = xβ11 . . . x

βn
n in lm(Σ)K by

Bβ1+β2+...+βn ϕ

Bx
β1
1 Bx

β2
2 . . . Bx

βn
n

∣∣∣∣∣
xj=0 @xjPANMultlm(Σ)K

J
(v)

= ϕβ1,...,βn(xi1 , . . . , xikv ),

where {xi1 , . . . , xikv } =
AMultlm(Σ)K

J (v).

6.3. An algorithmic approach to solvability for monomial PDE systems. With Theorem 1, Janet gave
a solution to the Cauchy problem for a monomial PDE system (Σ). To summarize Janet’s approach, the
Cauchy problem for the system (Σ) can be solved by the following steps.

i) If the set lm(Σ) of leading monomials of (Σ) is complete,
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7. Janet’s monomial order on derivatives

− if all compatibility conditions in (CΣ) are satisfied, then the Cauchy problem admits a solution,
− in the others cases, the system (Σ) is incompatible.

ii) If the set lm(Σ) is not complete, then apply the step i) to the completion of lm(Σ).

Without the completeness property, a monomial PDE system (Σ) may have infinitely many compati-
bility conditions. With the algorithmic approach introduced by Janet, these are reduced to a finite number
of compatibility conditions of the form 9. Indeed, it suffices to verify the conditions on a finite set that
involutively generates the set lm(Σ) of leading monomials of the PDE system (Σ).

7. Janet’s monomial order on derivatives
The main novelty in Janet’s monograph Leçons sur les systèmes d’équations aux dérivées partielles, [40],
published in 1929, is his treatment of the solvability problem of linear PDE systems defined by polynomial
equations. With the notion of order defined with principal and parametric derivative, he gave an algebraic
characterization of complete integrability conditions of such systems. He also used this order to define
a procedure that decides whether a given finite linear polynomial PDE system can be transformed into
a completely integrable linear polynomial PDE system. The solvability result presented in the previous
section is based on a formulation of initial conditions in terms of complementary monomials. In this
way, the partition (8) is essential in this approach. With a view to extending these construction to
polynomial PDE systems, Janet considered an order on derivatives defined using the notions of principal
and parametric derivative that take the partition (8) precisely into account.

7.1. Principal and parametric derivatives. In the 1929 monograph, [40], Janet extended Theorem 1
on the Cauchy problem for monomial PDE systems to polynomial PDE systems. He considered PDE
systems in analytic categories, namely those in which all unknown functions, coefficients and initial
conditions are supposed to be analytic. The analyticity hypothesis considered by Janet corresponds to
the classical notion, namely a function is analytic on a neighborhood of a point if it admits an analytic
expression as a convergent series on this neighborhood.

Janet obtained a generalization of the Cauchy-Kowalevsky theorem by defining an order on the set
of derivatives that is compatible with products. Orders with the property of respecting the products
corresponds to the notion of monomial order. Such an order was first used by Gauss in the proof of the
fundamental theorem of symmetric polynomials with the lexicographic order. Monomial orders appeared
also in Paul Gordan’s proof of the Hilbert’s basis theorem published in [18]. Finally the notion of ideal
with respect to lexicographic order appeared in the work of F. S. Macaulay in [56].

As explained in Section 3, the notion of principal and parametric derivative emerged in the works of
Ch. Méray and Ch. Riquier in their work on solvability of linear PDE systems in the period 1890-1910.
These notions were reformulated in an appropriate algebraic language by Janet. He presented a notion
of order on derivatives in two steps. First, he considered a lexicographic order on derivatives already
defined by É. Delassus, [12], using the terminology of anteriority and posteriority. He wrote in [38, pp.
308-309]:

Convenons de dire que si deux dérivéesD,D 1 de même ordre ont pour indice respectivement
α1, α2, ..., αn ; α 11, α

1
2, . . . , α

1
n, D est postérieur ou antérieur à D 1 suivant que la première

des différences α1 − α 11, α2 − α
1
2, . . . , αn − α

1
n qui n’est pas nulle est positive ou négative.
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7. Janet’s monomial order on derivatives

Let us say that, if two derivatives D,D 1 of the same order have the indices α1, α2, ..., αn ;
α 11, α

1
2, . . . , α

1
n, respectively, D is posterior or prior to D 1 according as the first difference

α1 − α
1
1, α2 − α

1
2, . . . , αn − α

1
n which is not zero is positive or negative.

Note that, Janet reversed the definition of the notion of posteriority and anteriority. Second, he defined the
notion of principal derivative and parametric derivativewith respect to the lexicographic order previously
defined. He wrote in [38, pp. 312]:

Considérons, pour simplifier un peu l’exposition, un système à une seule fonction inconnue z ;
convenons que si D, D 1 sont deux dérivées d’ordres différents p, p 1, D est postérieure ou
antérieure à D 1 suivant que p est supérieur ou inférieur à p 1 ; adoptons d’autre part pour
les dérivées d’un même ordre le classement même qui a été défini plus haut. Soit (E) l’une
quelconque des équations que l’on peut déduire du système par dérivations et combinaisons ;
résolvons-la par rapport à la dernière des dérivées qui y entrent effectivement ; ce mode de
résolution distingue un certain nombre de dérivées de z, celles qui figurent dans les premiers
membres : nous les appellerons principales, toutes les autres seront appelées paramétriques.

Let us consider, to simplify the explanation a little, a system with only one unknown function
z ; say that, if D, D 1 are two different derivatives of different order p, p 1, D is posterior or
prior toD 1 according as p is greater than or less than p 1 ; and for the derivatives of the same
order we adopt the same order as defined above. Let (E) be any one of the equations that
we can deduce from the system by derivations and combinations; we solve it with respect to
the last derivatives contained in the equation ; this way of resolution distinguishes a certain
number of derivatives of z, those which appear in the left hand side: we call them principal
and all of the others are called parametric.

7.2. Weighted parametric and principal derivatives. The analysis of linear PDE systems is made
with respect to a given order on the set of monomials associated to derivatives. In order to specify
the order to the problem being studied, Janet generalized the order defined using the previous notion of
posteriority on derivatives by introducing some weights attached to the indeterminates of the system.
This weighted order is inspired by the notion of cote introduced by Ch. Riquier in [65] and É. Delassus
in [12], as mentioned in the historical context Section 2. In his monograph, Janet first considered the
degree lexicographic order, [40, §22], formulated as follows:

i) for |α| ‰ |β|, the derivative Dαϕ is called posterior (resp. anterior) to Dβϕ, if |α| ą |β| (resp.
|α| ă |β|),

ii) for |α| = |β|, the derivative Dαϕ is called posterior (resp. anterior) to Dβϕ if the first non-zero
difference

αn − βn , αn−1 − βn−1 , . . . , α1 − β1,

is positive (resp. negative).

Let us consider the following equation:

Dϕ =
ÿ

iPI

aiDiϕ+ f, (10)
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7.3. Complete higher-order finite linear PDE systems

where D and the Di are differential operators such that Diϕ is anterior to Dϕ for all i in I. The
derivative Dϕ and all its derivatives are called principal derivatives of Equation (10). All the other
derivative of u are called parametric derivatives of Equation (10).

Further generalization of these order relations were given by Janet by formulating a new notion of
cote, that corresponds to a parametrization of a weight order defined as follows. Let us fix a positive
integer s. We define a matrix of weight

C =

 C1,1 . . . Cn,1
...

...
C1,s . . . Cn,s


that associates to each variable xi non negative integers Ci,1, . . . , Ci,s, called the s-weights of xi. This
notionwas called cote by Janet in [40, §22] following the terminology introduced byCh. Riquier, [67]. For
each derivativeDαϕ, with α = (α1, . . . , αn) of an analytic function ϕ, we associate a s-weight Γ(C) =
(Γ1, . . . , Γs) where the Γk are defined by

Γk =
n

ÿ

i=1

αiCi,k.

Given two monomial partial differential operators Dα and Dβ, we say that Dαϕ is posterior (resp.
anterior) to Dβϕ with respect to a weigh matrix C if

i) |α| ‰ |β| and |α| ą |β| (resp. |α| ă |β|),

ii) otherwise |α| = |β| and the first non-zero difference

Γ1 − Γ
1
1 , Γ2 − Γ

1
2 , . . . , Γs − Γ

1
s ,

is positive (resp. negative).

In this way, we define an order on the set of monomial partial derivatives, called weight order. Note
that, this notion generalizes the above lexicographic order defined by Janet, that corresponds to the
case Ci,k = δi+k,n+1.

7.3. Complete higher-order finite linear PDE systems. In [40, §39], Janet studied the solvability of
the following PDE system of one unknown function ϕ in which each equation is of the following form:

(Σ) Diϕ =
ÿ

j

ai,jDi,jϕ, i P I, (11)

where all the functions ai,j are supposed analytic in a neighborhood of a point P inCn, and each equation
is supposed to satisfy the following two conditions:

i) Di,jϕ is anterior to Diϕ, for any i in I,

ii) all the Di’s for i in I are distinct.
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7. Janet’s monomial order on derivatives

He defined the notion of principal derivative for such a system by setting: the derivatives Diϕ, for i in
I, and all their derivatives, are called principal derivatives of the PDE system (Σ) given in (11). Any
other derivative of ϕ is called parametric derivative. In this way, to the set of operators Di for i in I, he
associated a set lm(Σ) of monomials through the morphismΦ defined Section 4.1. The PDE system (Σ)
is then said to be complete if the set of monomials lm(Σ) is complete. Note that in [33], Janet introduced
a completion procedure that transforms a finite linear PDE system into an equivalent complete linear PDE
system.

By definition, the set of principal derivatives corresponds to the multiplicative cone of lm(Σ). Hence,
when the system (Σ) is complete, the set of principal derivatives corresponds to the involutive cone of
lm(Σ). Having the partition

M(x1, . . . , xn) = cone(lm(Σ)) > coneAJ(lm(Σ)K),

the set of parametric derivatives of the complete system (Σ) corresponds to the involutive cone of the set
lm(Σ)K of complementary monomials of lm(Σ). To a monomial xβ in lm(Σ)K, with β = (β1, . . . , βn)
in Nn and

AMultlm(Σ)K

J (xβ) = {xi1 , . . . , xikβ },

we associate an arbitrary analytic function ϕβ(xi1 , . . . , xikβ ). Using these functions, Janet defined a
initial condition:

(Cβ) Dβϕ
∣∣∣
xj=0 @xjPANMultlm(Σ)K

J
(xβ)

= ϕβ(xi1 , . . . , xikβ ).

Theorem 2 ([40, §39]). If the PDE system (Σ) in (11) is complete, then it admits at most one analytic
solution satisfying the initial condition

{ (Cβ) | x
β P lm(Σ)K }. (12)

Note that this result does not prove the existence of a solution of the PDE system (Σ). The existence
of solutions will be discussed in Section 7.5.

As we observed, the values of the parametric derivatives completely determine the initial condi-
tion (12) That is, these derivatives parameterize the space of solutions of the differential equation (11).
This observation suggests the origin of the terminology parametric derivative introduced by Ch. Méray
and Ch. Riquier.

7.4. Linear PDE systems for several unknown functions. Janet extended the construction of initial
conditions given above for one unknown function to linear PDE systems onCnwith several unknown func-
tions using a weight order. Consider a linear PDE system ofm unknown analytic functions ϕ1, . . . , ϕm
of the following form

(Σ) Dαϕr =
ÿ

(β,s)PNnˆ{1,2,...,m}

ar,sα,βD
βϕs, α P Ir, (13)

for 1 ď r ď m, where Ir is a finite subset of Nn and the ar,sα,β are analytic functions. He defined a weight
order in such a way that the system (13) can be expressed in the form

(Σ) Dαϕr =
ÿ

(β,s)PNnˆ{1,2,...,m}

DβϕsăwoDαϕr

ar,sα,βD
βϕs, α P Ir, (14)
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7.5. Completely integrable systems

allowing him to formulate the notion of completeness of the system (Σ). Let lmďwo(Σ,ϕ
r) be the set of

monomials associated to leading derivatives Dα of all PDE in (Σ) such that α belongs to Ir. The PDE
system (Σ) is called complete with respect to ďwo, if for any 1 ď r ď m, lmďwo(Σ,ϕ

r) is complete as a
set of monomials.

The question is to determine under which conditions the system (Σ) in (14) admits a solution for any
given initial condition. We suppose that (Σ) is complete, hence the set of monomials lmďwo(Σ,ϕ

r) =
{xα | α P Ir}, which we will denote byUr, is complete for all 1 ď r ď m. The initial conditions for which
the system admits at most one solution are parametrized by the set UKr of complementary monomials
of the set of monomials Ur. Explicitly, for 1 ď r ď m, to a monomial xβ in UKr , with β in Nn and
AMultU

K
r

J (xβ) = {xi1 , . . . , xikr }, we associate an arbitrary analytic function

ϕβ,r(xi1 , . . . , xikr ).

Formulating initial condition as the following data:

(Cβ,r) Dβϕr
∣∣∣
xj=x

0
j @xjP

ANMultU
K
r

J
(xβ)

= ϕβ,r(xi1 , . . . , xikr ),

we set the initial condition of the system (Σ) in (13) to be the following set
ď

1ďrďm

{Cβ,r | x
β P UKr }. (15)

Explaining that the proof is similar to the proof of Theorem 2, Janet announced the following result.

Theorem 3 ([40, §40]). If the PDE system (Σ) in (14) is complete with respect to a weight order ďwo,
then it admits at most one analytic solution satisfying the initial condition (15).

7.5. Completely integrable systems. Given 1 ď r ď m and α P Ir, let xi be in NMultUrJ (xα) a
non-multiplicative variable. Let us differentiate the equation

Dαϕr =
ÿ

(β,s)PNnˆ{1,2,...,m}

DβϕsăwoDαϕr

ar,sα,βD
βϕs

by the partial derivativeΦ(xi) =
B
Bxi

. We obtain the following PDE

Φ(xi)(D
αϕr) =

ÿ

(β,s)PNnˆ{1,2,...,m}

DβϕsăwoDαϕr

(
Bar,sα,β

Bxi
Dβϕs + ar,sα,βΦ(xi)(D

βϕs)

)
. (16)

Using the system (coneJ,ďwo(Σ)), we can rewrite the PDE (16) into a PDE formulated in terms of
parametric derivatives and independent variables. The set of monomials Ur being complete, there exists
α 1 in Nn with xα 1 in Ur and u inM(MultUrJ (xα

1

)) such that xixα = uxα
1 . ThenΦ(xi)D

α = Φ(u)Dα
1 ,

and as a consequence we obtain the following equation
ÿ

(β,s)PNnˆ{1,2,...,m}

DβϕsăwoDαϕr

(
Bar,sα,β

Bxi
Dβϕs + ar,sα,βΦ(xi)(D

βϕs)

)
=

ÿ

(β 1,s)PNnˆ{1,2,...,m}

Dβ
1
ϕsăwoDα

1
ϕr

Φ(u)(ar,sα 1,β 1Dβ
1

ϕs).

(17)
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7. Janet’s monomial order on derivatives

Using equations of the system (coneJ,ďwo(Σ)), we replace all principal derivatives in the equation (17) by
parametric derivatives and independent variables. The order ďwo being well-founded, this process will
terminate. Moreover, when the PDE system (Σ) is complete, this reduction process is confluent in the
sense that any transformation of an equation (17) ends on a unique J-normal form. This set of J-normal
forms is denoted by IntCondJ,ďwo(Σ).

The system (Σ) being complete, any equation (17) is reduced to a unique normal form. Such a normal
form allows us to judge whether a given integrability condition is trivial or not. Recall that the parametric
derivatives correspond to the initial conditions. Hence, a non-trivial relation in IntCondJ,ďwo(Σ) provides
a non-trivial relation among the initial conditions. In this way, we can decide whether the system (Σ) is
completely integrable or not. A complete linear PDE system (Σ) of the form (14) is said to be completely
integrable if it admits an analytic solution for any given initial condition (15).

Theorem 4 ([40, §42]). Let (Σ) be a complete finite linear PDE system of the form (14). Then the system
(Σ) is completely integrable if and only if any relation in IntCondJ,ďwo(Σ) is a trivial identity.

A proof of this result is given in [40, §43]. Note that the latter condition is equivalent to saying that
any relation (17) is an algebraic consequence of a PDE equation of the system (coneJ,ďwo(Σ)).

7.6. The notion of canonical PDE system. In [40, §46] Janet introduced the notion of canonical linear
PDE system. A canonical system is a normal form with respect to a weight order on derivatives, and
satisfying some analytic conditions, allowing an extension of the Cauchy-Kowalevsky theorem. Janet
gave a procedure which transforms a finite linear PDE system with several unknown functions into
an equivalent linear PDE system that is either in canonical form or in an incompatible system. Janet
formulated its procedure as follows, [40, §46],

Adoptons pour les variables indépendantes et les fonctions inconnues un système de cotes
tel que chacune des classes qui en résultent ne contienne qu’un élément ;

[. . .]
Étant donné un système quelconque donné S, comprenant un nombre fini d’équations,
considérons la dernières ∆, des dérivées qui y entrent, c’est-à-dire celle qui est postérieure
à toutes les autres et résolvons par rapport à elle une des équations du système qui la
contiennent ; portons l’expression trouvée dans les autres équations ; traitons le système
obtenu qui ne contient pas ∆1 comme nous avons traité le système primitif, et ainsi de suite.
Nous obtiendrons finalement un système (Σ) d’équations résolues, chacune ne contenant
dans son second membre que des dérivées antérieures à son premier membre, les premiers
membres étant tous différents.

Formons les conditions d’intégrabilité complète (C) du système obtenu. Nous obtiendrons
des relations en nombre fini, ne contenant que les variables indépendantes et les dérivées
paramétriques, qui, si le système n’est pas complètement intégrable, ne sont pas toutes des
identités.

Résolvons ces relations comme nous avons résolu celles du système primitivement donné S,
et joignons les équations obtenues aux équations (Σ). Nous obtenons un système (Σ 1) formé
encore d’équations résolues, chacune ne contenant dans son secondmembre que des dérivées
antérieures à son premier membre, les premiers membres étant tous différents. Les premiers
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membres (∆ 1) de (Σ 1) comprennent les premiers membres (∆) de (Σ) et des dérivées qui ne
sont dérivées d’aucun des (∆) puisque ce sont des dérivées paramétriques pour (Σ). Nous
traiterons Σ 1 comme nous avons traité Σ, et ainsi de suite.

Je dis que l’opération ne peut se répéter qu’un nombre fini de fois.

For the independent variables and the unknown functions, adopt a system of ! cote" such
that each class that is defined with respect to this system contains only one element ;

[. . .]

Given any system S, containing a finitely number of equations, consider the last ∆, the
derivatives contained in equations, namely, the derivatives that is posterior to all other
derivatives and solve one of the equations, containing a derivative, with respect to the
derivative ; keep the expression found in the other equations, treat the obtained system which
does not contain ∆1 as we have treated the primitive system, and so on. Finally, we obtain a
system (Σ) of solved equations, each equation that contains in its right hand side only prior
derivatives with respect to its left hand side, the terms of the left hand sides of all equations
are different.

We form the complete integrability conditions (C) of the obtained system. We obtain a
finite number of relations, which only contain the independent variables and the parametric
derivatives, where, if the system is not completely integrable, not all of the relations are
identities.

Solve these relations as we solved for the primitively given system S, and join the obtained
equations to the equations (Σ). We will obtain a system (Σ 1) formed by solved equations,
where in the second member, each equation containing only the prior derivatives to its first
member and the first members are all different. The first members (∆ 1) of (Σ 1) contain the
first members (∆) of (Σ) and the derivatives which are not derivatives of (∆) because they
are parametric derivatives for (Σ). We will treat Σ 1 as we treated Σ, and so on.

I claim that the operation can be repeated only finitely many times.

Let us formulate in the modern language explained in this article the notion of canonical form so
obtained by Janet. Given a fixed weight order ďwo, we suppose that each equation of a finite linear PDE
system (Σ) can be expressed in the following form

(Σ(α,r)) Dαϕr =
ÿ

(β,s)PNnˆ{1,2,...,m}

DβϕsăwoDαϕr

a
(α,r)
(β,s)D

βϕs.

The support of the equation (Σ(α,r)) is defined by

Supp(Σ(α,r)) = { (β, s) | a
(α,r)
(β,s) ‰ 0 }.

For 1 ď r ď m, consider the set of monomials lmďwo(Σ,ϕ
r) corresponding to leading derivatives,

that is monomials xα such that (α, r) belongs to I. The system (Σ) is said to be
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i) J-left-reduced with respect to ďwo if for any (α, r) in I there is no (α 1, r) in I and non-trivial
monomial xγ in M(Multlmďwo (Σ,ϕ

r)
J (xα

1

)) such that xα = xγxα
1 ,

ii) J-right-reduced with respect to ďwo if, for any (α, r) in I and any (β, s) in Supp(Σ(α,r)), there is
no (α 1, s) in I and non-trivial monomial xγ in M(Multlmďwo (Σ,ϕ

r)
J (xα

1

)) such that xβ = xγxα
1 ,

iii) J-autoreduced with respect to ďwo if it is both J-left-reduced and J-right-reduced with respect to
ďwo.

A PDE system (Σ) is said to be J-canonical with respect a weight orderďwo if it satisfies the following
five conditions

i) it consists of finitely many equations and each equation can be expressed in the following form

Dαϕr =
ÿ

(β,s)PNnˆ{1,2,...,m}

DβϕsăwoDαϕr

a
(α,r)
(β,s)D

βϕs,

ii) the system (Σ) is J-autoreduced with respect to ďwo,

iii) the system (Σ) is complete,

iv) the system (Σ) is completely integrable,

v) the coefficients a(α,r)(β,s) of the equations in i) and the initial conditions of (Σ) are analytic.

Under these assumptions, the system (Σ) admits a unique analytic solution satisfying appropriate initial
conditions parametrized by complementary monomials. In his monograph [40], Janet did not mention
the correctness of the procedures that he introduced in order to reduce a finite linear PDE system to a
canonical form. We refer the reader to [28] for a more complete account on the Janet procedure.

References
[1] D. Aubin, H. Gispert, and C. Goldstein. The total war of Paris mathematicians. In The war of guns and

mathematics, volume 42 of Hist. Math., pages 125–177. Amer. Math. Soc., Providence, RI, 2014.

[2] D. Aubin and C. Goldstein. Placing World War I in the history of mathematics. In The war of guns and
mathematics, volume 42 of Hist. Math., pages 1–55. Amer. Math. Soc., Providence, RI, 2014.

[3] G. M. Bergman. The diamond lemma for ring theory. Adv. in Math., 29(2):178–218, 1978.

[4] C. Bourlet. Sur les équations aux dérivées partielles simultanées qui contiennent plusieurs fonctions inconnues.
Annales scientifiques de l’École Normale Supérieure, 3e série, 8:3–63, 1891.

[5] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths. Exterior differential systems,
volume 18 of Mathematical Sciences Research Institute Publications. Springer-Verlag, New York, 1991.

[6] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring
Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical Institute, University of Innsbruck,
Austria, 1965. English translation in J. of Symbolic Computation, Special Issue on Logic, Mathematics, and
Computer Science: Interactions. Vol. 41, Number 3-4, Pages 475–511, 2006.

30



REFERENCES

[7] C. Burali-Forti. Introduction à la Géométrie Différentielle suivant la Méthode de H. Grassmann. Gauthier-
Villars, 1897.

[8] É. Cartan. Sur certaines expressions différentielles et le problème de Pfaff. Ann. Sci. Éc. Norm. Supér. (3),
16:239–332, 1899.

[9] A. Cogliati. On the genesis of the Cartan-Kähler theory. Arch. Hist. Exact Sci., 65(4):397–435, 2011.

[10] G. Darboux. Sur le problème de Pfaff. Bull. Sci. Math. et Astro., 6:14–36, 49–68, 1882.

[11] R. Dedekind. Sur la théorie des nombres entiers algébriques. Darboux Bull. (2), 1:17–41, 69–92, 144–164,
207–248, 1877.

[12] É. Delassus. Extension du théorème de Cauchy aux systèmes les plus généraux d’équations aux dérivées
partielles. Ann. Sci. École Norm. Sup. (3), 13:421–467, 1896.

[13] L. E. Dickson. Finiteness of the Odd Perfect and Primitive Abundant Numbers with nDistinct Prime Factors.
Amer. J. Math., 35(4):413–422, 1913.

[14] R. Dugas. Histoire de la mécanique. Editions du Griffon, Neuchatel, 1950.

[15] A. R. Forsyth. Theory of differential equations. Part I. Exact equations and Pfaff’s problem. Cambridge.
University Press. XIII + 340 S. 8˝, 1890.

[16] G. Frobenius. Ueber das Pfaffsche Problem. J. Reine Angew. Math., 82:230–315, 1877.

[17] V. P. Gerdt. Gröbner bases and involutive methods for algebraic and differential equations. Math. Comput.
Modelling, 25(8-9):75–90, 1997. Algorithms and software for symbolic analysis of nonlinear systems.

[18] P. Gordan. Ueber einen Satz von Hilbert. Math. Ann., 42:132–142, 1893.

[19] É. Goursat. Leçons sur le problème de Pfaff. Paris: J. Hermann. VIII u. 386 S. 8˝, 1922.

[20] H. E. Grassmann. Die lineale Ausdehnungslehre. Leipzig: Verlag von Otto Wigand. 324 p. , 1844.

[21] P. A. Griffiths. Exterior differential systems and the calculus of variations, volume 25 of Progress in
Mathematics. Birkhäuser, Boston, Mass., 1983.

[22] W. Gröbner. Über das macaulaysche inverse system und dessen bedeutung für die theorie der linearen
differentialgleichungen mit konstanten koeffizienten. Abh. Math. Sem. Univ. Hamburg, 12(1):127–132, 1937.

[23] N. Günther. Über die kanonische Form der Systeme kanonischer homogener Gleichungen. Samml. des Inst.
der Verkehrswege 82, 22 S. l ß, 1913.

[24] N. M. Gunther. Sur les modules des formes algébriques. Trudy Tbilis. Mat. Inst. 9, 97-206, 1941.

[25] T. Hawkins. Frobenius, Cartan, and the problem of Pfaff. Arch. Hist. Exact Sci., 59(4):381–436, 2005.

[26] D. Hilbert. Ueber die Theorie der algebraischen Formen. Math. Ann., 36(4):473–534, 1890.

[27] H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann.
of Math. (2) 79 (1964), 109–203; ibid. (2), 79:205–326, 1964.

[28] Kenji Iohara and Philippe Malbos. From analytical mechanics problems to rewriting theory through M.
Janet’s work. In Two algebraic byways from differential equations: Gröbner bases and quivers, pages 3–74.
Algorithms and Computation in Mathematics 28, Springer, 2020.

[29] C.G.J. Jacobi. Ueber die Pfaffsche Methode, eine gewönliche lineäre Differentialgleichung zwischen 2n
Variablen durch ein System von n Gleichungen zu integriren. J. Reine Angew. Math., 2:347–357, 1827.

[30] M. Janet. Existence et détermination univoque des solutions des systèmes d’équations aux derivées partielles.
C. R. Acad. Sci., Paris, 157:697–700, 1913.

31



REFERENCES

[31] M. Janet. Sur les caractéristiques des systèmes d’équations aux derivées partielles. C. R. Acad. Sci., Paris,
156:118–121, 1913.

[32] M. Janet. Sur les systèmes d’équations aux dérivées partielles. PhD thesis, Faculté des sciences de Paris, 6
1920. Gauthier-Villars, Paris.

[33] M. Janet. Sur les systèmes d’équations aux dérivées partielles. Journal de mathématiques pures et appliquées,
8(3):65–151, 1920.

[34] M. Janet. Sur les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci., Paris, 170:1101–1103, 1920.

[35] M. Janet. Sur la recherche générale des fonctions primitives à n variables. Bull. Sci. Math., II. Sér., 45:238–
248, 1921.

[36] M. Janet. Les caractères des modules de formes et les systèmes d’équations aux dérivées partielles. C. R.
Acad. Sci., Paris, 174:432–434, 1922.

[37] M. Janet. Les modules de formes algébriques et la théorie générale des systèmes différentielles. Ann. Sci. Éc.
Norm. Supér. (3), 41:27–65, 1924.

[38] M. Janet. Les travaux récents sur le degré d’indétermination des solutions d’un système différentiel. Bull.
Sci. Math., II. Sér., 49:307–320, 332–344, 1925.

[39] M. Janet. Sur les systèmes linéaires d’hypersurfaces. Proceedings Congress Toronto 1, 835-841, 1928.

[40] M. Janet. Leçons sur les systèmes d’équations aux dérivées partielles. VIII + 124 p. Paris, Gauthier-Villars
(Cahiers scientifiques publiés sous la direction de G. Julia, fasc. IV.), 1929.

[41] M. Janet. Détermination explicite de certains minima . Verhandlungen Kongreß Zürich 1932, 2, 111-113,
1932.

[42] M. Janet. Sur les systèmes de deux équations aux dérivées partielles à deux fonctions inconnues. C. R. Congr.
internat. Math., Oslo 1936, 2, 61-62, 1936.

[43] C. Jordan. Traité des substitutions et des équations algébriques. Paris: Éditions J. Gabay, réimpression du
orig. 1870 edition, 1989.

[44] E. Kähler. Einführung in die Theorie der Systeme von Differentialgleichungen. (Hamburg. Math. Einzelschr.
16) Leipzig, Berlin: B. G. Teubner IV, 80 S, 1934.

[45] V.-J. Katz. Differential forms—Cartan to de Rham. Arch. Hist. Exact Sci., 33(4):321–336, 1985.

[46] J. König. Einleitung in die allgemeine Theorie der algebraischen Größen. Leipzig: B. G. Teubner. X u. 552
S. 8˝ (1903)., 1903.

[47] S. Kowalevsky. Zur Theorie der partiellen Differentialgleichungen. J. Reine Angew. Math., 80:1–32, 1875.

[48] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Festschrift zu Herrn Ernst
Eduard Kummers fünfzigjährigem Doctor-Jubiläum, 10 September 1881). J. Reine Angew. Math., 92:1–122,
1882.

[49] J.-L. Lagrange. Sur l’intégration des équations à différences partielles du premier ordre. Mém. Acad. Sci. et
Belles-Lettres de Berlin, pages 353–372, 1772.

[50] J.-L. Lagrange. Méchanique Analitique. Desaint, 1788.

[51] P. G. Lejeune-Dirichlet. Vorlesungen über Zahlentheorie. Hrsg. und mit Zusätzen versehen von R. Dedekind.
4. umgearb. u. verm. Aufl. Braunschweig. F. Vieweg u. Sohn. XVII + 657 S. 8˝, 1894.

[52] S. Lie. Allgemeine Untersuchungen über Differentialgleichungen, die eine continuirliche endliche Gruppe
gestatten. Math. Ann., 25:71–151, 1884.

32



REFERENCES

[53] F. S. Macaulay. Some formulae in eliminations. Proc. Lond. Math. Soc., 35:3–27, 1903.

[54] F. S. Macaulay. On the resolution of a given modular system into primary systems including some properties
of Hilbert numbers. Math. Ann., 74:66–121, 1913.

[55] F. S. Macaulay. The algebraic theory of modular systems. Cambridge: University press, XIV u. 112 S. 8˝.,
1916.

[56] F. S. Macaulay. Some properties of enumeration in the theory of modular systems. Proc. Lond. Math. Soc.
(2), 26:531–555, 1927.

[57] E. L. Mansfield. A simple criterion for involutivity. J. London Math. Soc. (2), 54(2):323–345, 1996.

[58] L. Mazliak. Le Carnet de voyage de Maurice Janet à Göttingen. Collection « Essais ». Éditions Matéri-
ologiques, 01 2013.

[59] Ch. Méray and Ch. Riquier. Sur la convergence des développements des intégrales ordinaires d’un système
d’équations différentielles totales. Ann. Sci. Éc. Norm. Supér. (3), 6:355–378, 1889.

[60] Ch. Méray and Ch. Riquier. Sur la convergence des développements des intégrales ordinaires d’un système
d’équations différentielles partielles. Ann. Sci. Éc. Norm. Supér. (3), 7:23–88, 1890.

[61] E. Noether. Idealtheorie in ringbereichen. Mathematische Annalen, 83:24–66, 1921.

[62] E. Noether. Eliminationstheorie und allgemeine Idealtheorie. Math. Ann., 90(3-4):229–261, 1923.

[63] J. F. Pfaff. AllgemeineMethode, partielleDifferentialgleichungen zu integrieren (1815).Aus demLateinischen
übersetzt und herausgegeben von G. Kowalewski.. 84 S. 8vo (Ostwalds Klassiker No. 129), 1902.

[64] É. Picard. L’histoire des sciences et les prétentions de la science allemande. Paris: Perrin, 49 S. 16˝, 1916.

[65] Ch. Riquier. De l’existence des intégrales dans un système différentiel quelconque. Ann. Sci. Éc. Norm. Supér.
(3), 10:65–86, 123–150, 167–181, 1893.

[66] Ch. Riquier. Sur les systèmes différentiels les plus généraux. Ann. Sci. École Norm. Sup. (3), 14:99–108,
1897.

[67] Ch. Riquier. Les systèmes d’équations aux dérivées partielles. XXVII - 590 p. Paris, Gauthier-Villars., 1910.

[68] Ch. Riquier. La méthode des fonctions majorantes et les systèmes d’équations aux dérivées partielles. Paris:
Gauthier-Villars (Mémorial des sciences mathématiques, fasc. 32). 63 p. , 1928.

[69] F. Schwarz. An algorithm for determining the size of symmetry groups. Computing, 49(2):95–115, 1992.

[70] W. M. Seiler. Involution, volume 24 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin,
2010. The formal theory of differential equations and its applications in computer algebra.

[71] J. A. Serret. Cours d’algèbre supérieure. Paris, Bachelier, Imprimeur-Libraire, 1849.

[72] J.-A. Serret. Cours d’algèbre supérieure. I, II. 7 éd. Paris: Gauthier-Villars. XIII, 647, XII, 694 p., 1928.

[73] A. I. Shirshov. Some algorithmic problems for lie algebras. Sib. Mat. Zh., 3:292–296, 1962.

[74] J.-M. Thomas. Differential systems. IX + 118 p. New York, American Mathematical Society (American
Mathematical Society Colloquium Publications Vol. XXI), 1937.

[75] A. Tresse. Sur les invariants différentie1s des groupes continus de transformations. Acta Math., 18:1–88,
1894.

[76] B. L. van der Waerden. Moderne Algebra. Bd. I. Unter Benutzung von Vorlesungen von E. Artin und E.
Noether., volume 23. Springer, Berlin, 1930.

33



REFERENCES

[77] E. Weber. Vorlesungen über das Pfaff’sche Problem und die Theorie der partiellen Differentialgleichungen
erster Ordnung. Leipzig: B. G. Teubner. XI + 622 S. gr. 8˝, 1900.

Kenji Iohara
iohara@math.univ-lyon1.fr

Université de Lyon, Université Lyon 1,
CNRS, Institut Camille Jordan UMR 5208,
F-69622 Villeurbanne, France

Philippe Malbos
malbos@math.univ-lyon1.fr

Université de Lyon, Université Lyon 1,
CNRS, Institut Camille Jordan UMR 5208,
F-69622 Villeurbanne, France

— August 30, 2020 - 9:54 —

34


	Introduction
	Historical context of Janet's work
	Emergence of formal methods for linear PDE systems
	Algebraisation of monomial PDE systems
	Janet's completion procedure
	Initial value problem
	Janet's monomial order on derivatives

