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1. Introduction
Completion procedures. The critical-pair completion (CPC) is an approach developed in the mid sixties
that combines completion procedures and the notion of critical pair, also called critical branching [3,
5, 45]. It originates from theorem proving [44], polynomial ideal theory [4, 25], word problem in
algebras [29, 33, 42], and has found many applications to solve algorithmic problems, see [5, 24] for
an historical account. In the mid eighties CPC has found original and deep applications in algebra in
order to solve coherence problems for monoids [20, 47], and monoidal categories [10, 18], or to compute
homological invariants of associative algebras [1], and monoids [30, 46]. The CPC was extended to two-
dimensional rewriting systems in [17, 41]. More recently, higher-dimensional extensions of the CPCwere
applied to the computation of free resolutions and cofibrant replacements of algebraic and categorical
structures [15, 16, 19, 35] and operads [37, 38]. The obstructions in each dimension are formulated in
terms of critical branchings. While generators and rules are in dimension 1 and 2 respectively, the critical
branchings, and the critical triple branchings, that is overlappings of rules on critical branchings, describe
3-dimensional and 4-dimensional cocycles respectively. This generalizes in higher-dimensions, where for
n > 4, then-dimensional cocycles are described by overlappings of a rule on a critical (n−1)-branching.
These constructions based on CPC are known for monoids, small categories, and algebras. However,
the extension to a wide range of algebraic structures is complicated due to the interaction between the
rewriting rules and the inherent axioms of the algebraic structure. For this reason, the higher-dimensional
extensions of the CPC for a wide range of algebraic structures, including groups, Lie rings, is still an
open problem.



1. Introduction

Critical branching lemma. One of the main tools to reach confluence in CPC procedures for algebraic
rewriting systems is the critical branching lemma, by Knuth-Bendix, [29], and Nivat, [42]. Nivat showed
that the local confluence of a string rewriting system (SRS) is decidable, whether it is terminating or not.
The proof is based on classification of the local branchings into orthogonal branchings, that involve two
rules that do not overlap, and overlapping branchings. A critical branching is a minimal overlapping
application of two rules on the same redex. When the orthogonal branchings are confluent, if all critical
branchings are confluent, then local confluence holds. Thus, the main argument to achieve critical
branching lemma is to prove that orthogonal and overlapping branchings are confluent. For SRS and
term rewriting systems (TRS), orthogonal branchings are always confluent, and confluence of critical
branchings implies confluence of overlapping branchings. The situation is more complicated for rewriting
systems on a linear structure.

The well known approaches of rewriting in the linear context consist in orienting the rules with respect
to an ambiant monomial order, and critical branching lemma is well known in this context. However, some
algebras do not admit any higher-dimensional finite convergent presentation on a fixed set of generators
with respect to a monomial order, [16]. Due to algebraic perspectives, an approach of linear rewriting
where the orientation of rules does not depend of a monomial order was introduced in [16]. However,
in that setting there are two conditions to guarantee a critical branching lemma, namely termination and
positivity of reductions. A positive reduction for a linear rewriting system (LRS), as defined in [16], is
the application of a reduction rule on a monomial that does not appear in the polynomial context. For
instance, consider the LRS on an associative algebra given in [16] defined by the following two rules

α : xy→ xz, β : zt→ 2yt.

It has no critical branching, but it has the following non-confluent additive branching:

4xyt
4αt

// 4xzt
4xβ
// · · ·

2xzt

2xβ
00

xzt+ xβ
++

xyt+ xzt

αt+ xzt
00

xyt+ xβ
..

= xzt+ 2xyt

3xyt αt+ 2xyt

33

3αt
.. 3xzt

3xβ

// 6xyt
6αt

// · · ·

The dotted arrows correspond to non positive reductions. This example illustrates that the lack of
termination is an obstruction to confluence of orthogonal branchings in a left-monomial LRS, that is
whose rules transform a monomial into a polynomial. Indeed, the critical branching lemma for linear
2-dimensional polygraphs states that a terminating left-monomial linear polygraph is locally confluent if
and only if all its critical branchings are confluent, [16, Theorem 4.2.1]

Rewriting modulo. Rewriting modulo appears naturally in algebraic rewriting when studied reductions
are defined modulo the axioms of an ambiant algebraic or categorical structure, e.g. rewriting in
commutative, groupoidal, linear, pivotal, weak structures. Furthermore, rewriting modulo facilitates the
analysis of confluence. In particular, rewriting modulo a set of relations makes the property of confluence
easier to prove. Indeed, the family of critical branchings that should be considered in the analysis of
confluence is reduced, and the non-orientation of a part of the relations allows more flexibility when
reaching confluence.
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1. Introduction

The most naive approach of rewriting modulo is to consider the rewriting system PRP consisting
in rewriting on congruence classes modulo the axioms P. This approach works for some equational
theories, such as associative and commutative theories. However, it appears inefficient in general for
the analysis of confluence. Indeed, the reducibility of an equivalence class needs to explore all the
class, hence it requires all equivalence classes to be finite. Another approach of rewriting modulo
has been considered by Huet in [22], where rewriting sequences involve only oriented rules and no
equivalence steps, and the confluence property is formulated modulo equivalence. However, for algebraic
rewriting systems such rewriting modulo is too restrictive for computations, see [27]. Peterson and Stickel
introduced in [43] an extension of Knuth-Bendix’s completion procedure, [29], to reach confluence of a
rewriting systemmodulo an equational theory, for which a finite, complete unification algorithm is known.
They applied their procedure to rewriting systems modulo axioms of associativity and commutativity,
in order to rewrite in free commutative groups, commutative unitary rings, and distributive lattices.
Jouannaud and Kirchner enlarged this approach in [26] with the definition of rewriting properties for any
rewriting system modulo S such that R ⊆ S ⊆ PRP. They also proved a critical branching lemma and
developed a completion procedure for rewriting systems modulo PR, whose one-step reductions consist
in application of a rule in R using P-matching at the source. Their completion procedure is based on a
finite P-unification algorithm. Bachmair and Dershowitz in [2] developed a generalisation of Jouannaud-
Kirchner’s completion procedure using inference rules. Several other approaches have also been studied
for TRS modulo to deal with various equational theories, see [28, 39, 40, 49].

Algebraic and categorical rewriting. In this article, we use the notion of cartesian polygraphs as
categorical models of TRSs introduced in [36] to formulate our constructions and prove our results.
The polygraphic language provides a unified categorical framework for algebraic rewriting paradigms:
abstract, string, term, linear rewriting and their higher-dimensional versions. Polygraphs also provide
a natural setting to formulate higher-dimensional rewriting concepts such as coherence, that is two-
dimensional word problems [9, 20, 31, 47], and normalisation strategies as rewriting tools to prove
homotopical properties in higher algebra theory, [15, 19]. In Section 2, we recall the notion of cartesian
2-dimensional polygraphs introduced in [36] as categorical interpretations of TRS and presentations of
Lawvere algebraic theories. A cartesian 2-polygraph is defined by an equational signature (P0,P1) and
a cellular extension P2 of the free algebraic theory P×1 on (P0,P1). A rewriting path corresponds to a
2-cell in the free algebraic 2-theory generated by the 2-polygraph (P0,P1,P2).

Algebraic polygraphs. In Section 3, we introduce a categoricalmodel for rewriting in algebraic structures
which formalizes the interaction between the rules of the rewriting system and the inherent axioms of
the algebraic structure. We define the structure of algebraic polygraph as a data (P, Q, R) made of a
cartesian 2-polygraph P and a setQ of generating ground terms and a cellular extension R on the ground
terms. In Section 3.1, we introduce a notion of positive reduction strategy on an algebraic polygraph in
order to select admissible rewriting steps used to formulate rewriting properties modulo. The idea is to
avoid termination and confluence obstructions from the underlying axioms for the quotiented algebraic
rewriting system defined as a projection of the positive reductions in Section 3.3.

Algebraic critical branching lemma. Following [14], in Section 3.2 we define the structure of algebraic
polygraph modulo as a data P = (P, Q, R, S) made of an algebraic polygraph (P, Q, R) and a cellular
extension S on the ground terms, and that depends on the cellular extension R and the algebraic axioms
of P2. As a consequence, the rewriting properties of P depend on the interaction between the rules of the
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rewriting system and the inherent axioms of the algebraic structure. In Section 4, we prove the Newman
lemma for quasi-terminating algebraic polygraphs modulo, stated as follows:

Theorem 4.1.5. Let P be a quasi-terminating algebraic polygraph modulo, and σ be a
positive strategy on P. If P is locally σ-confluent modulo, then it is σ-confluent modulo.

Then we prove a critical branching lemma for quasi-terminating algebraic polygraphs modulo.

Theorem 4.3.2. Let P = (P, Q, R, S) be an algebraic polygraph modulo with a positive
confluent strategy σ. If PRP is quasi-terminating, then an algebraic rewriting system on P is
locally confluent if, and only if, its critical branchings are confluent.

We deduce from this result a critical branching lemma for rewriting systems on algebraic structures,
whose axioms are specified by TRS satisfying appropriate convergence properties modulo AC. Finally,
we apply the above results to the linear rewriting setting. In particular, we explain why termination is a
necessary condition to characterize local confluence in that case.

Convention and notations. An abstract rewriting system (ARS) is a data (X, R) made of a set X and
a set R equipped with source and target maps ∂−, ∂+ : R → X called a cellular extension of X. An
element r of R is denoted by r− → r+, where r− := ∂−(r) and r+ := ∂+(r). We say that r composes
with r ′ if ∂+(r) = ∂−(r ′). We denote by ∗→ the symmetric, transitive closure of→ with respect to this
composition. We say that x rewrites into y if x ∗→ y.

The ARS (X, R) is terminating (resp. quasi-terminating) if there is no sequence (xn)n∈N such that
xn → xn+1 (resp. if for each sequence (xn)n∈N such that xn → xn+1, the sequence (xn)n∈N contains
an infinite number of occurrences of the same element). It is confluent if, whenever x ∗→ y and x ∗→ z,
there exists t such that y ∗→ t and z ∗→ t. An element x of X is called a normal form for (X, R) if there is
no y such that x → y. Given an equivalence relation ≡ on X, we say that (X, R) is confluent modulo ≡
if, whenever x ≡ y and x ∗→ x ′, y ∗→ y ′, there exist z, z ′ ∈ X such that x ′ ∗→ z, y ′ ∗→ z ′, and z ≡ z ′.

2. Preliminaries on algebraic theories
In this section we recall notions on algebraic theories from [32] and the structure of cartesian polygraph
introduced in [36] as a categorical model of term rewriting systems.

2.1. Cartesian polygraphs and theories

2.1.1. Signature and terms. A signature on a set P0 of sorts is a directed graph

P∗0 P1
∂+0

oo

∂−0
oo

on the free monoid P∗0 over P0. From a higher-dimensional rewriting approach, the data (P0,P1) is called
a 1-polygraph. An element α of P1 is called an operation, and its source ∂−0 (α) ∈ P∗0 is called its arity
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and its target ∂+0 (α) ∈ P0 its coarity. For sorts s1, . . . , sk, we denote s = s1 . . . sk their product in the
free monoid P∗0. We denote |s| = k the length of s and the sort si in s will be denoted by si, so that
si ∈ P0.

Recall from [32] that a (multityped Lawvere algebraic) theory on a set P0 of sorts is a category with
finite products T together with a map ι : P0 → T0, where T0 denotes the set of 0-cells, and such that
every 0-cell in T0 is isomorphic to a finite product of 0-cells in ι(P0). We denote by P×1 the free theory
generated by a signature (P0,P1). Its products on 0-cells are induced by products of sorts in P∗0, and its
1-cells are terms over P1 defined by induction as follows:

i) the canonical projections xs
i : s→ si, for 1 6 i 6 |s| are terms, called variables,

ii) for all terms f : s → r and f ′ : s → r’ in P×1 , there exists a unique 1-cell 〈f, f
′〉 : s → rr’, called the

pairing of terms f, f ′, such that xrr’
1 〈f, f ′〉 = f and xrr’

2 〈f, f ′〉 = f ′,

iii) for every operation ϕ : r → s in P1, s in P∗0 and terms fi : s → ri in P×1 for 1 6 i 6 |r|, there is a
term ϕ〈f1, . . . , f|r|〉 : s→ s.

We define the size of a term f as the minimal number, denoted by |f|, of operations used in its definition.
The composition of terms f and g is denoted by concatenation fg. For all 0-cells s, s’ in P×1 , we denote by
ids the identity 1-cell on a 0-cell s, we denote by es the eraser 1-cell defined as the unique 1-cell from s
to the terminal 0-cell 0. We denote respectively by xss’

s : ss’ → s (resp. xss’
s’ : ss’ → s’) the canonical

projections. Finally, we denote by τs,s’ : ss’→ s’s the exchange 1-cell defined by τs,s’ = 〈xss’
s’ , x

ss’
s 〉.

2.1.2. Two-dimensional cartesianpolygraphs. A cartesian 2-polygraphP is a data (P0,P1,P2)made of

i) a signature (P0,P1),

ii) a cellular extension of the free theory P×1 , that is a set P2 equipped with two maps

P×1 P2
∂+1

oo

∂−1
oo

satisfying the following globular conditions ∂µ0 ◦ ∂
−
1 = ∂µ0 ◦ ∂

+
1 , for µ ∈ {−,+}.

In the sequel, by abuse of notation, we let Pi stand for the underlying of a polygraph P. An element A
of P2 is called a rule with source ∂−1 (A) and target ∂+1 (A), denoted respectively by A− and A+. The
globular conditions impose that a rule relates terms of same arity and coarity, and it will be pictured as
follows:

s

A−

""

A+

<<A�� r with s = ∂−0 (A−) = ∂
−
0 (A+), r = ∂+0 (A−) = ∂

+
0 (A+).
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2.1.3. Two-dimensional theories. Recall that a 2-category is a category enriched in categories. Explic-
itly, a 2-category is a data C made of a set C0, whose elements are called the 0-cells of C, and, for all
0-cells x, y of C, a category C(x, y), whose 0-cells and 1-cells are respectively the 1-cells and 2-cells
from x to y of C. This data is equipped with a functor

?x,y,z0 : C(x, y)× C(y, z)→ C(x, z),

for all 0-cells x, y, z of C, and a specified 0-cell idx of the category C(x, x). The composition ?0 is
associative, and the identities are local units for the composition. For f1 ∈ C(x, y) and f2 ∈ C(y, z), we
write f1 ?0 f2 instead of f1 ?x,y,z0 f2. For 2-cells f1, g1 in C(x, y) such that (f1)+ = (g1)−, we denote by
f1 ?1 g1 their composition along a 1-cell from x to y. The compositions ?0 and ?1 satisfy the exchange
law:

(f1 ?0 f2) ?1 (g1 ?0 g2) = (f1 ?1 g1) ?0 (f2 ?1 g2),

for all composable 2-cells fi, gi in C.
Recall that a 2-theory on a set of sorts P0 is a 2-category with the additional following cartesian

structure:

i) it has a terminal 0-cell 0, that is for every 0-cell s there exists a unique eraser 1-cell es : s→ 0, and
the identity 2-cell is the unique endo-2-cell on an eraser,

ii) it has products, that is for all 0-cells r, r’ there is a product 0-cell rr’ and 1-cells xrr’
r : rr’ → r and

x
rr’
r’ : rr’→ r’ satisfying the following two conditions:

− for all 1-cells f1 : s → r and f2 : s → r’, there exists a unique pairing 1-cell 〈f1, f2〉 : s → rr’,
such that xrr’

r 〈f1, f2〉 = f1, and x
rr’
r’ 〈f1, f2〉 = f2,

− for all 2-cells ai : fi ⇒ f ′i , i = 1, 2, there exists a unique 2-cell 〈a1, a2〉 : 〈f1, f2〉 ⇒ 〈f ′1, f ′2〉.
For 1-cells f1, . . . , fk, we will abbreviate 〈idf1 , . . . , idfk〉 to 〈f1, . . . , fk〉.

A (2, 1)-theory is a 2-theory whose every 2-cell is invertible with respect to the ?1-composition, i.e.,
every 2-cell a has an inverse a− : a+ ⇒ a− satisfying the relations a?1 a− = ida− and a− ?1 a = ida+ .

2.1.4. Free 2-theories. We denote by P×2 the free 2-theory generated by a cartesian 2-polygraph P. Its
underlying 1-category is the free theory P×1 generated by the signature (P0,P1). Its 2-cells are defined
inductively as follows:

i) for all 2-cell A : f⇒ g in P2 and 1-cell h in P×1 , there is a 2-cell Ah : fh⇒ gh in P×2 ,

ii) for all 2-cells a, b in P×2 , there is a 2-cell 〈a, b〉 : 〈a−, b−〉⇒ 〈a+, b+〉 in P×2 ,

iii) for every 2-cell a in P×2 , there is a 2-cell in P×2 of the form Γ [a] : Γ [a−]⇒ Γ [a+], where Γ denotes
a context of the form:

Γ := f〈f1, . . . ,�j, . . . , fk〉 : s→ r,

where fi : s→ ri and f : r→ r are 1-cells of P×1 , and �j is the j-th element of the pairing.
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iv) these 2-cells are submitted to the following exchange relations

f〈f1, ..., a, ..., fj, ..., fk〉?1f〈f1, ..., fi, ..., b, ..., fk〉 = f〈f1, ..., fi, ..., b, ..., fk〉?1f〈f1, a, ..., fj, ..., fk〉

where fi : s → ri and f : r → r are 1-cells in P×1 , and a, b are 2-cells in P×2 . We will denote by
f〈f1, ..., a, ..., b, ..., fk〉 the 2-cell defined above.

v) The ?1-composition of 2-cells in P2 is given by sequential composition.

The source and target maps ∂±1 extend to P×2 and we denote a− and a+ for ∂−1 (a) and ∂
+
1 (a) respectively.

The free (2, 1)-theory generated by P, denoted by P>2 , is constructed as the 2-theory generated by
cells of P and formal inverses of the 2-cells of P×2 , and submitted to the relations a ?1 a

− = ida−
and a− ?1 a = ida+ , for every 2-cell a. We define the congruence relation on P×1 by f ≡P g if there is a
2-cell of P>2 with source f and target g. The theory presented by P is the algebraic theory, denoted by P,
and defined as the quotient of the free theory P×1 by the congruence ≡P.

2.1.5. Ground terms. Let P be a cartesian 2-polygraph. A ground term in the free theory P×1 is a term
with source 0. A 2-cell a in the free theory P×2 is called ground when a− is a ground term. Finally, a
context f〈f1, . . . ,�j, . . . f|r|〉 is called ground when all the fi are ground terms.

2.1.6. Rewriting properties of cartesian polygraphs. The contexts can be composed in a natural way,
and we will denote by Γ Γ ′[�] := Γ [Γ ′[�]] the composition of contexts Γ and Γ ′. We define amulti-context
(of arity 2) as

∆[�i,�j] := f〈f1, . . . ,�i, . . . ,�j, . . . , fk〉,

where the fk : s → rk and f : r → r are 1-cells in P×1 , and �i (resp. �j) has to be filled by a 1-cell
gi : s→ ri (resp. gj : s→ rj).

A 2-cell of the form Γ [Ah], where Γ is a context, h is a 1-cell in P×1 and A is a rule in P2 is called
a rewriting step of P. We consider the ARS (P×1 ,Pstp) where Pstp is the cellular extension made of
rewriting steps of P, whose source and target maps extend the ones of P. We say that P is terminating
(resp. quasi-terminating, confluent) if the ARS (P1×,Pstp) is so. If P ′ is a cartesian 2-polygraph with the
same signature as P, we say that P is confluent modulo P ′ if the ARS (P1×,Pstp) is confluent modulo≡P ′ .

For the sake of readability, we will denote terms and rewriting rules of cartesian polygraphs as in
term rewriting theory, [48]. The canonical projection xs

i : s → si, for 1 6 i 6 |s| is identified to the
"variable" xi. A 1-cell f : s → r, is denoted by f(x1, . . . , x|s|), and a rule A : f ⇒ g with f, g : s → r
will be denoted by

Ax1,...,x|s| : f(x1, . . . , x|s|)⇒ g(x1, . . . , x|s|).

2.2. Algebraic examples

2.2.1. Magmas. Denote by Mag the cartesian 2-polygraph, where Mag0 := {1}, Mag1 := {µ : 2 → 1},
and Mag2 is empty. Denote by Ass the cartesian 2-polygraph, where Ass1 = Mag1 and with a unique
generating 2-cell:

A
(µ)
x,y,z : µ(µ(x, y), z)⇒ µ(x, µ(y, z)). (2.2.2)
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2. Preliminaries on algebraic theories

Denote by AC the cartesian 2-polygraph, where AC1 = Mag1, and AC2 is the disjoint union Ass2t {C(µ)}

with
C(µ) : µ(x, y)⇒ µ(y, x), (2.2.3)

that corresponds to the rule C(µ) : µτ ⇒ µ, where τ is the exchanging operator defined in (2.1.1).
Note that the cartesian polygraph AC is not terminating, and that the rule C(µ) can not be oriented in a
terminating way. As a consequence, for cartesian 2-polygraphs whose set of rules contains commutativity
and associativity for some operation, we will chose to work modulo the polygraph AC.

The polygraphs Mag, Ass, and AC will be sometimes denoted by Mag(µ), Ass(µ), and AC(µ) to refer
to the label of the operation.

2.2.4. Monoids. Denote by Mon, or Mon(µ,e), the cartesian 2-polygraph with Mon0 := {1}, Mon1 :=

Ass(µ)1 t {e : 0→ 1}, and Mon2 := Ass(µ)2 t {E
(µ)
l , E

(µ)
r }, where

E
(µ)
l : µ(e, x)⇒ x, and E

(µ)
r : µ(x, e)⇒ x. (2.2.5)

The presented theory Mon is the theory of monoids. We also define the cartesian polygraph CMon, with
same 0-cells and 1-cells, and CMon2 := Mon(µ,e)

2 t {C(µ)}, whereC(µ) is the commutativity 2-cell (2.2.3).

2.2.6. Groups. Denote by Grp, or Grp(µ,e,ι), the cartesian 2-polygraph, where Grp0 := {1}, Grp1 :=

Mon(µ,e)
1 t {ι : 1→ 1}, and Grp2 := Mon(µ,e)

2 t {I
(µ,ι)
l , I

(µ,ι)
r }, with

I
(µ,ι)
l : µ(ι(x), x)⇒ e, and I

(µ,ι)
r : µ(x, ι(x))⇒ e. (2.2.7)

The presented theory Grp is the theory of groups. Following [23], the set of generating 2-cells

E
(µ)
l , E

(µ)
r , I

(µ,ι)
l , I

(µ,ι)
r , G

(µ,ι)
1 : ι(e)⇒ e, G

(µ,ι)
2 : ι(µ(x, y))⇒ µ(ι(y), ι(x)),

G
(µ,ι)
3 : ι(ι(x))⇒ x, G

(µ,ι)
4 : µ(x, µ(ι(x), y))⇒ y, G

(µ,ι)
5 : µ(ι(x), µ(x, y))⇒ y,

defines a polygraph, denoted by G̃rp, that is convergent modulo Ass(µ), and presents the theory Grp.

2.2.8. Abelian groups. Denote by Ab, or Ab(µ,e,ι)(1), the cartesian 2-polygraph, where Ab0 := {1},
Ab1 = Grp(µ,e,ι)

1 and Ab2 = Grp(µ,e,ι)
2 t {C(µ)}, where C(µ) is the commutativity 2-cell (2.2.3).

2.2.9. Rings. Denote by Ring the cartesian 2-polygraph, where Ring0 := {1},

Ring1 = Ab(+,0,−)
1 tMon( · ,1)

1 , and Ring2 = Ab(+,0,−)
2 tMon( · ,1)

2 t {Dl, Dr},

with
Dl : x · (y+ z)⇒ x · y+ x · z, Dr : (y+ z) · x⇒ y · x+ z · x. (2.2.10)

Denote by CRing, or CRing(+,0,−,·,1)(1), the cartesian 2-polygraph with CRingi = Ringi, for i = 0, 1,
and CRing2 = Ring2 t {C(·)}, where C(·) is the commutativity 2-cell (2.2.3) The theory CRing is the
theory of commutative rings. Following [43], see also [23], the set of generating 2-cells:

E
(+)
r , I

(+,−)
r , G

(+,−)
1 , G

(+,−)
2 , G

(+,−)
3 , Dr, R1 : x · 0⇒ 0, R2 : x · (−y)⇒ −(x · y), E(·)r , (2.2.11)

defines a cartesian polygraph, that is convergent modulo AC(+) t AC(·), and presents the theory CRing.
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3. Algebraic polygraphs modulo

2.2.12. Modules over a commutative ring. Denote byMod the cartesian 2-polygraph defined as follows.
We set Mod0 = {m, r}, Mod1 = CRing(+,0,−,·,1)(r)1 tAb(⊕,0⊕,ι)(m)1 t {η : rm→ m}, and we will denote
η(λ, x) = λ.x, for λ and x of type r and m respectively. We set

Mod2 = CRing(+,0,−,·,1)(r)2 t Ab(⊕,0⊕,ι)(m)2 t {M1,M2,M3,M4},

with

M1 : λ.(µ.x)⇒ (λ · µ).x, M2 : 1.x⇒ x,

M3 : λ.(x⊕ y)⇒ (λ.x)⊕ (λ.y), M4 : λ.x⊕ µ.x⇒ (λ+ µ).x

Following [23], the 2-cells in (2.2.11) together with the following set of 2-cells

M1, M2, M3, M4, N1 : x⊕ 0⊕ ⇒ x, N2 : x⊕ (λ.x)⇒ (1+ λ).x,

N3 : x⊕ x⇒ (1+ 1).x, N4 : x.0
⊕ ⇒ 0⊕, N5 : 0.x⇒ 0⊕, N6 : ι(x)⇒ (−1).x, (2.2.13)

gives a convergent presentation of the theory of modules over a commutative ring modulo the cartesian
polygraph AC(+) t AC(·). This presentation can be summed up in the following set of rules:

x+ 0⇒ x (ring1) x+ (−x)⇒ 0 (ring2)
− 0⇒ 0 (ring3) − (−x)⇒ x (ring4)
− (x+ y)⇒ (−x) + (−y) (ring5) x · (y+ z)⇒ x · y+ x · z (ring6)
x · 0⇒ 0 (ring7) x · (−y)⇒ −(x · y) (ring8)
1 · x⇒ x (ring9) a⊕ 0⊕ ⇒ a (mod1)
x.(y.a)⇒ (x · y).a (mod2) 1.a⇒ a (mod3)
x.a⊕ y.a⇒ (x+ y).a (mod4) x.(a⊕ b)⇒ (x.a)⊕ (y.b) (mod5)
a⊕ (r.a)⇒ (1+ r).a (mod6) a⊕ a⇒ (1+ 1).a (mod7)
x.0⊕ ⇒ 0⊕ (mod8) 0.a⇒ 0⊕ (mod9)
I(a)⇒ (−1).a (mod10)

Let us denote by Mod ′2 the set containing the 2-cells (2.2.11) and (2.2.13). We denote by Modc the
cartesian 2-polygraph (Mod0,Mod1,Mod ′2 tAC(+) tAC(·)). It also presents the theory Mod of modules
over a commutative ring.

3. Algebraic polygraphs modulo
In this section we introduce the notion of algebraic polygraphs, defined by cellular extensions on ground
terms over a signature endowed with constants, and the notion of algebraic polygraphs modulo. We refer
the reader to [14] for a categorical formulation of the constructions given in this section.
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3. Algebraic polygraphs modulo

3.1. Algebraic polygraphs

3.1.1. Algebraic polygraphs. An algebraic polygraph is a data (P, Q, R) made of

i) a cartesian 2-polygraph P,

ii) a cellular extension Q of P0 whose elements have source 0, and called constants,

iii) a cellular extension R of the sub-theory of the free theory (P0,P1 tQ)× made of all ground terms,
denoted by P1〈Q〉.

We have a decomposition
P1〈Q〉 =

⊔
s∈P0

P1〈Q〉s,

where P1〈Q〉s contains the ground terms of coarity s, hence the cellular extension R is also indexed by
the sorts of P0, so that it defines a family (P1〈Q〉s, Rs)s∈P0

of ARSs.

3.1.2. Rewriting properties of algebraic polygraphs. Let P = (P, Q, R) be an algebraic polygraph. A
R-rewriting step is a ground 2-cell in the free 2-theory R× generated by (P0,P1 tQ,R) of the form

Γ [A] : Γ [f]⇒ Γ [g],

where A : f ⇒ g is a rule in R, and Γ is a ground context. We denote by Rstp the cellular extension
made of R-rewriting steps of P, whose source and target maps extend the ones of R. We say that P is
terminating (resp. quasi-terminating, confluent) if the ARS (P1〈Q〉, Rstp) is so. A R-rewriting path is
a finite or infinite sequence a = a1 ?1 . . . ?1 ak ?1 . . . of R-rewriting steps ai. The length of a finite
R-rewriting path a, denoted by `(a), is the number of R-rewriting steps that it contains.

The cellular extension P2 of P×1 extends to a cellular extension of the free 1-theory (P1 tQ)×.
We denote by P2〈Q〉 the set of ground 2-cells on Q of the free 2-theory generated by the 2-polygraph
(P0,P1 tQ,P2). The data (P, Q,P2〈Q〉) defines an algebraic polygraph. Two 1-cells f, g in P1〈Q〉 are
algebraically equivalent with respect to P, and we denote f ≡P2〈Q〉 g, if there exists a 2-cell in P2〈Q〉>
with source f and target g.

Let P ′ = (P0,P1,P ′2) be a cartesian 2-polygraph with the same signature as P. We say that P is
confluent modulo the algebraic polygraph (P ′, Q,P ′2〈Q〉) if the ARS (P1〈Q〉, Rstp) is confluent modulo
≡P ′2〈Q〉. The algebraic polygraph (P, Q,P2〈Q〉) shares the rewriting properties of the polygraph P. In
particular, if P is terminating (resp. quasi-terminating, confluent), then so is (P, Q,P2〈Q〉). Moreover,
if P is confluent modulo P ′, then (P, Q,P2〈Q〉) is confluent modulo (P ′, Q,P ′2〈Q〉).

3.1.3. Positive reduction strategies. Denote byP〈Q〉 the quotient of the theoryP1〈Q〉 by the congruence
relation ≡P2〈Q〉. In (3.3), we will consider rewriting with respect to a quotient algebraic system on P〈Q〉
whose rules are the projections of the rules of R. Rewriting properties of this latter depend on P. In
many situations, if we consider projections of all the R-rewriting steps we lose termination in the quotient
rewriting system. This is the case when the algebraic theory is equipped with inverse operators, such as
theories Mod and Grp. To prevent this, we need to select admissible R-rewriting steps compatible with P
using the following notion of strategy.
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3.1. Algebraic polygraphs

Let π : P1〈Q〉 → P〈Q〉 be the canonical projection. We define a positive strategy σ as a map that
associates to every f ∈ P〈Q〉 a non-empty subset σ(f) of π−1(f). A R-rewriting step a is called σ-positive
if a− belongs to σ(π(a−)), and a R-rewriting path is called σ-positive if every of its rewriting steps is
positive.

In most cases, a positive strategy is defined uniformly with respect to P as follows. Suppose that P
has a decomposition P2 = P ′2 t P ′′2 , where P ′2 is terminating and confluent modulo P ′′2 . For every 1-cell
f in P〈Q〉, we set

σ(f) =
⊔

f∈π−1(f)

NF(f,P ′2),

whereNF(f,P ′2) is the set of normal forms of f ∈ P1〈Q〉with respect to P ′2. By confluence of P ′2 modulo
P ′′2 , we deduce from [22, Lemma 2.6] that any two elements of σ(f) are congruent modulo P ′′2 .

3.1.4. Remarks. In many algebraic rewriting contexts, we have Ass(µ) ⊆ P ′′2 . For instance, in the case
of algebraic polygraphs over Mon(µ), the usual strategy is obtained with P ′2 empty and P ′′2 = Ass(µ).
Hence, every 1-cell in P1〈Q〉 is a normal form for the empty polygraph modulo Ass(µ), and thus the
positive strategy consists in taking all the congruence class. In the case of algebraic polygraphs over Mod,
we set P ′′2 = AC(+) tAC(·), and P ′2 is the convergent presentation of Mod ′2 modulo AC given in (2.2.12).

3.1.5. Example. Consider the cartesian polygraph P = Mon, a set Q of constants, and a cellular
extension R of P1〈Q〉 as follows:

Q = {s, t : 0→ 1}, R = { A : µ(µ(s, t), s)⇒ µ(t, µ(s, t)) }. (3.1.6)

This data defines an algebraic polygraph (P, Q, R). For example, if we consider the context Γ =
µ(µ(s,�), t), the rule A induces the following rewriting step

Γ [A] : µ(µ(s, µ(µ(s, t), s)), t)⇒ µ(µ(s, µ(t, µ(s, t)), t).

The set P2〈Q〉 is defined by the associativity relations on ground terms on the constants s and t. For
instance, P2〈Q〉 contains the following ground 2-cell:

µ(µ(s, t), s)⇒ µ(s, µ(t, s)).

For this algebraic polygraph over Mon, we consider the positive strategy as in (3.1.4) with P ′2 = ∅ and
P ′′2 = Ass, so that for every f ∈ P〈Q〉we have σ(f) = π−1(f). In other words, σ(f) is the set of all repre-
sentatives of f modulo associativity. For example, if f = sts, then σ(f) = {µ(s, µ(t, s)), µ(µ(s, t), s)}.

3.1.7. Example. As aforementioned, for algebraic theories with inverse operators we need positive
strategies σ such that σ(f) 6= π−1(f). Consider the cartesian polygraph P = Grp, and Q,R as defined in
(3.1.6). There is a R-rewriting step of the form

µ(µ(µ(s, t), s), s−)⇒ µ(µ(t, µ(s, t)), s−).

The left hand side being algebraically equivalent to µ(s, t), this rewriting step yields a reduction
st ⇒ tsts− in the quotient algebraic system on P〈Q〉 defined in (3.3), so that the latter cannot be
terminating. For this reason, we have to consider a positive strategy for which this R-rewriting step is not
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3. Algebraic polygraphs modulo

positive. In (5.3.4), we define a positive strategy for algebraic polygraphs over Grp, that is not defined
with respect to normal forms of P as done in (3.1.4).

Consider the cartesian polygraph P = Modc, and cellular extensions Q,R as follows:

Q = {x, y : 0→ m}, R = {A : x⇒ y }.

There is a R-rewriting step a : x + (−x) ⇒ x + (−y) that projects onto a reduction 0 ⇒ x − y in the
quotient algebraic system on P〈Q〉. In this case, we choose the positive strategy σ defined in (3.1.4),
where the positive rewriting steps are those whose source is a normal form with respect to Mod ′2 modulo
AC. Since x+ (−x) is not a normal form with respect to the set of 2-cells of Mod ′2, the rewriting step a
is not σ-positive.

Finally, let us note that whenever we work with a cartesian 2-polygraph P that admits an inverse
operator ι and a neutral operator e, then for every algebraic polygraph (P, Q, R) and every rule A in R,
there is a R-rewriting step

e⇒ µ(A−, ι(A+)).

In order to make the quotient algebraic rewriting system on P〈Q〉 terminating, we need to consider a
strategy σ such that the above 2-cell is not positive. Hence, we cannot have σ(f) = π−1(f).

3.2. Algebraic polygraphs modulo

3.2.1. Algebraic polygraph modulo. Let (P, Q, R) be an algebraic polygraph. We denote by PRP the
cellular extension of the theory P1〈Q〉 made of triple (e, a, e ′), where e, e ′ are 2-cells in P2〈Q〉>, and
a is a R-rewriting step such that e+ = a− and a+ = e ′−. Such a triple, also denoted by e ?1 a ?1 e

′, is
called a PRP-rule, and pictured by

0

e−

��

e+
&&

e ′−

88

e ′+

FF
s

e��

a��

e ′��

Given a positive strategy σ on P, a rule (e, a, e ′) is σ-positive if a is a σ-positive R-rewriting step. An
algebraic polygraph modulo is a data P = (P, Q, R, S) made of

i) an algebraic polygraph (P, Q, R),

ii) a cellular extension S of P1〈Q〉 such that R ⊆ S ⊆ PRP.

We say that P is terminating (resp. quasi-terminating) if the algebraic polygraph (P, Q, S) is terminating
(resp. quasi-terminating).
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3.3. Algebraic rewriting systems

3.2.2. Example. Let us consider the algebraic polygraph (P, Q, R) defined in (3.1.6), then the following
composition gives a rewriting step in PRP:

(s · (s · (t · s))) · t ≡P2〈Q〉 (s · ((s · t) · s)) · t
Γ [A]⇒ (s · (t · (s · t)) · t ≡P2〈Q〉 ((s · t) · (s · t)) · t.

3.2.3. Quasi-normal forms. Let P = (P, Q, R, S) be an algebraic polygraph modulo. A 1-cell f of
P1〈Q〉 is quasi-irreducible if for every S-rewriting step f ⇒ g there exists a S-rewriting path from g to
f. A quasi-normal form (with respect to P) of a 1-cell f in P1〈Q〉 is a quasi-irreducible 1-cell f̃ of P1〈Q〉
such that there exists a S-rewriting path from f to f̃. If P is quasi-terminating, every 1-cell f of P1〈Q〉
admits at least a quasi-normal form, that is neither S-irreducible nor unique in general. A quasi-normal
form strategy is a map

s : P1〈Q〉→ P1〈Q〉

sending a 1-cell f on a chosen quasi-normal f̃.

3.3. Algebraic rewriting systems

3.3.1. Algebraic rewriting systems. Let P = (P, Q, R, S) be an algebraic polygraph modulo. A cellular
extension S of P1〈Q〉 extends to a cellular extension of the theory P〈Q〉, with source ∂−1 := π ◦ ∂−1 , and
target ∂+1 := π ◦ ∂+1 . An algebraic rewriting system on P is a cellular extension S of P〈Q〉 defined in
such a way that the following diagram commutes

S

∂
−
1xx

∂
+
1

xx

π ′

��

P〈Q〉 Soo
oo

where the map π ′ assigns to a S-rule e ?1 a ?1 e
′ an element a in S with source a− and target a+. Since

R ⊆ S ⊆ PRP, note that the quotient cellular extensions R and S coincide.
Given a positive strategy σ on P, let define Sσ := {a ∈ S | a is a σ-positive S-rule}. A S-rewriting

step (resp. Sσ-rewriting step) is the quotient of a S-rewriting step (resp. σ-positive S-rewriting step) by
the canonical projection π, that is a 2-cell of the form Γ [a] : Γ [a−]⇒ Γ [a+], where Γ is a ground context
of P1〈Q〉 and Γ [a] is a S-rewriting step (resp. σ-positive S-rewriting step). A S-rewriting path (resp.
S
σ-rewriting path) is a sequence of S-rewriting steps (resp. Sσ-rewriting steps).

3.3.2. Examples. A string rewriting system (SRS) is an algebraic rewriting system on an algebraic
polygraph modulo (Mon, Q, R, S). The set Q is the alphabet of the SRS, and the quotient of the cellular
extension R with respect to the congruence ≡Mon2〈Q〉 is the set of rules of the SRS. For instance, as a
quotient of the algebraic polygraph defined in (3.1.6), we obtain the SRS

〈s, t | sts⇒ tst 〉,

that presents the monoid B+
3 of braids on 3 strands.

A linear rewriting system (LRS) is an algebraic rewriting system on an algebraic polygraph modulo
(P, Q, R, S) such that Modc ⊆ P.
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4. Confluence of algebraic polygraphs modulo

4. Confluence of algebraic polygraphs modulo
In this section we study confluence properties of algebraic polygraphs modulo with respect to positive
strategies. Here P = (P, Q, R, S) denotes an algebraic polygraph modulo, and σ a positive strategy on P.

4.1. Confluence modulo with respect to a positive strategy

4.1.1. Branchings in algebraic polygraphs modulo. A σ-branching of P is a triple (a, e, b), where
a, b are σ-positive 2-cells of S× and e is a 2-cell of P2〈Q〉> as in the following diagram

f
a
//

e
��

f ′

g
b
// g ′

In the rest of this article, for a better readability of the diagrams, the 2-cells will be represented by
simple arrows. The source of a σ-branching (a, e, b) is the pair of 1-cells (f, g), where f = a− = e−,
and g = b− = e+. When b (resp. a) is an identity 2-cell, the σ-branching is written (a, e) (resp.
(e, b)). When e is an identity 2-cell, the σ-branching is written (a, b). A σ-branching (a, e, b) is local
if `(a) = `(b) + `(e) = 1, that is it is either of the form (a, e) or (a, b).

A σ-branching (a, e, b) is σ-confluent modulo if there exist σ-positive S-rewriting paths a ′, b ′, and
a 2-cell e ′ in P2〈Q〉> as in the following diagram:

f
a
//

e
��

f ′
a ′
// h

e ′��
g

b
// g ′

b ′
// h ′

The triple (a ′, e ′, b ′) is called a σ-confluence modulo of the branching (a, e, b). We say that P is
σ-confluent modulo (resp. locally σ-confluent modulo) if every σ-branching modulo (resp. local σ-
branching modulo) is σ-confluent modulo.
4.1.2. Remark. As noted in [2], the algebraic polygraph R is the polygraph for which it is the most
difficult to reach σ-confluence modulo. Indeed, if R is confluent modulo P, then every algebraic
polygraph modulo (P, Q, R, S) is confluent modulo P. For this reason, in many situations we relax by
proving σ-confluence of PR or PRP modulo P. In [2], it is also noticed that when PRP is terminating,
RP is confluent modulo P if and only if PRP is confluent modulo P, and in that case RP defines the same
set of normal forms than PRP. As a consequence, we will either prove σ-confluence of RP and PRP,
leading to the same quotient algebraic rewriting system. Note finally that when PR ⊆ S ⊆ PRP, every
local σ-branching modulo of the form (a, e) is trivially σ-confluent modulo via the σ-confluence modulo
(ida− , e

− ?1 a, ida+).
4.1.3. Rewrite order on an algebraic polygraph modulo. Denote by 4P the relation on the 1-cells of
P1〈Q〉 defined, for all 1-cells f, g in P1〈Q〉, by g 4P f if f = g or f S-rewrites into g. The rewrite order
of P, denoted by ≺P, is the strict order on P1〈Q〉 defined by g ≺P f if g 4P f but not f 4P g. Note
that when P is quasi-terminating, the relation 4P does not define an order when there exists two 1-cells
which rewrite into each other, but the relation ≺P is a well-founded strict order.
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4.1. Confluence modulo with respect to a positive strategy

4.1.4. Double induction principle. Let us recall from Huet [22] the double induction principle, that we
apply to quasi-terminating algebraic polygraphs modulo. From P, we construct an auxiliary algebraic
polygraph Pdb := (P× P, Q, Sdb), where P× P is the cartesian product of the polygraph P by itself, and
the cellular extension Sdb on (P× P)1〈Q〉 := P1〈Q〉 × P1〈Q〉 contains a 2-cell (f, g)⇒ (f ′, g ′), for all
1-cells f, f ′, g, g ′ in P1〈Q〉 in any of the following situations:

i) there exists a 2-cell f⇒ f ′ in S× and g = g ′;

ii) there exists a 2-cell g⇒ g ′ in S× and f = f ′;

iii) there exist 2-cells f⇒ f ′ and f⇒ g ′ in S×;

iv) there exist 2-cells g⇒ f ′ and g⇒ g ′ in S×;

v) there exist 2-cells e1, e2, e3 in P2〈Q〉>, such that `(e1) > `(e3), and as in the following diagram

f
e1 %9 g

e2 %9 f ′
e3 %9 g ′.

As a consequence of the definition, if there exist 2-cells f⇒ f ′ and g⇒ g ′ in S×, then there is a 2-cell
(f, g)⇒ (f ′, g ′) in Pdb given by the composition (f, g)⇒ (f ′, g)⇒ (f ′, g ′). Following [22, Prop. 2.2],
if P is terminating, then so is Pdb. This result extends as follows: if P is quasi-terminating, then so is
Pdb. Indeed, termination cycles that come from quasi-termination of P also appear in Pdb, and these
are the only infinite rewriting paths that can arise. In the sequel, we will prove rewriting results using
double induction on a quasi-terminating algebraic polygraph modulo P, consisting in using well-founded
induction on the rewrite order ≺Pdb defined in (4.1.3).

4.1.5. Theorem. Let P be a quasi-terminating algebraic polygraph modulo, and σ be a positive strategy
on P. If P is locally σ-confluent modulo, then it is σ-confluent modulo.

Proof. Let P be locally σ-confluent modulo. We prove the result by well-founded induction with respect
to the order ≺Pdb . Let (a, e, b) be a σ-branching modulo of P with source (f, g). Suppose that for every
σ-branching modulo (a ′, e ′, b ′)with source (f ′, g ′) such that there is a 2-cell (f, g)⇒ (f ′, g ′) in (Sdb)×,
the σ-branching modulo (a ′, e ′, b ′) is confluent modulo. We proceed in two steps.

Step 1: First, we prove that every σ-branching modulo (a, e) with source (f, g), where a is a σ-
positive S-rewriting step and e is a 2-cell in P2〈Q〉>, is σ-confluent modulo. We proceed by induction
on `(e) > 1. If `(e) = 1, (a, e) is local, hence it is σ-confluent modulo by assumption. Now, assume
that for k > 1, every σ-branching modulo (a ′′, e ′′), such that a ′′ is a σ-positive S-rewriting step and
`(e ′′) = k is σ-confluent modulo, and consider a σ-branching modulo (a, e) such that `(e) = k+ 1. We
write e = e1 ? e2 with e1 of length 1. By local σ-confluence of the σ-branching modulo (a, e1), there
exists a σ-confluence modulo (a ′, e ′1, a1) of this σ-branching. We write a1 = a11 ?a21 with a11 of length 1
and `(a21) > 0. By induction hypothesis on the σ-branching modulo (a11, e2), there exists a σ-confluence
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modulo (a ′1, e ′2, b) as in the following diagram:

f

e1
��

a
// f ′

a ′
// f ′′

e ′1
��

f1

=
��

a11
// f ′1

=

��

a21
// f ′′1

f1 a11
//

e2
��

f ′1 a ′1
// f ′2

e ′2
��

g
b

// g ′

Local σ-conf mod

Induction on `(e)

=

Now, since `(e1) = 1 and `(e2) > 1, we have the following rewriting path in Pdb:

(f, g)⇒ (f1, g)⇒ (f1, f1)⇒ (f1, f
′
1)⇒ (f ′1, f

′
1).

We apply the double induction on the σ-branching (a21, a ′1)with source (f ′1, f ′1) to prove the existence of a
σ-confluence modulo (a2, e3, a

′
2). By a similar argument, we use double induction on the σ-branchings

modulo (e ′1, a2) and (a ′2, e
′
2) with respective sources (f ′′, f ′′1 ) and (f ′2, g

′). Therefore, there exist 2-cells
a ′′,a3, a ′3, b ′ in S× and 2-cells e ′′1 , e ′′2 in P2〈Q〉> as in the following diagram:

f

e1
��

a
// f ′

a ′
// f ′′

e ′1
��

a ′′
// f ′′′

e ′′1
��

f1

=

��

a11
// f ′1

=

��

a21
// f ′′1 a2 // h1 a3 //

e3
��

h ′1

f1 a11
//

e2
��

f ′1 a ′1
// f ′2

e ′2
��

a ′2
// h2 a ′3

// h ′2

e ′′2
��

g
b

// g ′

b ′
// g ′′

Local σ-conf. mod

Induction on `(e)

= Double Induction

Double Induction

Double Induction

Finally, we use once again double induction on the σ-branching modulo (a3, e3, a
′
3) of source (h1, h2),

satisfying (h1, h2) ≺Pdb (f, g), and repeat this process. Since the order≺Pdb is well-founded, it terminates
in finitely many steps until we reach quasi-normal forms f̃ and g̃ of f and g respectively. This yields the
σ-confluence of the σ-branching (a, e).

Step 2: Now, we prove that every σ-branching modulo (a, e, b) with source (f, g) is σ-confluent
modulo. Suppose that every σ-branching (a ′, e ′, b ′) modulo with source (f ′, g ′) such that there is a
2-cell (f, g)⇒ (f ′, g ′) in (Sdb)

× is σ-confluent modulo. We use the proof scheme of [22, Lemma 2.7].
Let us denote by n := `(a) andm := `(b). If bothm and n are 0, there is no branching modulo, so that
we assume without loss of generality that n > 0. We write a = a1 ?1 a2 with a1 of length 1.
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4.1. Confluence modulo with respect to a positive strategy

Ifm = 0, by Step 1 on theσ-branchingmodulo (a1, e), there exists aσ-confluencemodulo (a ′1, e ′, b ′)
of this σ-branching. Then, we use double induction on the σ-branching modulo (a2, a

′
1) with source

(f1, f1), since there is a rewriting path in (Sdb)
× of the form

(f, g)⇒ (f, f)⇒ (f, f1)⇒ (f, f1).

There exist σ-positive 2-cells a ′2, a ′′1 in S× and a 2-cell e ′′ in P2〈Q〉> as follows:

f
a1

//

=

��

f1
a2

//

=

��

f2
a ′2

// f ′2

e ′′
��

f

e
��

a1 // f1 a ′1
// f2 a ′′1

//

e ′
��

f ′2

g
b ′

// g ′

Step 1

= Double Induction

We conclude the proof of this case with a similar argument as in Step 1, using repeated double inductions
terminating after a finite number of steps by well-foundedness of the order ≺Pdb .

Now, assume thatm > 0 and write b = b1 ?1 b2 with b1 of length 1. By Step 1 on the σ-branching
modulo (a1, e), there exists a σ-confluence modulo (a ′1, e1, c1) of this σ-branching. We distinguish two
cases whether c1 is trivial or not.

If c1 is trivial, the σ-confluence of (a, e, b) is obtained from the following diagram

f

=

��

a1
// f1

=

��

a2
// f2

a ′2
// f ′2

��

f a1 //

e
��

f1 a ′1
// f ′1 a3 //

e ′

��

f3

e1
��

a4
// f4 a5 // f5

��

g

=

��

idg // g

=

��

b1 // g ′1

=

��

b ′1
// g ′′1 b ′′1

// h1

��

b3
// h3

g
idg

// g b1 // g ′1 b2
// g2

b ′2

// h2

Step 1Step 1

=

= =

Double Induction

Double Induction

Double Induction

where the σ-branchings modulo (a1, e) and (b1, e
′) are σ-confluent modulo by Step 1, and double

induction applies on the σ-branchings (a2, a
′
1 ?1 a3), (b ′1, b2) and (a4, e1, b

′′
1 ) of respective sources

(f1, f1), (g ′1, g ′1) and (f3, g
′′
1 ) which are all strictly smaller than (f, g) for ≺Pdb . We then reach a

σ-confluence modulo of the σ-branching modulo (a, e, b) similarly using repeated double inductions.

If c1 is not trivial, write c1 = c11 ?1 c
2
1 with c11 of length 1. The σ-confluence of the σ-branching

modulo (a, e, b) is obtained from the following diagram:

17



4. Confluence of algebraic polygraphs modulo

f
=

��

a1
// f1

=

��

a2
// f2

a ′2
// f ′2

��

f

e
��

a1 // f1 a ′1
// f ′1

��

a3 // f3 a4 // f4

��

g

=

��

c11
// g1

=

��

c21
// h1 c2 // h2

��

c ′2
// h ′2

g

=

��

c11
// g1 c ′1

// h ′1

��

c3 // h3 c ′3
// h ′3

��

g

=

��

b1 // g ′

=

��

b ′1
// g ′1 b ′2

// g ′2 b ′3
//

��

g ′3

g
b1

// g ′
b2

// g2
b3

// g3

=

=

=

Step 1

Local σ-conf mod

Double Induction

Double Induction

Double Induction

Double Induction

Double Induction

where the σ-branching modulo (a1, e) is confluent modulo by Step 1, the σ-branching modulo (c11, b1)
is σ-confluent by local σ-confluence modulo, and we check that double induction applies on the σ-
branchings (a2, a

′
1), (c21, c ′1), (b ′1, b2), (a3, c2) and (c3, b

′
2) of respective sources (f1, f1), (g1, g1),

(g ′, g ′) and (f ′1, h1) and (h ′1, g
′
1) which are all strictly smaller than (f, g) for ≺Pdb . Similarly, we can

repeat inductions to reach a σ-confluence modulo of (a, e, b).

4.2. Critical σ-branchings modulo

4.2.1. Classification of local σ-branchings. The local σ-branchings modulo of P can be classified in
the following families:

i) trivial σ-branchings of the form

Γ [a−]

=

��

Γ [a]
// Γ [a+]

Γ [a−]
Γ [a]

// Γ [a+]

for all ground context Γ and σ-positive S-rewriting step a.

ii) orthogonal σ-branchings modulo of the form

∆[a−, b−]

=

��

∆[a, b−]
// ∆[a+, b−]

∆[a−, b−]
∆[a−, b]

// ∆[a−, b+]

18



4.2. Critical σ-branchings modulo

∆[a−, e−]

∆[a−, e]
��

∆[a, e−]
// ∆[a+, e−]

∆[a−, e+]

∆ ′[e ′−, b−]

∆ ′[e ′, b−]
��

∆ ′[e ′−, b]
// ∆ ′[e ′−, b+]

∆ ′[e ′+, b−]

for all ground multi-contexts ∆, ∆ ′, σ-positive S-rewriting steps a, b, c, and 2-cells e, e ′ in P2〈Q〉>
of length 1.

iii) overlapping σ-branchings are the remaining local σ-branchings. These branchings can be classified
into two families: inclusion σ-branchings of the form

Γ [a−]

=

��

Γ [a]
// Γ [a+]

Γ [Γ ′[b−]]
Γ [Γ ′[b]]

// Γ [Γ ′[b+]]

for all ground contexts Γ , Γ ′, and σ-positive S-rewriting steps a, b, and regular overlapping σ-
branchings of the form

Γ [a−]

=

��

Γ [a]
// Γ [a+]

Λ[b−]
Λ[b]

// Λ[b+]

for all ground contexts Γ , Λ, and σ-positive S-rewriting steps a, b such that (Γ [a], Λ[b]) is not
trivial, not orthogonal and not an inclusion branching. These branchings also admit their modulo
counterpart, as in case ii), obtained by replacing the bottom S-rewriting step b by a vertical 2-cell e
in P2〈Q〉> of length 1.

4.2.2. Critical σ-branchings. We define an order relation on σ-branchings modulo of P by setting
(a, e, b) v (a ′, e ′, b ′) if there exists a ground context Γ of P1〈Q〉 such that a ′ = Γ [a], e ′ = Γ [e] and
b ′ = Γ [b]. A critical σ-branching modulo is an overlapping σ-branching modulo that is minimal for the
order relation v.

4.2.3. Positive confluence. We say that P is positively σ-confluent if, for every S-rewriting step a, there
exists ã− ∈ σ(a−) and two σ-positive S-rewriting paths a ′ b ′ of length at most 1 as in the following
diagram

ã−
a ′

//

e
��

f ′

=

��

a− a
// f

b ′
// f ′

where e is a 2-cell in P2〈Q〉>. In that case, we say that σ is a positive confluent strategy for P.

4.2.4. Proposition. Let P be a quasi-terminating algebraic polygraph modulo, and σ be a positive
strategy on P. If P is positively σ-confluent, then it is locally σ-confluent modulo if, and only if, both of
the following conditions are satisfied:
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4. Confluence of algebraic polygraphs modulo

a0) every critical σ-branching modulo (a, b), where a, b are S-rewriting steps, is σ-confluent modulo,

b0) every critical σ-branching modulo (a, e), where a is an S-rewriting step and e is a 2-cell in P2〈Q〉>
of length 1, is σ-confluent modulo.

Proof. One of the two implications is trivial. Suppose that condition a0) holds, and prove that every local
branching of the form (a, b), where a, b are σ-positive S-rewriting steps, is σ-confluence modulo. The
proof that condition b0) implies that every local branching of the form (a, e), where a is a σ-positive
S-rewriting step and e is a 2-cell of P2〈Q〉> of length 1, is σ-confluent modulo is similar.

The proof is based on the analysis of all the possible cases of local σ-branchings modulo given
in (4.2.1). Local trivial σ-branchings are always σ-confluent modulo. We consider a local orthogonal
σ-branching modulo of the form

∆[a−, b−]

=

��

∆[a, b−]
// ∆[a+, b−]

∆[a−, b−]
∆[a−, b]

// ∆[a−, b+]

where ∆[a, b−] and ∆[a−, b] are σ-positive S-rewriting paths. There exist 2-cells of S× as the dotted
cells in the following diagram:

∆[a−, b−]

=

��

∆[a, b−]
// ∆[a+, b−]

∆[a+, b]
// ∆[a+, b+]

=

��

∆[a−, b−]
∆[a−, b]

// ∆[a−, b+]
∆[a, b+]

// ∆[a+, b+]

However, they are generally not σ-positive. Assume that they are both not σ-positive. By positive
σ-confluence assumption, there exist a representative 1-cell ˜∆[a+, b−] (resp. ˜∆[a−, b+]) of ∆[a+, b−]
(resp. ∆[a−, b+]) in P1〈Q〉, σ-positive S-rewriting paths c1, c2, d1, d2, and 2-cells e1, e2 in P2〈Q〉> as
in the following diagram:

˜∆[a+, b−]
c1

// f

=

��

∆[a−, b−]

=

��

∆[a, b−]
// ∆[a+, b−]

e1

OO

∆[a+, b]
// ∆[a+, b+]

=

��

d1 // f

∆[a−, b−]
∆[a−, b]

// ∆[a−, b+]
∆[a, b+]

//

e2
��

∆[a+, b+] d2 // g

=

��˜∆[a−, b+] c2
// g

There is a rewriting path (∆[a−, b−], ∆[a−, b−]) ⇒ (∆[a+, a+], ∆[a+, a+]) in (Sdb)
× so that we apply

double induction on the σ-branching modulo (d1, d2). As a consequence, there exists a σ-confluence
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4.3. Algebraic critical branching lemma

modulo (d ′1, e
′, d ′2) of (d1, d2). Then, we construct a σ-confluence modulo of (∆[a, b−], ∆[a−, b]) by

successive applications of induction as in the proof of Theorem 4.1.5. This process terminates since≺Pdb

is well-founded.
Let us now consider an overlapping σ-branching modulo of the form (a, b), where a, b are σ-positive

S-rewriting steps. By definition, there exists a ground context Γ of P1〈Q〉 and a critical σ-branching
modulo (a ′, b ′) such that (a, b) = (Γ [a ′], Γ [b ′]). Following condition a0), the critical σ-branching
(a ′, b ′) is σ-confluent modulo, and there exists a σ-confluence modulo (a ′′, e ′, b ′′) of this σ-branching.
However, the S-rewriting paths Γ [a ′′] and Γ [b ′′] that would give a confluence modulo of (a, b) are not
necessarily σ-positive:

u

=

��

a
//
Γ [a ′′]

//

Γ [e ′]
��u

b
//

Γ [b ′′]
//

Using positive σ-confluence of S, we are able to construct a σ-confluence modulo of the σ-branching
modulo (a, b) as in the previous case.

4.2.5. Full positive strategy. When all rewriting steps are positive, that is when σ(f) = π−1(f) for
every 1-cell f in P〈Q〉, we say that σ is a full positive strategy. In that case, the quasi-termination
assumption in Proposition 4.2.4 is not needed to ensure local σ-confluence modulo from confluence of
σ-critical branchings modulo. Indeed, the confluences represented by dotted arrows in the diagrams
above are σ-positive. Moreover, the positive σ-confluence is always satisfied, by considering a ′ = a and
b ′ = ida+ .

4.3. Algebraic critical branching lemma

We now prove an algebraic critical branching lemma by quotienting the S-rewriting paths of Proposi-
tion 4.2.4.

4.3.1. Critical branchings of algebraic polygraphs. LetA be an algebraic rewriting system on P. The
critical branchings ofA are the projections of the critical σ-branchings modulo of P of the form a0), that
is pairs (a, b) of Sσ-rewriting steps such that there is a σ-branching modulo in P with source (ã−, b̃−).
As a consequence of Proposition 4.2.4, we deduce the following result.

4.3.2. Theorem. Let P = (P, Q, R, S) be an algebraic polygraph modulo with a positive confluent
strategy σ. If PRP is quasi-terminating, then an algebraic rewriting system on P is locally confluent if,
and only if, its critical branchings are confluent.

As an immediate consequence, we deduce the following critical branching lemma for algebraic
polygraphs modulo.

4.3.3. Corollary. Let P be an algebraic polygraph modulo with a full positive strategy. Every algebraic
rewriting system on P is locally confluent if, and only if, all its critical branchings are confluent.
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5. Examples of algebraic rewriting systems

5. Examples of algebraic rewriting systems
In this section, we apply the algebraic critical branching lemma to SRS, LRS, and group rewriting systems.

5.1. String rewriting systems

5.1.1. Critical branching lemma for string rewriting systems. In (3.3.2) we show how to define a
SRS as an algebraic rewriting system over the cartesian polygraph Mon given in (2.2.4). In that case,
Theorem 4.3.2 is the following critical branching lemma for SRS as proved by Nivat, [42].

5.1.2. Theorem. Let P be an algebraic polygraph modulo on the cartesian polygraph Mon. Then an
algebraic rewriting system on P is locally confluent if and only if its critical branchings are confluent.

In that case, the choice of positive strategy σmaking all the 2-cells in S× be σ-positive implies that the
positive σ-confluence is obvious. Moreover the quasi-terminating hypothesis is not required as explained
in (4.2.5).

5.2. Linear rewriting systems

In this subsection, P = (P, Q, R, S) denotes an algebraic polygraph modulo, whose cartesian polygraph P
has an underlying linear structure, that is, P contains the cartesian polygraph Modc. We consider a
decomposition of P as in (3.1.3), with P ′′2 = AC(+) t AC(·) and P ′2 = Modc, and the positive strategy σ
on P of normal forms modulo AC(+) t AC(·) defined in (3.1.3).

5.2.1. Critical branching lemma for linear rewriting systems. The algebraic polygraph PRP is never
terminating. Indeed, because of the linear context, for every R-rule a : f⇒ g, we have a PRP-rewriting
step given by

g ≡P −f+ (g+ f)
−a+ (g+ f)

%9 −g+ (g+ f) ≡P f (5.2.2)

However, if the rewriting system Sσ is terminating, then PRP is quasi-terminating, then as a consequence
of Theorem 4.3.2 we have

5.2.3. Theorem. Let P be a terminating algebraic polygraph modulo, whose cartesian polygraph has an
underlying linear structure, and with a positive confluent strategy σ. Then an algebraic rewriting system
on P is locally confluent if, and only if, its critical branchings are confluent.

Consider an algebraic rewriting system S on P. The positivity confluence of S with respect to σ
implies the factorisation property of [16, Lemma 3.1.3], stating that every rewriting step a of S can be
decomposed in the free (2, 1)-theory on S as a = b ? c−1, where b and c are either positive rewriting
steps of Sσ or identities, as in the following diagram:

h

f

a

+?

b *>

g

c
`t

(5.2.4)
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5.3. Rewriting with inverses

Note that if a is a rewriting step of Sσ, this factorisation is trivial. When a is in S but not in Sσ, that
is a is a quotient of a non-σ-positive S-rewriting path, it states that a can be factorised using positive
reductions. This proves the following critical branching criterion for linear algebraic rewriting systems.

5.2.5. Theorem. Let P be a terminating algebraic polygraph modulo, whose cartesian polygraph has an
underlying linear structure, and satisfying the factorisation property (5.2.4). Then an algebraic rewriting
system on P is locally confluent if, and only if, its critical branchings are confluent.

5.2.6. Left-monomial rewriting systems. The rules of an algebraic rewriting system on P transform
linear combinations of terms into linear combinations of terms. The system is called left-monomialwhen
the source of every rule is an element of P1〈Q〉 that does not contain neither the operation ⊕ : mm→ m
nor η : rm→ m defined in (2.2.12). Equivalently, the source of any rule of the algebraic rewriting system
is a monomial.

For terminating left-monomial LRS, the local confluence is equivalent to the confluence of critical
branchings, [16, Thm. 4.3.2]. The proof of this criterion requires the factorisation property (5.2.4) that
always holds in this context. We expect that in the left-monomial linear setting the positive confluence is
equivalent to this property. But this remains an open problem, whose answer would explain the criterion
for local confluence of LRS as a rewriting modulo result.

5.3. Rewriting with inverses

We conclude these algebraic examples by presenting a notion of group rewriting system defined as an
algebraic rewriting system.

5.3.1. Rewriting in groups. In group theory rewriting gives algorithmic methods for decision problems,
such as the word/conjugacy/geodesic problems, [6, 7, 11, 12, 33, 34]. In most cases, the method consists
in constructing a convergent presentation of the considered group. Note also that homological finiteness
conditions for finite convergence of groups were introduced, [8]. Finally, algorithms to compute relations
among relations (syzygies) for groups given by generators and relations were developed in [21]. However,
in all these works the presentations of the groups are interpreted by SRS, or by Gröbner bases, that present
groups, or group rings, as monoids, or monoid rings, with axioms of inverses given explicitly in the set
of rules. Namely, for a groupG presented by a set of generators X and a set of relations R, it is associated
the following SRS:

〈Q | ηx : xx
− → 1, η−x : x−x→ 1, ρr : r→ 1, for r ∈ R〉.

When solving decision problems, or computing homological invariants for groups, the rules ηx and η−x
make the problem more complicated uselessly. Indeed, these rules should not be considered as those
defining the group. In this way, the notion of rewriting in groups is not algebraically well considered yet.

5.3.2. Group rewriting systems. Consider an algebraic polygraph modulo P = (P, Q, R, PRP), where
P = G̃rp. The generating 1-cells of P induce on P〈Q〉 a structure of group isomorphic to the free group
F(Q) on Q. Denote by P1〈Q〉red the set of reduced 1-cells of P1〈Q〉 with respect to P2〈Q〉. A cellular
extension T of P1〈Q〉 is called reduced if, for every A in T , the ground terms A− and A+ belong to
P1〈Q〉red.
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5.3.3. Lemma. There exists a unique reduced cellular extension Rred of the theory P1〈Q〉 such that the
algebraic rewriting systems R and Rred on P〈Q〉 coincide.

Proof. The 2-cells of Rred are obtained by reducing the sources and targets of 2-cells of R with respect
to P2〈Q〉.

From now on, we assume that the cellular extension R is reduced.

5.3.4. Positive strategies for reductions in groups. The free group P〈Q〉 can be constructed as a
quotient monoid. Indeed, consider the free monoid (Q t Q−)∗ over the set Q t Q− of constants and
their formal inverses, with Q− = {x− | x ∈ Q}. Then, the group P〈Q〉 is isomorphic, as a monoid, to
the monoid generated by Q tQ− and submitted to the relations

xx− → 1, and x−x→ 1, for every x ∈ Q. (5.3.5)

The relations (5.3.5) are convergent, and thus the elements of the group P〈Q〉 are identified with normal
forms of elements of (Q tQ−)∗ with respect to these relations

Let us fix a total order ≺ over Q tQ− such that for all x, y ∈ Q, x ≺ y implies x− ≺ y−. Denote
by ≺deglex the deglex order on the free monoid (Q t Q−)∗ induced by the order ≺, that is for any
f, g ∈ (Q tQ−)∗, f ≺deglex g if f is shorter than g or they have the same length and f is smaller than g
for the lexicographic order induced by ≺.

Every 1-cell in P1〈Q〉 can be written f(ιn1(x1), . . . , ι
nk(xk)), where n1, . . . , nk ∈ N, f is an element

of P×1 , x1, . . . , xk are constants of Q, ι is the inverse operation defined in (2.2.6), and ι0 denotes the
identity 1-cell of the theory P×1 . Moreover, if each ni is chosen to be maximal, then f is uniquely
determined, and does not contain the operation ι in its leafs. We define a map

J K : P1〈Q〉→ (Q tQ−)∗,

that associates to every 1-cell f(ιn1(x1), . . . , ι
nk(xk)) in P1〈Q〉, where the ni’s are maximal as above,

the word xε11 . . . x
εk
k , where εi = + if ni is even, and εi = − if ni is odd.

Let us denote by red(f) the normal form in (Q tQ−)∗ of JfK with respect to relations (5.3.5). Let
|= be the order on P1〈Q〉 defined by f |= g if red(f) ≺deglex red(g).

We define a positive strategy for P, by setting, for every h ∈ P〈Q〉, the set σ(h) to be the subset
of π−1(h) whose elements are of the form µ(µ(f, rε1), g) and µ(f, µ(rε1, g)), where f, g ∈ P1〈Q〉red,
r1 → r2 ∈ R, ε ∈ {−,+}, and such that

µ(µ(f, rε2), g) |= µ(µ(f, r
ε
1), g),

where, for i = 1, 2, we let rεi := ri if ε = +, and rεi := ι(ri) otherwise.

5.3.6. Proposition. For the positive strategy σ defined above, the algebraic polygraph modulo
P = (P,Q, R, PRP) is positively σ-confluent.

Proof. Let us introduce an auxiliary strategy σ ′ for P by setting

σ ′(h) =
{
Γ [r1] ∈ π−1(h) | Γ is a context of P1〈Q〉, r1 → r2 ∈ R, s.t. Γ [r2] |= Γ [r1]

}
, (5.3.7)
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for every h ∈ P〈Q〉. Prove that P is positively σ ′-confluent. For all rule r1 → r2 in R and ground
context Γ of P1〈Q〉 such that Γ [r2] |= Γ [r1], the PRP-rewriting step Γ [r1] → Γ [r2] is σ ′-positive.
Otherwise Γ [r1] |= Γ [r2], then the PRP-rewriting step Γ ′[r1] → Γ ′[r2] is σ ′-positive, where Γ ′[�] =
Γ [µ(µ(r2, ι(�)), r1)]. Indeed, we have red(Γ ′(r2)) = red(Γ [r1]) ≺deglex red(Γ [r2]) = red(Γ ′(r1)).
Moreover, Γ [µ(µ(r2, r−1 ), r1)] and Γ [µ(µ(r2, r

−
2 ), r1)] are equivalent with respect to ≡P2〈Q〉 to Γ [r2] and

Γ [r1], respectively. Now, we show that every σ ′-positive PRP-rewriting step induces a σ-positive one.
Let us consider a σ ′-positive PRP-rewriting step Γ [r] : Γ [r1]→ Γ [r2], let n be the largest integer such

that Γ [r1] = Γ1[ιn(r1)] and Γ1 is a (possibly empty) context. Denote by ε := + if n is even and − if n is
odd, then ιn(r1) is equivalent to rε1 modulo ≡P2〈Q〉.

If Γ1 is empty, then the PRP-rewriting step is of the form rε1 → rε2. Since Γ [r2] |= Γ [r1], then rε2 |= rε1
and thus it is σ-positive.

Otherwise, Γ1[rε1] may be written either as µ(µ(f ′, rε1), g ′) or µ(f ′, µ(rε1, g ′)), where f ′, g ′ are 1-
cells in P1〈Q〉. Denote by f := f̂ ′ and g := ĝ ′ be the normal forms of f ′ and g ′ with respect to
P2〈Q〉. Then Γ1[rε1] is equivalent modulo ≡P2〈Q〉 to µ(µ(f, r

ε
1), g) or µ(f, µ(rε1, g)). Moreover, since

red(frε2g) = red(Γ [r2]) ≺deglex red(Γ [r1]) = red(frε1g), the PRP-rewriting step frε1g → frε2g is
σ-positive, where frεig denotes either µ(µ(f, rεi ), g) or µ(f, µ(rεi , g)).

5.3.8. Example. Let us consider the algebraic polygraph modulo (P, Q, R, PRP), where P = G̃rp,
Q = {s, t} and R = {µ(µ(s, t), s) ⇒ µ(t, µ(s, t))}. We consider the deglex order induced by the
ordering s > t > s− > t−. The positive PRP-rewriting steps are of the form

fµ(µ(s, t), s)g⇒ fµ(t, µ(s, t))g or fµ(µ(s−, t−), s−)g⇒ fµ(t−, µ(s−, t−))g,

where f, g are reduced elements ofP1〈Q〉red, and the orientation is compatible with the order |= as defined
in (5.3.4). For instance, there is a positive PRP-rewriting step

µ(µ(µ(s, t), s), t)⇒ µ(µ(t, µ(s, t)), t)

yielding a reduction stst⇒ tstt in the free group F(Q).
Now suppose that f = tst, g = st and ε = −1. There is a σ-positive PRP-reduction as follows:

tstµ(µ(s−, t−), s−)st ≡P tstµ(µ(s
−, t−), s−)stss− ⇒ tstµ(t−, µ(s−, t−))stss− ≡P µ(s, t)

that gives a rewriting step tsts− ⇒ st in the quotient. There is a critical branching of PRP as follows:

µ(µ(µ(s, t), s), µ(t, s)) //

��

µ(µ(t, µ(s, t)), µ(t, s))

µ(µ(s, t), µ(µ(s, t), s)) // µ(µ(s, t), µ(t, µ(s, t)))

that is not confluent modulo. It induces the following non confluent algebraic critical branching in the
free group F(Q)

tstts

ststs

..

00 sttst
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6. Conclusion and perspectives
In this article, we introduced the notion of algebraic rewriting systems as rewriting systems over algebraic
theories. We studied algebraic contexts such as string, linear, and group rewriting. We formulated
sufficient conditions to prove the critical branching lemma for algebraic rewriting systems. Our results
lead us to formulate several perspectives:

• In Section 5.1, we recovered the critical branching lemma for SRS with respect to a convergent
presentation of the theory Mon and a positive strategy making all the reductions positive. This
corresponds to the classical setting of SRS. One may wonder what happens if we consider another
presentation of the theory Mon and another positive strategy. These choices define a paradigm of string
rewriting. This raises the question of defining a notion of equivalence between paradigms of string
rewriting.

• For left-monomial LRS and Gröbner bases the critical branching lemma only requires termination.
Theorem 5.2.5 proves that the factorisation property is also required. This property is always satisfied
when we rewrite in left-monomial linear structures such as commutative or associative algebras. We
expect that for left-monomial LRS, the factorisation property is equivalent to the positive confluence,
and is always satisfied.

• In Section 5.3, we defined a positive strategy to rewrite in a free group. We prove a critical branching
lemma with respect to this strategy. However, we do not yet know an algorithm that computes the
exhaustive list of critical branchings with respect to this strategy. The same algorithmic problem occurs
for the computation of the critical branchings for LRS that are not left-monomial.

• Another issue is to extend the algebraic critical branching lemma to higher-structures such as linear
operads. Rewriting was defined on linear operads in terms of shuffle Gröbner bases by Dotsenko and
Khoroshkin in [13] and shuffle linear polygraphs by Malbos and Ren in [37]. Algebraic polygraphs
introduced in this article describe rewriting in one-dimensional algebraic structures, such as monoids,
groups, modules, and algebras. We expect that our constructions can be extended to the setting of
linear operads by considering algebraic polygraphs defined over a structure of cartesian 2-polygraphs
on shuffle trees.

• Finally, another outlook is to extend the algebraic critical branching lemma to conditional rewriting
systems in order to formalise the critical branching lemma for LRS defined over a field. The conditional
rules are used to specify the rules depending on the invertibility of scalars in the field.
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