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1. Introduction
This work started from the study of 𝑛-branchings of rewriting paths in polygraphic resolutions and
homotopical reduction-completion procedures of higher-dimensional rewriting systems [16, 19]. Such
branchings can be regarded as computations starting in the same state. An important property of
branching computations is confluence, which holds if these computations may eventually join in a
common state. Higher-dimensional rewriting is usually based on strict 𝜔-categories [2], wich compose
cells of globular shape. Yet it often seems more natural to assemble confluence and other rewriting
diagrams into higher-dimensional cubes. So why not use cubical categories instead for rewriting?

The relationship between rewriting theory [38] – a fundamental model of computation with far-
reaching applications in mathematics and computer science – and higher globular categories is natural
and well studied [2]. We consider it in its purest form through abstract rewriting systems, through
(1-poly)graphs 𝜕−, 𝜕+ : 𝑋1 → 𝑋0, where 𝑋0 is a set of 0-cells or vertices, 𝑋1 is a set of 1-cells or directed
edges, and 𝜕− , 𝜕+ are source and target maps relating them. A rewriting path or computation is then a
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morphism or 1-cell in the (free) path category generated by such a graph. Higher structure emerges in
rewriting either through structured objects, or alternatively through relationships between rewriting
paths and higher relationships between higher relationships. The free monoid used in string rewriting,
for instance, is a category with a single 0-cell; rewriting steps then become 2-cells. Alternatively, in the
left square below, the 2-cell 𝐴 expresses a relationship between the rewriting paths along its faces.

𝑤 𝑥

𝐴

𝑦 𝑧

𝑓

𝑔 ℎ

𝑘

𝑤 𝑥

𝐴(𝑓 , 𝑔)

𝑦 𝑧

𝑓

𝑔 𝑔 | 𝑓

𝑓 |𝑔

The square on the right expresses confluence of the branching 𝑦
𝑔
←− 𝑤

𝑓
−→ 𝑥 more specifically in the

sense that the paths 𝑓 , 𝑔 can be extended from 𝑦 and 𝑧 to some common vertex 𝑧, the notation 𝐴(𝑓 , 𝑔)
indicating the existential dependency of its faces 𝑓 |𝑔 and 𝑔|𝑓 on 𝑓 and 𝑔. Likewise, confluences of 𝑛-
branchings lead naturally to coherence 𝑛-cubes, which globular categories obviously model as globes.

Rewriting with higher cells requires higher-dimensional rewriting systems supplying generators,
relations and rewriting paths in higher dimensions: so-called computads [36, 37] or polygraphs [10].
Polygraphic resolutions [2, 19, 32] then amount to the construction of higher-dimensional rewriting
systems with desirable properties such as confluence and termination guarantees. When rewriting with
structured objects, these can be obtained via reduction-completion procedures that resolve obstacles to
confluence given by certain 𝑛-branchings [16]. These have been developed for resolving algebraic and
categorical structures in homological algebra for categories [19, 32], associative algebras [18, 27] and
operads [31], as well as for algebraic [16] and categorical [11] coherence proofs.

Proofs about rewriting systems are often presented in semi-formal diagrammatic style. The liter-
ature abounds in particular with diagrams gluing cubes [4, 38]. In higher-dimensional rewriting, this
amounts to composing higher cells in the underlying categories.

The idea of using cubical categories for higher-dimensional rewriting is not new. A cubical approach
has been pioneered by Lucas [28–30], building on Brown and Higgin’s cubical categories [1, 8], which
in turn add compositions to the cubical sets of Serre [34] and Kan [21]. Lucas has in particular proved
the existence of cubical polygraphs, adapting ideas by Batanin [5] and Garner [15]. His polygraphs
carry a monoidal structure to capture “string” rewriting with monoid objects. Using this formalism
he has verified some standard confluence properties using cubical 2-polygraphs, and studied certain
polygraphic resolutions for monoids. Our work is strongly influenced by his. Al-Agl, Brown and Steiner
have shown that cubical categories with connection maps are equivalent to globular ones [1], which
suggests that one may translate between these two approaches to higher-dimensional rewriting.

Higher confluence properties, in dimension 3 andwith emphasis on cubes, have received longstand-
ing interest in the rewriting literature, too. Lévy has derived a cube law in the 𝜆-calculus, showing that
all 3-branchings of certain rewriting paths of 𝜆-terms extend around the edges of 3-dimensional conflu-
ence cubes [26]. Several sections in Barendregt’s monograph on the 𝜆-calculus [4] are devoted to this
cube law and a theory of residuals akin to 𝑓 |𝑔 and𝑔|𝑓 in the diagram above. A comprehensive survey on
the cube law in rewriting has been writen by Endrullis and Klop [14], including work by Klop himself,
who has returned to 3-confluences and the cube law several times within four decades. Endrullis and
Klop not only open up fascinating relationships with knot and Garside theory [12, 14], they also use

2



1. Introduction

the cube law as a hypothesis for a 3-confluence proof. By contrast, van Oostrom has recently sketched
a combinatorial bricklaying procedure for 3-confluence proofs that is meant to satisfy the cube law by
construction [39].

Here, we combine the two lines of work on cubical higher-dimensional rewriting and higher conflu-
ence proofs in the context of polygraphic resolutions of higher-dimensional cubical abstract rewriting
systems, which we present as constructions of certain cubical 𝜔-groupoids.

To this end, we first extend the framework of cubical higher-dimensional rewriting with contrac-
tions, which are essential for constructing cubical polygraphs with the rewriting properties desired. For
this, we work with cubical (𝜔, 𝑝)-categories where cells in dimensions greater than 𝑝 + 1 are invertible.
Their definitions are recalled in Section 2. Our notion of contraction, introduced in Section 3, is given
by a family of lax transformations [1, 28, 29], a generalisation of natural transformations to cubical
categories. Intuitively, contractions extend rewriting strategies to higher dimensions. For their defini-
tion, we first impose a quotient structure in dimension 𝑝 on the underlying (𝜔, 𝑝)-category, and then
define a section as a choice of a representative, for instance a normal form. Contractions extend this
choice function recursively to higher dimensions. This leads to a notion of contracting cubical (𝜔, 𝑝)-
category, in which all cells of dimension greater than 𝑝 + 1 can be contracted. The main result in this
context, Theorem 3.2.5, shows that every contracting (𝜔, 0)-category (hence every cubical𝜔-groupoid)
is acyclic, so that all boundaries with a cubical hole can be filled with a cell.

As examples of abstract cubical rewriting, we revisit some classical diagrammatic confluence proofs
in higher dimensions as cubical cell compositions in Section 4 , including variants of Newman’s lemma
and the Church-Rosser theorem in two cubical directions. We also prove a variant of Squier’s theo-
rem [35], which requires contractions and can be seen as a low-dimensional version of Theorem 3.2.5
for confluent and terminating rewriting systems. In particular, we present a proof of Newman’s lemma
in three cubical directions without explicitly use of the cube law, as it is an immediate consequence of
the geometry imposed by the axioms of cubical categories. Using contractions, we can even derive the
cube law without involving coherence 3-cells. To simplify proofs, we use an internal abstract rewriting
system in an (𝜔, 𝑝)-category, which can be seen as a generalisation of a polygraph.

Our final contribution, in Section 5, lies in the study of polygraphic resolutions of cubical categories.
More specifically, we construct an acyclic cubical 𝜔-groupoid from an abstract rewrite systems 𝜕−, 𝜕+ :
𝑋1 → 𝑋0, using a normalisation strategy based on contractions. For this, we first introduce an explicit
construction of cubical polygraphs and prove Theorem 5.1.3, a converse of Theorem 3.2.5, showing
that free cubical 𝜔-groupoids on polygraphs are acyclic if and only they are contracting. We then
turn to polygraphic resolutions of confluent and terminating abstract rewriting systems, extending
them recursively to acyclic 𝜔-groupoids in Theorem 5.3, which involves studying their 𝑛-branchings.
Finally, in Theorem 5.3.2, we refine this construction so that it generates no non-trivial higher cells in
dimension greater than 2. This result confirms in a more structural way that the cube law does not
require coherence 3-cells in our setting. For abstract rewriting systems, no cubes are needed, because
homotopically, all cubes are empty.

In combination, these contributions shed in particular some light on the cube equation and address a
longstanding question in the rewriting community, which has been asked quite poignantly by Klop [22]:
“One would expect [...] in higher category theory [...] that the Cube Equation [...] would be very much
present [...]. But it seems that the contrary is the case: nowhere [...] one encounters the Cube Equation or
residual notions. (I would love to be corrected!) How come? [...] Is a fundamental notion as confluence a
total stranger in categories? ” [22].
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2. Preliminaries on Cubical Categories
Cubical categories, introduced by Brown and Higgins [7, 9], are cubical sets equipped with partial
composition operations along the faces of higher-dimensional cubes, and with identity cells in every
dimension. In this section, we adopt the axioms of Al-Agl, Brown and Steiner [1], augmented with the
cell-invertibility structure introduced by Lucas [28], and we recall the notion of lax transformations
of cubical categories—referred to as 1-fold left homotopies in [1]. Our setting is that of cubical 𝜔-
categories, possibly equipped with connections and inverses, as formalised in [17]. For each 𝑛 ∈ N, a
cubical 𝑛-category is defined as the truncation of a cubical 𝜔-category.

2.1. Cubical 𝝎-categories

We henceforth assume that Greek letters 𝛼, 𝛽 occurring as superscripts of operators range over {−, +}.

2.1.1. A cubical 𝜔-category C consists of

i) a family (C𝑘 )0⩽𝑘 of sets of 𝑘-cells of C,

ii) face maps 𝜕𝛼
𝑘,𝑖

: C𝑘 → C𝑘−1, for 1 ⩽ 𝑖 ⩽ 𝑘 , satisfying the cubical relations

𝜕𝛼
𝑘−1,𝑖𝜕

𝛽

𝑘,𝑗
= 𝜕

𝛽

𝑘−1, 𝑗−1𝜕
𝛼
𝑘,𝑖

(1 ≤ 𝑖 < 𝑗 < 𝑘), (2.1.2)

iii) degeneracy maps 𝜀𝑘,𝑖 : C𝑘−1 → C𝑘 , for 1 ⩽ 𝑖 ⩽ 𝑘 ,

iv) composition maps ◦𝑘,𝑖 : C𝑘 ×𝑘,𝑖 C𝑘 → C𝑘 , for 1 ⩽ 𝑖 ⩽ 𝑘 , defined on the pullback C𝑘 ×𝑘,𝑖 C𝑘 of the

cospan C𝑘
𝜕+
𝑘,𝑖→ C𝑘−1

𝜕−
𝑘,𝑖← C𝑘 .

These data are subject to the relations listed in Appendix A.1.1. Throughout this paper we consider
cubical 𝜔-categories with

v) connection maps Γ𝛼
𝑘,𝑖

: C𝑘−1 → C𝑘 , for 1 ⩽ 𝑖 < 𝑘 , satisfying the relations in Appendix A.1.2.

A functor 𝐹 : C → D of cubical 𝜔-categories is a family of maps (𝐹𝑘 : C𝑘 → D𝑘 )0⩽𝑘 that preserve
all face, degeneracy, composition and connection maps, see Appendix A.1.3.

All categories considered are cubical, so we drop this adjective wherever possible.

2.1.3. Any 𝑘-cell 𝐴 and its faces can be represented, for 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘 , by the diagram

𝑖

𝑗

𝜕−
𝑘−1,𝑖𝜕

−
𝑘,𝑗
𝐴 𝜕−

𝑘−1,𝑖𝜕
+
𝑘,𝑗
𝐴

𝐴

𝜕+
𝑘−1,𝑖𝜕

−
𝑘,𝑗
𝐴 𝜕+

𝑘−1,𝑖𝜕
+
𝑘,𝑗
𝐴

𝜕−
𝑘,𝑖

𝐴

𝜕−
𝑘,𝑗

𝐴 𝜕+
𝑘,𝑗

𝐴

𝜕+
𝑘,𝑖

𝐴
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2.2. Cubical (𝜔, 𝑝)-categories and lax transformations

The arrows on the left indicate the two directions along which the faces of the cell 𝐴 are drawn. De-
generacies, cells in the codomains of degeneracy maps, are illustrated as follows, where boxes as those
on the right have been introduced in [1]:

𝑖

𝑗

𝑥 𝑥

𝜀𝑘,𝑖 𝑓

𝑦 𝑦

𝑓 𝑓 or

𝑥 𝑦

𝜀𝑘,𝑗 𝑓

𝑥 𝑦

𝑓

𝑓

or

The arrows between the two copies of 𝑥 or 𝑦 are drawn as equality arrows to indicate that these faces
are themselves degenerate.

The ◦𝑘,𝑖-composition of two 𝑘-cells 𝐴, 𝐵 in direction 𝑖 glues these cells along 𝑖 if the upper faces of
the first cell in all other directions match the lower faces in all other directions of the second:

𝑖

𝑗

𝐴 ◦𝑘,𝑖 𝐵 = 𝐴 ◦𝑘,𝑖 𝐵𝑓 𝑓 or 𝐴 𝐵

Such diagramsmake it easy to check that the degeneracies 𝜀𝑘,𝑖 provide identities for the ◦𝑘,𝑖-composition.
Connections are cells in the codomains of the connectionmaps Γ𝑘,𝑖 . Their diagrams are as follows [1]:

𝑖

𝑗

𝑥 𝑦

Γ−
𝑘,𝑖
𝑓

𝑦 𝑦

𝑓

𝑓 or

𝑥 𝑥

Γ+
𝑘,𝑖
𝑓

𝑥 𝑦

𝑓

𝑓

or

A cell in C is thin if it is a composite of degeneracies and connections [6, 7, 9]. An example is

We follow common practice and omit dimension indices 𝑘 if suitable.

2.2. Cubical (𝝎, 𝒑)-categories and lax transformations

2.2.1. Invertibility. Invertible cubical cells were introduced by Brown and Higgins [9] to define cu-
bical 𝜔-groupoids. Here we start with more general definitions for cubical (𝜔, 𝑝)-categories [28]. A
𝑘-cell 𝐴 of an 𝜔-category C is 𝑅𝑖-invertible, for 1 ⩽ 𝑖 ⩽ 𝑘 , if there is a 𝑘-cell 𝐵 such that

𝐴 ◦𝑖 𝐵 = 𝜀𝑖𝜕
−
𝑖 𝐴 and 𝐵 ◦𝑖 𝐴 = 𝜀𝑖𝜕

+
𝑖 𝐴.

The 𝑘-cell 𝐵 is thus uniquely defined and denoted 𝑅𝑖𝐴, using the (partial) inversion map 𝑅𝑖 . A 𝑘-cell 𝐴
has an 𝑅𝑖-invertible shell, for 1 ⩽ 𝑖 ⩽ 𝑘 , if
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2. Preliminaries on Cubical Categories

i) the cells 𝜕𝛼
𝑗
𝐴 are 𝑅𝑖−1-invertible, for every 1 ⩽ 𝑗 < 𝑖 ,

ii) the cells 𝜕𝛼
𝑗
𝐴 are 𝑅𝑖-invertible, for every 𝑖 < 𝑗 ⩽ 𝑘 .

Inverting a 𝑘-cell 𝐴 along direction 𝑖 swaps the faces 𝜕−𝑖 𝐴, 𝜕
+
𝑖 𝐴 and inverts all other faces:

𝑖

𝑗

𝐴𝜕−𝑖 𝐴 𝜕+𝑖 𝐴
𝑅𝑖↦−→ 𝑅𝑖𝐴𝜕+𝑖 𝐴 𝜕−𝑖 𝐴

Using the map 𝑅𝑖 , Lucas [28] introduced an alternative inversion map

𝑇𝑖𝐴 :=
(
𝜀𝑖𝜕
−
𝑖+1𝐴 ◦𝑖+1 Γ+𝑖 𝜕+𝑖 𝐴

)
◦𝑖

(
𝑅𝑖

(
Γ+𝑖 𝜕

−
𝑖+1𝐴 ◦𝑖+1 𝑎 ◦𝑖+1 Γ−𝑖 𝜕+𝑖+1𝐴

) )
◦𝑖

(
Γ−𝑖 𝜕−𝑖 𝐴 ◦𝑖+1 𝜀𝑖𝜕+𝑖+1𝐴

)
,

for all 1 ⩽ 𝑖 < 𝑘 and every 𝑘-cell 𝐴. The 𝑇𝑖 exchange the faces of a cell 𝐴 between the directions 𝑖 and
(𝑖 + 1) while applying inversion maps to all other faces:

𝑖 + 1

𝑖
𝐴

𝜕−𝑖 𝐴

𝜕−𝑖+1𝐴 𝜕+𝑖+1𝐴

𝜕+𝑖 𝐴

𝑇𝑖↦−→ 𝑇𝑖𝐴

𝜕−𝑖+1𝐴

𝜕−𝑖 𝐴 𝜕+𝑖 𝐴

𝜕+𝑖+1𝐴

,

Additional properties of inversion maps, which are needed later, are listed in Appendix §A.1.4.

2.2.2. (𝝎, 𝒑)-categories and 𝝎-groupoids. An (𝜔, 𝑝)-category C is an𝜔-category in which every 𝑘-
cell with an 𝑅𝑖-invertible shell is 𝑅𝑖-invertible for all 𝑘 > 𝑝 and 1 ⩽ 𝑖 ⩽ 𝑘 . A functor of (𝜔, 𝑝)-categories
is a functor between the underlying 𝜔-categories. An 𝜔-groupoid is an (𝜔, 0)-category.

2.2.3. Lax transformations. We recall Lucas’ definition of lax transformations (called lax 1-transfors
by him) [28, 29]. They adapt natural transformations to cubical categories. We use them to define
contractions of (𝜔, 𝑝)-categories in Section 3.1.

A lax transformation 𝜂 : 𝐹 ⇒ 𝐺 between (𝜔, 𝑝)-functors 𝐹,𝐺 : C → D is a family of maps that
sends each 𝑘-cell 𝑥 in C to a (𝑘 + 1)-cell 𝜂𝑥 in D, for every 𝑘 ∈ N. It satisfies, for all 1 ⩽ 𝑖 ⩽ 𝑘 and
𝑘-cells 𝑥,𝑦 in C,

i) if 𝑖 ≠ 1 then 𝜕−1 𝜂𝑥 = 𝐹 (𝑥), 𝜕+1𝜂𝑥 = 𝐺 (𝑥) and 𝜕𝛼
𝑖
𝜂𝑥 = 𝜂𝜕𝛼

𝑖−1𝑥
,

ii) 𝜂𝑥◦𝑖𝑦 = 𝜂𝑥 ◦𝑖+1 𝜂𝑦 if 𝑥 and 𝑦 are 𝑖-composable,

iii) 𝜂𝜀𝑖𝑧 = 𝜀𝑖+1𝜂𝑧 if 𝑘 < 𝑛 − 1,

iv) 𝜂Γ𝛼
𝑖
𝑧 = Γ𝛼

𝑖+1𝜂𝑧 if 𝑖 < 𝑘 < 𝑛 − 1.

Axiom i) indicates that 𝜎𝑥 is a transformation from 𝐹 (𝑥) to 𝐺 (𝑥), in the sense that its source and
target faces in direction 1 are determined by 𝐹 (𝑥) and𝐺 (𝑥), respectively. Its faces in the other directions
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3. Cubical contractions and acyclicity

are determined by the value of 𝜎 at the faces of 𝑥 , suggesting that 𝜎 can be defined recursively in the
dimensions. The shape of 𝜎𝑥 is

𝑖

1

𝐹 (𝜕−𝑖−1𝑥) 𝐹 (𝜕+𝑖−1𝑥)

⇓ 𝜎𝑥

𝐺 (𝜕−𝑖−1𝑥) 𝐺 (𝜕+𝑖−1𝑥)

𝐹 (𝑥 )

𝜎𝜕−
𝑖−1𝑥

𝜎𝜕+
𝑖−1𝑥

𝐺 (𝑥 )

3. Cubical contractions and acyclicity
In this section, we introduce contractions for cubical categories, extending the corresponding notion
for globular categories [19], and generalising the normalisation strategies of rewriting theory to higher
dimensions. The main result in this section, Theorem 3.2.5, shows that contracting 𝜔-groupoids are
acyclic, providing a constructive method for proving acyclicity.

3.1. Contractions

Defining contractions for an (𝜔, 𝑝)-category C requires a notion of section, and in turn the construction
of quotient 𝑝-categories on (𝜔, 𝑝)-categories.
3.1.1. The face maps in the coequaliser

C𝑝+1 C𝑝 C𝑝
𝜕−1

𝜕+1

𝜋

in the category Set compare the two faces of a (𝑝 + 1)-cell in direction 1. We could have chosen any
other direction 𝑖 instead to construct C𝑝 , as the following lemma shows.

3.1.2. Lemma. In every cubical (𝜔, 𝑝)-category C, the following coequalisers are equal for 2 ⩽ 𝑗 ⩽ 𝑝 +1:

C𝑝+1 C𝑝 C𝑝
𝜕−1

𝜕+1

𝜋 and C𝑝+1 C𝑝 C𝑝 .
𝜕−𝑗

𝜕+𝑗

𝜋

Proof. Two 𝑝-cells 𝑓 , 𝑔 in C are in the same equivalence class of the second coequaliser if and only if
there is a (𝑝 + 1)-cell 𝐴 in C such that, for all 1 ⩽ 𝑖 ⩽ 𝑝 + 1 such that 𝑖 ≠ 𝑗 ,

𝜕−𝑗 𝐴 = 𝑓 , 𝜕+𝑗𝐴 = 𝑔, 𝜕𝛼𝑖 𝐴 =

{
𝜀 𝑗−1𝜕𝛼𝑖 𝑓 if 𝑖 < 𝑗 ,
𝜀 𝑗 𝜕

𝛼
𝑖−1 𝑓 if 𝑖 > 𝑗 .

These identities assemble to the diagram

𝑖

𝑗

𝑥 𝑦

𝐴

𝑥 𝑦

𝑓

𝑔

7



3. Cubical contractions and acyclicity

Let 𝐴 be such a cell and define 𝐵 = 𝑅1𝑇2 . . .𝑇𝑗−1
(
Γ+(1 𝑗 ) 𝑓 ◦𝑗 𝐴 ◦𝑗 Γ

−
(1 𝑗 )𝑔

)
where Γ+(1 𝑗 ) and Γ−(1 𝑗 ) are

extended connections defined as Γ𝛼(𝑙 𝑚) = 𝑇𝑚−1 . . .𝑇𝑙+1Γ
𝛼
𝑙
, for all 𝑙 < 𝑚. The faces of 𝐵 in direction 1 are

equal to 𝑓 and 𝑔; all others are degenerate. Thus 𝑓 and 𝑔 are in the same equivalence class for the first
coequaliser. The reverse direction is similar. □

3.1.3. Quotient category C𝒑 . We equip the set C𝑝 with face, composition, degeneracy and connec-

tion maps. For the composition map ◦𝑖 , for 𝑖 < 𝑝 , we write 𝑋 ×C𝑖 𝑋 for the pullback of 𝑋
𝜕−𝑖→ C𝑖

𝜕+𝑖← 𝑋

for any set 𝑋 . We use the coequaliser

C𝑝+1 ×C𝑖 C𝑝+1 C𝑝 ×C𝑖 C𝑝 C𝑝 ×C𝑖 C𝑝 ≃ C𝑝 ×C𝑖 C𝑝
𝜕−1 ×𝜕−1
𝜕+1 ×𝜕+1

(≃ is unique because coequalisers and pullbacks commute in Set) to define ◦𝑖 : C𝑝 ×C𝑖 C𝑝 → C𝑝 as the
unique map for which the diagram

C𝑝+1 ×C𝑖 C𝑝+1 C𝑝 ×C𝑖 C𝑝 C𝑝 ×C𝑖 C𝑝

C𝑝+1 C𝑝 C𝑝

◦𝑖 ◦𝑖 ◦𝑖

commutes. Face, degeneracy and connection maps are defined likewise, using the universal property of
the coequaliser C𝑝 . This extends C𝑝−1 to an (𝜔, 𝑝)-category, also denoted C𝑝 . Its 𝑝-cells are equivalence
classes modulo C𝑝+1, and it has degenerate and connection cells in dimensions higher than 𝑝 .

3.1.4. Unital sections. The canonical projection (𝜔, 𝑝)-functor 𝜋 : C → C𝑝 is an identity on 𝑘-cells
for𝑘 < 𝑝 . It sends 𝑝-cells to their equivalence classes in C𝑝 and𝑘-cells of dimension𝑘 > 𝑝 to degenerate
cells. The fibre of 𝜋 over a 𝑝-cell 𝑢 in C𝑝 extends to the (𝜔, 0)-category C𝑢 defined as follows:

i) its 0-cells are the 𝑝-cells 𝑥 in C such that 𝜋 (𝑥) = 𝑢,

ii) its 𝑘-cells are the (𝑝 + 𝑘)-cells 𝑓 in C such that 𝜕𝛼1
𝑝+1,1𝜕

𝛼2
𝑝+2,1 . . . 𝜕

𝛼𝑘
𝑝+𝑘,1 𝑓 ∈ 𝑢, for every 𝑘 ⩾ 1,

iii) its face maps 𝜕′𝛼
𝑘,𝑖

on C𝑢 are the 𝜕𝛼
𝑝+𝑘,𝑖 , for all 1 ⩽ 𝑖 ⩽ 𝑘 ,

iv) likewise for the degeneracy, connection and composition maps.

A section of the projection 𝜋 : C → C𝑝 is a family

𝜄 = (𝜄𝑢 : 1→ C𝑢)𝑢∈C𝑝
of (𝜔, 0)-functors, where 1 is the terminal category in C. We only consider unital sections, which satisfy
𝜄𝜋 (𝑡 ) = 𝑡 for every thin 𝑝-cell 𝑡 in C and for all 𝑝 ⩾ 1, but usually omit this adjective.

The section 𝜄 sends each 𝑝-cell 𝑢 in C𝑝 to a functor 𝜄𝑢 with the representative 𝑝-cell of 𝑢 in C in its
image, while leaving all thin cells unchanged. We write 𝜄𝑢 for this representative of𝑢 as well. Moreover,
for every 𝑘-cell 𝑓 of C with 𝑝 ⩽ 𝑘 we write 𝑓 for the image of 𝜄𝜋 (𝑓 ) in C𝜋 (𝑓 ) by abuse of notation,.
Example diagrams for sections are given in §3.1.8.
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3.1. Contractions

3.1.5. Contractions. Let 𝜄 be a section of the projection 𝜋 : C → C𝑝 . A 𝜄-contraction of C is a family 𝜎
of lax transformations ©­­­­­«

C𝑢 C𝑢

1

𝑖𝑑

𝜁 𝜄𝑢

𝜎𝑢

ª®®®®®¬𝑢∈C𝑝
,

where 𝜁 is the unique (𝜔, 0)-functor into 1, such that

𝜎𝜄𝑢 = 𝜀1𝜄𝑢 and 𝜎𝜎𝑓
= Γ−1 𝜎𝑓 , (3.1.6)

for each𝑢 in C𝑝 and 𝑓 in C𝑘 with 𝑝 ⩽ 𝑘 , and where 𝜎𝑔 stands for (𝜎𝜋 (𝑔) )𝑔 for each cell 𝑔 in Cℓ for 𝑝 ⩽ ℓ .
Expanding this definition, a 𝜄-contraction 𝜎 is a family of maps (C𝑘 → C𝑘+1)𝑘≥𝑝 such that for each

𝑘-cells 𝑓 , 𝑔 in C and every 𝑖 with 𝑝 + 1 ⩽ 𝑖 ⩽ 𝑘 , the conditions i)-iv) from §2.2.3 hold:

i) The boundary 𝜕(𝜎𝑓 ) is the (𝑘 − 1)-square 𝑓 𝜕 defined by

𝜕−1 𝑓
𝜕 = 𝑓 , 𝜕+1 𝑓

𝜕 = 𝜀𝑘 . . . 𝜀𝑝+1𝑥, 𝜕𝛼𝑖 𝑓
𝜕 = 𝜎𝜕𝛼

𝑖−1 𝑓
,

which yields the diagram

𝑖

1
𝑓 𝜕 =

𝑥 𝑦

𝑥 𝑦

𝑓

𝜎𝑥 𝜎𝑦

ii) If 𝑓 and 𝑔 are ◦𝑖-composable, then

𝑖 + 1

1
𝜎𝑓 ◦𝑖𝑔 = 𝜎𝑓 ◦𝑖+1 𝜎𝑔 =

𝑥 𝑦 𝑧

𝜎𝑓 𝜎𝑔

𝑥 𝑦 𝑧̂

𝑓

𝜎𝑥

𝑔

𝜎𝑦 𝜎𝑧

iii)

𝑖 + 2
𝑖 + 1

1

𝜎𝜀𝑖 𝑓 = 𝜀𝑖+1𝜎𝑓 =

𝑦 𝑦

𝜀𝑖 𝑓

𝑥 𝑥

𝜎𝑓
𝑦 𝑦

𝑥 𝑦

𝑓

9



3. Cubical contractions and acyclicity

iv) If 𝑖 < 𝑘 , then

𝑖 + 2
𝑖 + 1

1

𝜎Γ𝛼
𝑖
𝑓 = Γ𝛼𝑖+1𝜎𝑓 =

𝑦 𝑦

Γ𝛼
𝑖
𝑓

𝑥 𝑦

𝜎𝑓
𝑦 𝑦

𝑥 𝑦

𝑓

In addition, the second condition in (3.1.6) expands as follows: 𝜎𝜎𝑓
is the thin cell

𝑖
2

1

𝜎𝜎𝑓
= Γ−1 𝜎𝑓 =

𝑦 𝑦

𝜎𝑓
𝑥 𝑥

𝜎𝑓
𝑦 𝑦

𝑥 𝑥

𝑓

The first condition in (3.1.6) is equivalent to 𝜎𝑥 = 𝜀1𝑥 for each 𝑝-cell 𝑥 in C:

𝑥 𝑥
𝜎𝑥

Examples of contractions in low dimensions are given in §3.1.8. Contractions, understood as fami-
lies of lax transformations, can be computed recursively across all dimensions, starting from a chosen
section. They are also compatible with inverses, as stated in the following lemma.

3.1.7. Lemma. For every 𝑘-cell 𝑓 with 𝑝 ⩽ 𝑘 , and for all 1 ⩽ 𝑖 ⩽ 𝑘 and 1 ⩽ 𝑗 < 𝑘 ,

𝜎𝑅𝑖 𝑓 = 𝑅𝑖+1𝜎𝑓 and 𝜎𝑇𝑗 𝑓 = 𝑇𝑗+1𝜎𝑓 .

Proof. For 𝜎𝑅𝑖 𝑓 = 𝑅𝑖+1𝜎𝑓 , we check that 𝜎𝑅𝑖 𝑓 ◦𝑖+1 𝜎𝑓 and 𝜎𝑓 ◦𝑖+1 𝜎𝑅𝑖 𝑓 are thin cells. The claim then holds
because thin cells with the same boundaries are equal [28]. The proof of 𝜎𝑇𝑗 𝑓 = 𝑇𝑗+1𝜎𝑓 is similar. □

3.1.8. We present example diagrams for 𝑓 𝜕 and 𝜎𝑓 for a cell 𝑓 of low dimension in an 𝜔-groupoid C.

i) If 𝑥 ∈ C0, then 𝑥𝜕 is the 0-square (𝑥, 𝑥) and 𝜎𝑥 : 𝑥 → 𝑥 the 1-cell filling it.

ii) If 𝑓 ∈ C1, then 𝑓 𝜕 is an 1-square and 𝜎𝑓 a 2-cell filling it:

2

1
𝑓 𝜕 =

𝑥 𝑦

𝑥 𝑦

𝑓

𝜎𝑥 𝜎𝑦

𝑥 𝑦

𝜎𝑓

𝑥 𝑦

𝑓

𝜎𝑥 𝜎𝑦
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3.2. Acyclic 𝜔-groupoids

iii) If 𝐴 ∈ C2, then 𝐴𝜕 is a 2-square and 𝜎𝐴 a 3-cell filling it:

3
2

1

𝐴𝜕 =

𝑦3 𝑦

𝐴

𝑥 𝑦2
𝜎𝜕−1 𝐴 𝜎𝜕+1𝐴

𝑦3 𝑦

𝑥 𝑦2

𝑦3 𝑦

𝑥 𝑦2
𝜎𝐴

𝑦3 𝑦

𝑥 𝑦2

3.1.9. An (𝜔, 𝑝)-category is contracting if it admits a contraction. This property does not depend on
particular choices of sections. For each (̂−)-contraction 𝜎 , we can define a (̃−)-contraction 𝜏 such that,
for every 𝑘-cell 𝑓 , with 𝑝 ⩽ 𝑘 < 𝑛, the (𝑘 + 1)-cell 𝜏𝑓 is the composition

𝜏𝑓 = 𝜎𝑓 ◦1 𝑅1𝜎𝜀𝑘 ...𝜀𝑝+1𝑥 = 𝜎𝑓 ◦1 𝜀𝑘+1 . . . 𝜀𝑝+2𝑅1𝜎𝑥 ,

where 𝑥 = 𝜕−𝑝+1 . . . 𝜕
−
𝑘
𝑓 . For 𝑝 = 0 and 𝑥 ∈ C0, for instance, 𝜏𝑥 is the ◦1-composition

𝑥 𝑥 𝑥
𝜎𝑥 𝑅1𝜎𝑥

and for 𝑓 ∈ C1, 𝜏𝑓 is the ◦1-composition

𝑥 𝑦

𝜎𝑓

𝑥 𝑦

𝑅1𝜎𝜀1𝑥 = 𝜀2𝑅1𝜎𝑥

𝑥 𝑦

𝑓

3.2. Acyclic 𝝎-groupoids

We now show that acyclicity of 𝜔-groupoids can be obtained by constructing contractions. Our proof
unfolds cubes into cubes with degenerate faces in each direction 𝑖 ⩾ 2 using folding and unfolding
maps [1, Def. 3.1].

3.2.1. Acyclicity. Defining acyclicity for a cubical (𝜔, 𝑝)-category C requires three further notions:

i) A 𝑘-square of C, for 𝑘 ⩾ 0, is a family (𝑓 𝛼
𝑖
)1⩽𝑖⩽𝑘+1,𝛼 of 𝑘-cells in C such that

𝜕𝛼𝑖 𝑓
𝛽

𝑗
= 𝜕

𝛽

𝑗−1 𝑓
𝛼
𝑖 , (3.2.2)

for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘 + 1. We write Sq𝑘 (C) for the set of 𝑘-squares of C.
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3. Cubical contractions and acyclicity

ii) The boundary 𝜕𝐴 of a 𝑘-cell 𝐴 in C, for 𝑘 ⩾ 1, is the (𝑘 − 1)-square (𝜕𝛼
𝑖
𝐴)1⩽𝑖⩽𝑘,𝛼 .

iii) A filler of a 𝑘-square 𝑆 is a (𝑘 + 1)-cell 𝐴 such that 𝜕𝐴 = 𝑆 .

An (𝜔, 𝑝)-category C is acyclic if, for 𝑘 ⩾ 𝑝 , every 𝑘-square of C has a filler.
The following diagrams show a 2-cell 𝐴 and its boundary 1-square:

2

1
⇓ 𝐴

𝜕−1 𝐴

𝜕−2 𝐴 𝜕+2𝐴

𝜕+1𝐴

𝜕𝐴 =

𝜕−1 𝐴

𝜕−2 𝐴 𝜕+2𝐴

𝜕+1𝐴

3.2.3. Folding and unfolding. Let C be an 𝜔-category. The folding maps 𝜓𝑖 ,Ψ𝑗 ,Φ𝑘 : C𝑚 → C𝑚 are
defined, for 1 ⩽ 𝑖 ⩽ 𝑚 − 1, 1 ⩽ 𝑗 ⩽ 𝑚 and 0 ⩽ 𝑘 ⩽ 𝑚 as

𝜓𝑖 (𝑥) = Γ+𝑖 𝜕
−
𝑖+1𝑥 ◦𝑖+1 𝑥 ◦𝑖+1 Γ−𝑖 𝜕+𝑖+1𝑥 = 𝑥 ,

Ψ𝑗 =

{
𝑖𝑑 if 𝑗 = 1,
𝜓 𝑗−1Ψ𝑗−1 otherwise

= 𝜓 𝑗−1𝜓 𝑗−2 . . .𝜓1,

Φ𝑘 =

{
𝑖𝑑 if 𝑘 = 0,
Φ𝑘−1Ψ𝑘 otherwise

= Ψ1Ψ2 . . .Ψ𝑘 = 𝜓1(𝜓2𝜓1) . . . (𝜓𝑘−1 . . .𝜓1) .

They extend to maps from (𝑚 − 1)-squares to (𝑚 − 1)-squares [1, Prop. 8.5].
Consider the sets

SqF𝜑
𝑚−1 = {(𝑆,𝐴) ∈ Sq𝑚−1(C) × C𝑚 | 𝜕𝐴 = 𝜑 (𝑆)}

of squares with corresponding fillers, for 𝜑 ∈ {𝜓𝑖 ,Ψ𝑗 ,Φ𝑘 }. The unfolding maps 𝜓 𝑖 : SqF𝜓𝑖

𝑚−1 → C𝑚 ,
Ψ 𝑗 : SqF

Ψ𝑗

𝑚−1 → C𝑚 and Φ𝑘 : SqFΦ𝑘

𝑚−1 → C𝑚 are defined as

𝜓 𝑖 (𝑆,𝐴) = (𝜀𝑖𝑆−𝑖 ◦𝑖+1 Γ+𝑖 𝑆+𝑖+1) ◦𝑖 𝐴 ◦𝑖 (Γ−𝑖 𝑆−𝑖+1 ◦𝑖+1 𝜀𝑖𝑆+𝑖 ) = 𝐴

Ψ 𝑗 (𝑆,𝐴) =
{
𝐴 if 𝑗 = 1,

Ψ 𝑗−1(𝑆,𝜓 𝑗−1(Ψ𝑗−1(𝑆), 𝐴)) otherwise,

Φ𝑘 (𝑆,𝐴) =
{
𝐴 if 𝑘 = 0,

Ψ𝑘 (𝑆,Φ𝑘−1(Ψ𝑘 (𝑆), 𝐴)) otherwise.

3.2.4. Lemma. Every folding or unfolding map𝜑 ∈ {𝜓 𝑖 ,Ψ 𝑗 ,Φ𝑘 } satisfies 𝜕𝜑 (𝑆,𝐴) = 𝑆 , for every (𝑚−1)-
square 𝑆 and𝑚-cell 𝐴 such that 𝜕𝐴 = 𝜑 (𝑆).
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3.2. Acyclic 𝜔-groupoids

Proof. The proof of𝜓 𝑖 is straightforward. Those for Ψ 𝑗 and Φ𝑘 follow by induction. □

We are now prepared for the main result of this section.

3.2.5. Theorem. Every contracting 𝜔-groupoid is acyclic.

Proof. Suppose C is an𝜔-groupoid with a section (̂−) of the projection 𝜋 : C → C0 and a contraction 𝜎 .
For𝑚 ⩾ 2, let 𝑆 be an (𝑚 − 1)-square. We set 𝑇 = Φ𝑚 (𝑆), 𝑔𝛼 = 𝑇𝛼

1 and 𝐴 = 𝜎𝑔− ◦1 𝑅1𝜎𝑔+ . Then

𝑇𝛼
𝑘
= 𝜀1𝜕

−
1 𝑇

𝛼
𝑘
= 𝜀1𝜕

+
1𝑇

𝛼
𝑘
= 𝜀1𝜕

𝛼
𝑘
𝑔− = 𝜀1𝜕

𝛼
𝑘
𝑔+

for every 1 < 𝑘 ⩽ 𝑚 by [1, Prop. 3.6]. It follows that 𝜕𝛼
𝑘
𝑔− = 𝜕𝛼

𝑘
𝑔+, for every 1 < 𝑘 ⩽ 𝑚. Hence 𝐴 is a

filler of 𝑇 , because, for 1 < 𝑘 ⩽ 𝑚,

𝜕𝛼
𝑘
𝐴 = 𝜕𝛼

𝑘
𝜎𝑔− ◦1 𝑅1𝜕𝛼𝑘 𝜎𝑔+ = 𝜎𝜕𝛼

𝑘−1𝑔
− ◦1 𝑅1𝜎𝜕𝛼

𝑘−1𝑔
+ = 𝜎𝜕𝛼

𝑘−1𝑔
− ◦1 𝑅1𝜎𝜕𝛼

𝑘−1𝑔
− = 𝜀1𝜕

−
1 𝜎𝜕𝛼𝑘−1𝑔

− = 𝑇𝛼
𝑘
,

and the case 𝑘 = 1 is obvious. Finally, set 𝐵 = Φ𝑚 (𝑆,𝐴). By the above calculation and Lemma 3.2.4,
𝜕𝐵 = 𝑆 , that is, 𝐵 is a filler of 𝑆 and acyclicity of C follows. □

3.2.6. The case 𝒏 = 2. Theorem 3.2.5 remains valid for 𝑛-groupoids with 𝑛 ⩾ 2. First, the definitions
of sections and contraction in §3.1.4 and §3.1.5 extend to 𝑛-groupoids, forgetting all cells of dimension
greater than𝑛. The proof replays that for𝜔-groupoids, except that only (𝑚−1)-squares with 2 ⩽ 𝑚 ⩽ 𝑛

require consideration. As an example, we show that every contracting 2-groupoid C is acyclic. Suppose
C has a (̂−)-contraction 𝜎 . We start with a 1-square

𝑆 =

𝑎 𝑏

𝑐 𝑑

𝑆−1

𝑆−2 𝑆+2

𝑆+1

.

The folding maps yield the 1-square

𝑇 = Φ2(𝑆) = Ψ2(𝑆) = 𝜓1(𝑆) =
𝑎 𝑎 𝑏 𝑑

Γ 𝑆

Γ

𝑎 𝑐 𝑑 𝑑

𝑆−1 𝑆+2

𝑆−2 𝑆+1

=

𝑎 𝑏 𝑑

𝑎 𝑐 𝑑

𝑆−1 𝑆+2

𝑆−2 𝑆+1

.

The contraction 𝜎 fills the 1-square 𝑇 with

𝐴 =

𝑎 𝑑

𝜎𝑇 −1

𝑎 𝑑

𝑅1𝜎𝑇 +1

𝑎 𝑑

𝑇 −1 =𝑆−1 ◦1𝑆+2

𝜎𝑥 𝜎𝑥 ′

𝜎𝑥

𝑇 +1 =𝑆
−
2 ◦1𝑆+1

𝜎𝑥 ′

=

𝑎 𝑑

𝜎𝑇 −1 ◦1 𝑅1𝜎𝑇 +1
𝑎 𝑑

𝑇 −1

𝑇 +1

.
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4. Cubical coherent confluence

The unfolding maps then allow us to construct the following filler of 𝑆 , showing that C is acyclic:

𝐵 = Φ2(𝑆,𝐴) = Ψ2(𝑆,𝐴) = 𝜓 1(𝑆,𝐴) =

𝑎 𝑎 𝑏 𝑏

| Γ

𝑎 𝑎 𝑏 𝑑

𝐴

𝑎 𝑐 𝑑 𝑑

Γ |

𝑐 𝑐 𝑑 𝑑

𝑆−1

𝑆+2

𝑆−2

𝑆+1

Lucas has established a variant of Theorem 3.2.5 for cubical monoidal (2, 0)-polygraphs [30]. Instead
of using folding and unfolding maps, he rotates cells with the same shape as contractions with the
inversion maps 𝑅𝑖 and 𝑇𝑖 , and then glues them using connection maps. Folding and unfolding maps
seem to make the proof for cubical 𝜔-groupoids easier. These maps rotate all the faces of cubes in
direction 1, so that the proof does not become more difficult with increasing dimension.

4. Cubical coherent confluence
We now use the cubical machinery introduced in the previous section to establish confluence properties
of abstract rewriting systems (ARS) in cubical (𝑝 + 2)- or (𝑝 + 3)-categories, for any 𝑝 ∈ N. Although
cubes have (𝑝 + 2) dimensions, we restricted rewriting relations in two or three fixed directions. Apart
from coherent versions of Newman’s lemma and the Church-Rosser theorem in two directions, we
also prove Newman’s lemma also in three directions, for which additional structure was present or a
specific cube law had to be imposed previously [4, 14, 24, 26]. The coherence in these results expresses
the way to tile confluence or local confluence diagrams by pasting a given set of higher-dimensional
witnesses. Finally, as a special case of Theorem 3.2.5, we derive a cubical version of Squier’s theorem,
using normalisation strategies as special kinds of sections and contractions. We assume familiarity
with the basics of classical rewriting [3, 13, 23, 38].

4.1. Confluence fillers

4.1.1. Abstract rewriting in cubical categories. Let C be a (𝑝 + 2)-category for some 𝑝 ∈ N. We fix
an integer 𝑖 such that 1 ⩽ 𝑖 ⩽ 𝑝 − 1, representing a choice of direction. A 𝑝-ARS in C is a subset XC
of C𝑝+1, whose elements are non-degenerate in direction 𝑖 . We write X◦𝑖C (resp. X⊤𝑖C ) for the small-
est subsets of C𝑝+1 that contain XC and are stable under ◦𝑖-compositions (resp. ◦𝑖-compositions and
inversions). The elements of X◦𝑖C are sequences (𝑓1, . . . , 𝑓𝑘 ) of ◦𝑖-composable (𝑝 + 1)-cells in C, called
rewriting paths of length 𝑘 , which we identify with their composite 𝑓1 ◦𝑖 . . . ◦𝑖 𝑓𝑘 in C. The elements
of X⊤𝑖C are sequences of ◦𝑖-composable (𝑝 + 1)-cells in C and their 𝑅𝑖-inverses, called rewriting zigzags.
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4.1. Confluence fillers

The 𝑝-ARS XC is Noetherian (in direction 𝑖) if it admits no rewriting path of infinite length. This
property is needed for proofs by induction on rewriting paths.

A branching (in direction 𝑖) of XC is a pair (𝑓1, 𝑓2) of (𝑝 + 1)-cells in X◦𝑖C such that 𝜕−𝑖 𝑓1 = 𝜕−𝑖 𝑓2. It is
local if 𝑓1, 𝑓2 ∈ XC . We denote by B(XC) (resp. LB(XC)) the set of branchings (resp. local branchings)
of XC . The 𝑝-ARS XC is (locally) confluent (in direction 𝑖) if for every (local) branching (𝑓1, 𝑓2) of XC ,
there are 𝑔1, 𝑔2 ∈ X◦𝑖 such that

𝜕+𝑖 𝑓1 = 𝜕−𝑖 𝑔1, 𝜕+𝑖 𝑓2 = 𝜕−𝑖 𝑔2, 𝜕+𝑖 𝑔1 = 𝜕+𝑖 𝑔2.

These identities determine the confluence diagram

𝑖 + 1

𝑖

𝑥 𝑦2

𝑦1 𝑧

𝑓2

𝑓1 𝑔2

𝑔1

(4.1.2)

The 𝑝-ARS XC is convergent if it is confluent and Noetherian.

4.1.3. Confluence fillers. A (local) confluence filler (in direction 𝑖) of a (local) branching (𝑓1, 𝑓2) ofXC
is a (𝑝 + 2)-cell 𝐴2(𝑓1, 𝑓2) in C such that

𝜕−𝑖 𝐴2(𝑓1, 𝑓2) = 𝑓2, 𝜕−𝑖+1𝐴2(𝑓1, 𝑓2) = 𝑓1, 𝜕+𝑖 𝐴2(𝑓1, 𝑓2), 𝜕+𝑖+1𝐴2(𝑓1, 𝑓2) ∈ X◦𝑖C .

This determines a (local) confluence diagram similar to (4.1.2):

𝑖 + 1

𝑖

𝑥 𝑦2

𝐴2(𝑓1, 𝑓2)

𝑦1 𝑧

𝑓2

𝑓1 𝜕+𝑖+1𝐴2 (𝑓1,𝑓2 )

𝜕+𝑖 𝐴2 (𝑓1,𝑓2 )

We write LCf (XC) (resp. Cf (XC)) for the subset of C𝑝+2 of cells with the shape of a local confluence
filler (resp. confluence filler), that is, (𝑝 + 2)-cells 𝐴 such that

𝜕+𝑖 (𝐴), 𝜕+𝑖+1(𝐴) ∈ X
◦𝑖
C , 𝜕−𝑖 (𝐴), 𝜕−𝑖+1(𝐴) ∈ XC, (resp. 𝜕−𝑖 (𝐴), 𝜕−𝑖+1(𝐴) ∈ X

◦𝑖
C ).

Therefore, 𝐴2 defines a map 𝐴2 : LB(XC) → LCf (XC) (resp. 𝐴2 : B(XC) → Cf (XC)).
We can now state and prove a coherent cubical version of Newman’s lemma.

4.1.4. Proposition. For a Noetherian 𝑝-ARS XC , each map 𝐴2 extends from LB(XC) → LCf (XC)
to B(XC) → Cf (XC).

Proof. We extend the map 𝐴2 by Noetherian induction in direction 𝑖 on the source of branchings. We
order 𝑝-cells by the relation ⩽ generated by XC , defined by 𝑥 ⩽ 𝑦 if there is a rewriting path 𝑓 such
that 𝜕−𝑖 𝑓 = 𝑦 and 𝜕+𝑖 𝑓 = 𝑥 .
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4. Cubical coherent confluence

The base case is trivial. For the induction step, le (𝑓1, 𝑓2) be a branching. If 𝑓1 is a degeneracy in
direction 𝑖 , the result is trivial, as the map 𝐴2 is extended by the formula 𝐴2(𝑓1, 𝑓2) = 𝜀𝑖 𝑓2. The case
where 𝑓2 is a degeneracy in direction 𝑖 is similar. In the other cases, we decompose 𝑓1 = 𝑔1 ◦𝑖 ℎ1 and
𝑓2 = 𝑔2 ◦𝑖 ℎ2, with 𝑔1, 𝑔2 ∈ XC and ℎ1, ℎ2 ∈ X◦𝑖C and extend 𝐴2 recursively as

𝐴2(𝑓1, 𝑓2) =
(
𝐴2(𝑔1, 𝑔2) ◦𝑖+1 𝐴2(𝜕+𝑖 𝐴2(𝑔1, 𝑔2), ℎ2)

)
◦𝑖 𝐴2(ℎ1, 𝜕+𝑖

(
𝐴2(𝑔1, 𝑔2) ◦𝑖+1 𝐴2(𝜕+𝑖 𝐴2(𝑔1, 𝑔2), ℎ2)

)
).

This pasting of cubes ressembles the classical diagrammatic proof of Newman’s lemma:

𝑖 + 1

𝑖

𝑥 𝑥 ′ 𝑥 ′′

𝐴2(𝑔1, 𝑔2) 𝐴2(𝜕+𝑖 𝐴2(𝑔1, 𝑔2), ℎ2)

𝑦 𝑦′ 𝑦′′

𝐴2(ℎ1, 𝜕+𝑖
(
𝐴2(𝑔1, 𝑔2) ◦𝑖+1 𝐴2(𝜕+𝑖 𝐴2(𝑔1, 𝑔2), ℎ2)

)
)

𝑧 𝑧′

𝑔2

𝑔1

ℎ2

ℎ1

(4.1.5)

□

4.1.6. Church-Rosser fillers. A Church-Rosser filler (in direction 𝑖) of a cell 𝑓 in X⊤𝑖C is a (𝑝 + 2)-cell
𝐵(𝑓 ) in C such that

𝜕−𝑖 𝐵(𝑓 ) = 𝑓 , 𝜕+𝑖 𝐵(𝑓 ) = 𝜀𝑖𝜕
+
𝑖 𝜕
+
𝑖+1𝐵(𝑓 ), 𝜕−𝑖+1𝐵(𝑓 ), 𝜕+𝑖+1𝐵(𝑓 ) ∈ X◦𝑖 ,

which determines the Church-Rosser diagram

𝑖 + 1

𝑖

𝑥 𝑦

𝐵(𝑓 )

𝑧 𝑧

𝑓

𝜕−𝑖+1𝐵 (𝑓 ) 𝜕+𝑖+1𝐵 (𝑓 )

Once again this correspondence defines a map 𝐵 : X⊤𝑖C → CR(XC), were CR(XC) denotes the subset
of C𝑝+2 of cells of the shape of a Church-Rosser fillers.

With these definitions, we prove a coherent cubical version of the Church-Rosser theorem.

4.1.7. Proposition. For a 𝑝-ARS XC in a (𝑝 + 2, 𝑝 + 1)-category C, each map 𝐴2 : B(XC) → Cf (XC)
induces a map 𝐵 : X⊤𝑖C → CR(XC).

Proof. Every cell 𝑓 in X⊤𝑖C is an zigzag 𝑓1 ◦𝑖 · · · ◦𝑖 𝑓𝑘 of minimal length 𝑘 of non-◦𝑖-identity cells in X◦𝑖C
and of 𝑅𝑖-inverses of such cells. We define the map 𝐵 on cells of X⊤𝑖C by induction on their length 𝑘 .
The base case 𝑘 = 1 is trivial. For the induction step, for 𝑘 ⩾ 2 and 𝑓1 ∈ X◦𝑖C , we extend 𝐵 recursively:

𝐵(𝑓 ) =
(
Γ−𝑖 𝑓1 ◦𝑖+1 𝜀𝑖 (𝑓2 ◦𝑖 · · · ◦𝑖 𝑓𝑘 )

)
◦𝑖 𝐵(𝑓2 ◦𝑖 · · · ◦𝑖 𝑓𝑘 ),
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4.2. 3-Confluence and the cube law

which corresponds to the diagram

𝑖 + 1

𝑖

𝑥 𝑥 ′ 𝑥 ′′

Γ−𝑖 𝜀𝑖

𝑥 ′ 𝑥 ′ 𝑥 ′′

𝐵(𝑓2 ◦𝑖 · · · ◦𝑖 𝑓𝑘 )

𝑦 𝑦

𝑓1

𝑓1

𝑓2◦𝑖 · · ·◦𝑖 𝑓𝑘

𝑓2◦𝑖 · · ·◦𝑖 𝑓𝑘 (4.1.8)

Otherwise, for 𝑘 ⩾ 2 and 𝑅𝑖 𝑓1 ∈ X◦𝑖C , we extend 𝐵 recursively using the map 𝐴2:

𝐵(𝑓 ) =
(
𝜀𝑖 𝑓1 ◦𝑖+1 Γ+𝑖 𝑓1 ◦𝑖+1 𝐵(𝑓2 ◦𝑖 · · · ◦𝑖 𝑓𝑘 )

)
◦𝑖

(
𝑅𝑖+1Γ

−
𝑖 𝑓1 ◦𝑖+1 𝐴2(𝑓1, 𝑔)

)
◦𝑖 Γ−𝑖 𝜕+𝑖 𝐴2(𝑓1, 𝑔),

where 𝑔 denotes the (𝑝 + 1)-cell 𝜕−𝑖+1𝐵(𝑓2 ◦𝑖 · · · ◦𝑖 𝑓𝑘 ). This corresponds to the diagram

𝑖 + 1

𝑖

𝑥 𝑥 ′ 𝑥 ′ 𝑥 ′′

𝜀𝑖 Γ+𝑖 𝐵(𝑓2 ◦𝑖 · · · ◦𝑖 𝑓𝑘 )

𝑥 𝑥 ′ 𝑦 𝑦

𝑅𝑖+1Γ−𝑖 𝐴2(𝑓1, 𝑔)

𝑥 𝑥 𝑧

Γ−𝑖

𝑧 𝑧

𝑓1

𝑔

𝑓2◦𝑖 · · ·◦𝑖 𝑓𝑘

(4.1.9)

□

The diagrams in the proof of the coherent Church-Rosser theorem reduce to the familiar triangular
shapes in the classical diagrammatic Church-Rosser proof once degeneracies are collapsed and the
corresponding 𝑝-cells are identified.

4.2. 3-Confluence and the cube law

4.2.1. 3-confluence fillers. A 3-branching (in direction 𝑖) of a 𝑝-ARS XC in a (𝑝 + 3)-category C is
a triple (𝑓1, 𝑓2, 𝑓3) of (𝑝 + 1)-cells in X◦𝑖C such that 𝜕−𝑖 𝑓1 = 𝜕−𝑖 𝑓2 = 𝜕−𝑖 𝑓3. It is local if 𝑓1, 𝑓2, 𝑓3 ∈ XC . We
denote by B3(XC) (resp. LB3(XC)) the set of 3-branchings (resp. local 3-branchings) of XC .

A (local) 3-confluence filler with respect to a map 𝐴2 : B(XC) → Cf (XC) of a (local) 3-branching
(𝑓1, 𝑓2, 𝑓3) is a (𝑝 + 3)-cell 𝐴3(𝑓1, 𝑓2, 𝑓3) in C with faces

𝜕−𝑖 𝐴3(𝑓1, 𝑓2, 𝑓3) = 𝐴2(𝑓2, 𝑓3), 𝜕+𝑖 𝐴3(𝑓1, 𝑓2, 𝑓3) = 𝐴2(𝜕+𝑖 𝐴2(𝑓1, 𝑓2), 𝜕+𝑖 𝐴2(𝑓1, 𝑓3)),
𝜕−𝑖+1𝐴3(𝑓1, 𝑓2, 𝑓3) = 𝐴2(𝑓1, 𝑓3), 𝜕+𝑖+1𝐴3(𝑓1, 𝑓2, 𝑓3) = 𝐴2(𝜕+𝑖+1𝐴2(𝑓1, 𝑓2), 𝜕+𝑖 𝐴2(𝑓2, 𝑓3)),
𝜕−𝑖+2𝐴3(𝑓1, 𝑓2, 𝑓3) = 𝐴2(𝑓1, 𝑓2), 𝜕+𝑖+2𝐴3(𝑓1, 𝑓2, 𝑓3) = 𝐴2(𝜕+𝑖+1𝐴2(𝑓1, 𝑓3), 𝜕+𝑖+1𝐴2(𝑓2, 𝑓3)) .
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4. Cubical coherent confluence

WewriteCf3(XC, 𝐴2) (resp. LCf3(XC, 𝐴2)) for the set of confluence fillers (resp. local confluence fillers)
with respect to the map 𝐴2.

These definitions allow us to prove a coherent cubical Newman’s lemma in three directions, and
thus in three dimensions.

4.2.2. Proposition. Let XC be a Noetherian 𝑝-ARS in a (𝑝 + 3)-category C with a map𝐴2 : LB(XC) →
LCf (XC). Then each map 𝐴3 extends from LB3(XC) → LCf3(XC, 𝐴2) to B3(XC) → Cf3(XC, 𝐴2).

Proof. By Proposition 4.1.4, the map𝐴2 extends from local to arbitrary branchings and confluences. We
extend the map 𝐴3 by induction in direction 𝑖 on the source of the 3-branchings.

The base case is trivial. Let (𝑓1, 𝑓2, 𝑓3) be a 3-branching with source 𝑥 and suppose that the map 𝐴3
extends to 3-branchings with source a 𝑝-cell reduced from 𝑥 . For each 1 ⩽ 𝑖 ⩽ 3, we write 𝑓𝑖 = 𝑓 ′𝑖 ◦𝑖 𝑓 ′′𝑖 ,
where 𝑓 ′𝑖 belongs to XC . By assumption, the local 3-branching (𝑓 ′1 , 𝑓 ′2 , 𝑓 ′3 ) is filled by the 3-confluence
filler 𝐵 = 𝐴3(𝑓 ′1 , 𝑓 ′2 , 𝑓 ′3 ). Then, using the induction hypothesis,

− the 3-branching
(
𝜕−𝑖+1𝜕

+
𝑖+2𝐵, 𝜕

−
𝑖 𝜕
+
𝑖+2𝐵, 𝑓

′′
3
)
is filled by the 3-confluence filler

𝐶 = 𝐴3(𝜕−𝑖+1𝜕+𝑖+2𝐵, 𝜕−𝑖 𝜕+𝑖+2𝐵, 𝑓 ′′3 ),

− the 3-branching
(
𝜕−𝑖+1𝜕

+
𝑖+1𝐵, 𝑓

′′
2 , 𝜕−𝑖 𝜕

+
𝑖+1(𝐵 ◦𝑖+2 𝐶)

)
is filled by the 3-confluence filler

𝐷 = 𝐴3(𝜕−𝑖+1𝜕+𝑖+1𝐵, 𝑓 ′′2 , 𝜕−𝑖 𝜕
+
𝑖+1(𝐵 ◦𝑖+2 𝐶)),

− the 3-branching
(
𝑓 ′′1 , 𝜕−𝑖+1𝜕

+
𝑖 ((𝐵 ◦𝑖+2 𝐶) ◦𝑖+1 𝐷) , 𝜕−𝑖 𝜕+𝑖 ((𝐵 ◦𝑖+2 𝐶) ◦𝑖+1 𝐷)

)
is filled by the 3-confluence

filler
𝐸 = 𝐴3(𝑓 ′′1 , 𝜕−𝑖+1𝜕

+
𝑖 ((𝐵 ◦𝑖+2 𝐶) ◦𝑖+1 𝐷) , 𝜕−𝑖 𝜕+𝑖 ((𝐵 ◦𝑖+2 𝐶) ◦𝑖+1 𝐷)).

We then extend the map 𝐴3 inductively, setting

𝐴3(𝑓1, 𝑓2, 𝑓3) = ((𝐵 ◦𝑖+2 𝐶) ◦𝑖+1 𝐷) ◦𝑖 𝐸.

This construction corresponds to the diagram

𝑖 + 2
𝑖 + 1

𝑖

𝐵 𝐷

𝐸

𝐶

□
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4.2. 3-Confluence and the cube law

4.2.3. The cube law. Our functional approach to confluence fillers admits an interpretation in terms
of residual paths and of the cube law. Indeed, the map 𝐴2 allows defining a residuation operation

𝑓1 | 𝑓2 ≔ 𝜕+𝑖+1𝐴2(𝑓1, 𝑓2),

for every branching (𝑓1, 𝑓2). This operation is well-known from the 𝜆-calculus [4, 26]. It gives rise to
the confluence diagram

𝑥 𝑦2

𝑦1 𝑧

𝑓2

𝑓1 𝑓1 | 𝑓2

𝑓2 | 𝑓1

To work with residuals, it helps memorising 𝑓1 | 𝑓2 as the translation of 𝑓1 along 𝑓2 in the square spanned
by 𝑓1 and 𝑓2, and 𝑓2 | 𝑓1 as the translation of 𝑓2 along 𝑓1.

Lévy has shown that residuation satisfies the cube law in 𝜆-calculus [26, Lemma 2.2.1], see also [4,
Lemma 12.2.6] and [12, Def. 4.49], which is often presented as a single cube law up to permutation of
indices. For a 3-branching (𝑓1, 𝑓2, 𝑓3), the cube law state that

(𝑓𝑖 | 𝑓𝑗 ) (𝑓𝑘 | 𝑓𝑗 ) = (𝑓𝑖 | 𝑓𝑘 ) (𝑓𝑗 | 𝑓𝑘 ),

for all pairwise distinct 𝑖, 𝑗, 𝑘 in {1, 2, 3}. Geometrically, this law assembles rewriting paths around the
following cube spanned by the 3-branching:

𝑓1

𝑓2

𝑓3

𝑓2 | 𝑓1

𝑓1 | 𝑓2

𝑓3 | 𝑓1

𝑓3 | 𝑓2

𝑓2 | 𝑓3

𝑓1 | 𝑓3

(𝑓2 | 𝑓1) | (𝑓3 | 𝑓1)

(𝑓1 | 𝑓2) | (𝑓3 | 𝑓2)
=

(𝑓1 | 𝑓3) | (𝑓2 | 𝑓3)

(𝑓3 | 𝑓2) | (𝑓1 | 𝑓2)

In this cube, the residual path 𝑓1 | 𝑓2 is obtained by translating 𝑓1 along 𝑓2 in the front square and
the residual path 𝑓3 | 𝑓2 by translating 𝑓3 along 𝑓2 in the bottom square, so that (𝑓1 | 𝑓2) | (𝑓3 | 𝑓2) is the
residual path of these two residual paths on the back face of the cube. Similar translations show that
(𝑓1 | 𝑓3) | (𝑓2 | 𝑓3) represents the same arrow. The other instantiations of 𝑓1, 𝑓2, 𝑓3 in the cube law produce
the remaining blue arrows and thus assemble all arrows around the cube.
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The cube law follows from the cubical relations (2.1.2) applied to the cube𝐴3(𝑓1, 𝑓2, 𝑓3), for instance,

(𝑓1 | 𝑓2) | (𝑓3 | 𝑓2) = 𝜕+𝑖+1𝜕
+
𝑖+1𝐴3(𝑓1, 𝑓2, 𝑓3) = 𝜕+𝑖+1𝜕

+
𝑖+2𝐴3(𝑓1, 𝑓2, 𝑓3) = (𝑓1 | 𝑓3) | (𝑓2 | 𝑓3) .

They are thus a natural and immediate consequence of the way faces are attached to cells of cubical
sets, hence of the geometry of cubes that emerges somewhat accidentally from the laws of 𝜆-calculus.
The cube law has appeared more recently as a postulate in 3-confluence proofs in classical abstract
rewriting [14, 24].

4.3. Normalising confluence

Next we bring the sections and contractions from Section 4 into play and prove normalising variants
of Newman’s lemma and the Church-Rosser theorem. We also state and prove a cubical version of
Squier’s theorem, which requires normalisation.

4.3.1. Normal forms and contractions. Let XC be a convergent 𝑝-ARS in a (𝑝 + 2)-category C.
A cell 𝑥 ∈ C𝑝 is a normal form (in direction 𝑖) if there are no cells 𝑓 ∈ XC for which 𝜕−𝑖 𝑓 = 𝑥 . By
convergence, any rewriting path that starts from any 𝑥 ∈ C𝑝 terminates in a unique normal form 𝑥 .
This determines a section (̂−) of the projection 𝜋 : C → C𝑝 , as defined in §3.1.4. For every 𝑥 ∈ C𝑝
we choose a (𝑝 + 1)-cell 𝜎𝑥 ∈ X◦𝑖C such that 𝜎 : C𝑝 → C𝑝+1 is a contraction in the (𝑝 + 1, 𝑝)-category
generated by C𝑝+1, as defined in §3.1.5.

4.3.2. Normalising fillers. A normalising (local) confluence filler (in direction 𝑖) of a (local) branching
(𝑓1, 𝑓2) of XC is a (𝑝 + 2)-cell 𝐴2(𝑓1, 𝑓2) in C such that

𝜕−𝑖 𝐴2(𝑓1, 𝑓2) = 𝑓2, 𝜕−𝑖+1𝐴2(𝑓1, 𝑓2) = 𝑓1, 𝜕+𝑖 𝐴2(𝑓1, 𝑓2) = 𝜎𝜕+
𝑖
𝑓1, 𝜕+𝑖+1𝐴2(𝑓1, 𝑓2) = 𝜎𝜕+

𝑖
𝑓2 .

These identities assemble to a (local) confluence diagram

𝑖 + 1

𝑖

𝑥 𝑦2

𝐴2(𝑓1, 𝑓2)

𝑦1 𝑥

𝑓2

𝑓1 𝜎𝑦2

𝜎𝑦1

(4.3.3)

A normalising Church-Rosser filler (in direction 𝑖) of a cell 𝑓 in X⊤𝑖C is a (𝑝 + 2)-cell 𝐵(𝑓 ) in C of shape

𝑖 + 1

𝑖

𝑥 𝑦

𝐵(𝑓 )

𝑥 𝑥

𝑓

𝜎𝑥 𝜎𝑦

We write NCf3(XC, 𝐴2) (resp. NLCf3(XC, 𝐴2)) for the set of normalising confluence fillers (resp.
normalising local confluence fillers) with respect to 𝐴2 and NCR(XC) the set of normalising Church-
Rosser fillers of XC .

These notions allow us to prove normalising variants of Newman’s lemma and the Church-Rosser
theorem with the same diagrams as before, but with normal forms and degeneracies in suitable places.
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4.3. Normalising confluence

4.3.4. Lemma. For a Noetherian 𝑝-ARS XC , each map 𝐴2 extends from LB(XC) → NLCf (XC) to
B(XC) → NCf (XC).

Proof. The proof is similar to that of Proposition 4.1.4, but confluence fillers are now normalising. In
Diagram (4.1.5) we thus replace 𝑦′, 𝑦′′ and 𝑧′ by 𝑥 and arrows between the 𝑥 by degeneracies. □

4.3.5. Lemma. For a 𝑝-ARS XC in a (𝑝 + 2, 𝑝 + 1)-category C, each map 𝐴2 : B(XC) → NCf (XC)
induces a map 𝐵 : X⊤𝑖C → NCR(XC).

Proof. By the obvious replacements in the diagrams in the proof of Proposition 4.1.7. □

Finally, we state a cubical version of Squier’s theorem [35] for 1-groupoids. Its formulation moti-
vates the extension of the notion of cubical normalization strategies to higher dimensions, which is the
subject of the next section.

4.3.6. Proposition. For a convergent ARS XC each map 𝐴2 : LB(XC) → NLCf (XC) extends to a
witness 2-cell for a proof of acyclicity of the groupoid XC⊤1 .

Proof. Lemmas 4.3.4 and 4.3.5 allow us to construct a map 𝐵 from zigzags to normalising Church-Rosser
fillers. Every square 𝑆 is then obtained by the following composition of cubes:

2

1

𝑥 𝑦2

Γ+2,1 𝐵(𝜕−2,1𝑆) 𝑅2,2Γ
+
2,1

𝑥 𝑥

𝑇2,1𝐵(𝜕−2,2𝑆) 𝑅2,2𝑇2,1𝐵(𝜕+2,2𝑆)

𝑥 𝑥

𝑅2,1Γ
+
2,1 𝑅2,1𝐵(𝜕+2,1𝑆) 𝑅2,1𝑅2,2Γ

+
2,1

𝑦1 𝑦

𝜕−2,1𝑆

𝜕−2,2𝑆 𝜕+2,2𝑆

𝜕+2,1𝑆

□

4.3.7. Remark. Proposition is a low-dimensional version of Theorem 3.2.5, proved without using
folding maps. The same method has been used by Lucas [30], rotating and gluing confluence fillers to
fill a square. Yet extending to higher dimensions as in Theorem 3.2.5 seems combinatorially difficult,
as it requires rotating and gluing all confluence fillers of the faces of a 𝑘-square.

For a converse of Squier’s theorem for cubical 𝜔-groupoids freely generated by (𝜔, 0)-polygraphs
see Theorem 5.1.3 below.
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5. Cubical groupoids in abstract rewriting

4.3.8. The cube law revisited. Contractions allow defining (𝑓 | 𝑔) = 𝜎𝜕+
𝑖
(𝑔) for any branching (𝑓 , 𝑔).

For 3-branchings (𝑓1, 𝑓2, 𝑓3), we can then derive the cube law,

(𝑓1 | 𝑓2) | (𝑓3 | 𝑓2) = 𝜎𝜕+
𝑖
(𝜎𝜕+

𝑖
(𝑓2 ) )

= 𝜀𝑖�𝜕+𝑖 (𝑓2) = 𝜀𝑖�𝜕+𝑖 (𝑓3) = 𝜎𝜕+
𝑖
(𝜎𝜕+

𝑖
(𝑓3 ) )

= (𝑓1 | 𝑓3) | (𝑓2 | 𝑓3),

without using 3-confluence fillers explicitly. Contractions also allow constructing 3-confluence fillers
more easily, and extending the techniques in this section to higher dimensions. In Section 5we formalise
higher-dimensional versions of normalising confluence diagrams, generated from the confluence of 𝑛-
branchings, in cubical 𝑛-polygraphs and for 𝑛 ⩾ 2. We use them further to construct 𝜔-groupoids on
convergent ARS.

5. Cubical groupoids in abstract rewriting
In this section, we present extensions and applications of Theorem 3.2.5 to cubical polygraphs, after
briefly recalling their structure in Subsection 5.1. Theorem 5.1.3 shows that a free 𝜔-groupoid on a
polygraph is acyclic if and only if it is contracting. In Subsection 5.2, we construct free 𝜔-groupoids
extending convergent ARS, defining for each 𝑘 ⩾ 2 a map 𝐴𝑘 from local 𝑘-branchings to local 𝑘-
confluence fillers and thereby accounting for the confluence of higher-dimensional branchings. Finally,
in Theorem 5.3.2, we show that a suitable choice of 2-cells for 𝐴2 refines this construction so that all
𝑘-cells are thin for 𝑘 ⩾ 2. This shows that abstract rewriting with normalisation strategies does not
require the generation of coherence cells in dimensions higher than 2. Together, these two results
provide cubical analogues of Squier’s theorem for ARSs.

5.1. Cubical polygraphs, contractions and acyclicity of cubical groupoids

First we recall the notion of cubical polygraph. The existence of this structure was originally established
by Lucas in the context of Gray categories [28] . Yet the explicit construction of the free category
generated by a cubical polygraph was not made explicit therein. For completeness, we provide such a
construction while deferring a detailed development to Appendix A.2, including a proof of existence of
the free (cubical) (𝑛 − 1)-groupoid 𝑋⊤𝑛−1.
5.1.1. Cubical polygraphs. A cubical (1, 0)-polygraph (a 1-polygraph) (𝑋0, 𝑋1) consists of a set 𝑋0
of 0-generators and a set 𝑋1 of 1-generators or rewriting steps, equipped with source and target maps
𝜕𝛼1,1 : 𝑋1 → 𝑋0. It freely generates a 1-category 𝑋 ∗, as well as a 1-groupoid 𝑋⊤. A cubical cellular
extension of a cubical (𝑛 − 1, 0)-category C is a set 𝑋𝑛 of 𝑛-generators and face maps 𝜕𝛼

𝑛,𝑖
: 𝑋𝑛 → C𝑛−1

for 1 ⩽ 𝑖 ⩽ 𝑛 which satisfy the cubical relations (2.1.2).
A cubical (𝑛, 0)-polygraph𝑋 = (𝑋0, . . . , 𝑋𝑛) is formed by a cubical (𝑛−1, 0)-polygraph (𝑋0, . . . , 𝑋𝑛−1)

and a cubical cellular extension𝑋𝑛 of the free (cubical) (𝑛−1)-groupoid𝑋⊤𝑛−1. A cubical (𝜔, 0)-polygraph
is obtained by a colimit construction; it consists of a family of sets 𝑋 = (𝑋0, 𝑋1, . . . ) such that every
subfamily (𝑋0, . . . , 𝑋𝑛) is a cubical (𝑛, 0)-polygraph. A polygraph is acyclic if and only if the associated
free groupoid is acyclic.

All polygraphs considered in the sequel are cubical.
In order to construct acyclic polygraphs that extend a convergent ARS in Sections 5.2 and 5.3, we

characterise acyclicity via the existence of contractions in Theorem 5.1.3, adapting a similar result for
globular polygraphs [19]. We start with the following characterisation of contractions.
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5.2. An acyclic 𝜔-groupoid from convergence

5.1.2. Lemma. Let 𝑋 be an (𝜔, 0)-polygraph and (̂−) a section of the projection 𝜋 : 𝑋⊤ → 𝑋⊤0. The
contractions of 𝑋⊤ are in bijective correspondence with the following data:

i) a family of 1-cells 𝜎𝑥 in 𝑋⊤1 with boundary 𝑥𝜕 = (𝑥, 𝑥), for every 0-cell 𝑥 in 𝑋0 such that 𝑥 ≠ 𝑥 ,

ii) a family of (𝑘 + 1)-cells 𝜎𝑓 in 𝑋⊤𝑘+1, for every 𝑘 > 0, with boundary 𝑓 𝜕 , for every 𝑘-cell 𝑓 in 𝑋𝑘 that
is not of the form 𝜎𝑔 for some 𝑔 in 𝑋⊤

𝑘−1.

Here, 𝑓 𝜕 is defined recursively with respect to the dimension of 𝑘-cells 𝑓 in 𝑋⊤
𝑘
, as in Section 3.1.5.

Proof. A contraction has fixed values on thin cells, 𝑅-inverses, compositions and on elements of the
form 𝑥 for 𝑥 ∈ 𝑋0 or 𝜎𝑔 for some 𝑔 in 𝑋⊤

𝑘−1. So the values of 𝜎𝑓 for 𝑓 in 𝑋
⊤
𝑘
are uniquely and completely

determined by its values on generators of the form given in the lemma. A construction of the free
groupoid 𝑋⊤ can be found in Appendix A.2. □

We can now prove the converse direction to Theorem 3.2.5 for polygraphs.

5.1.3. Theorem. The free 𝜔-groupoid generated by an (𝜔, 0)-polygraph is acyclic if and only if it is
contracting.

Proof. Let 𝑋 be an acyclic cubical (𝜔, 0)-polygraph. We construct a contraction 𝜎 recursively in the
dimension of cells. This yields a contraction of the cubical (𝑘 + 1, 0)-polygraph (𝑋0, . . . , 𝑋𝑘+1) for each
0 ⩽ 𝑘 < 𝑛. For 𝑘 = 0 and every 0-cell 𝑥 ∈ 𝑋0 such that 𝑥 ≠ 𝑥 , we choose 𝜎𝑥 : 𝑥 → 𝑥 in 𝑋⊤1 , which exists
by definition. This yields a contraction of (𝑋0, 𝑋1). For 𝑘 > 0, suppose 𝜎 is a contraction of (𝑋0, . . . , 𝑋𝑘 )
and take a 𝑘-cell 𝑓 ∈ 𝑋𝑘 which is not of the form 𝜎𝑔 for some 𝑔 ∈ 𝑋⊤

𝑘−1. By acyclicity, the 𝑘-square
𝑓 𝜕 admits a filler 𝐴 in 𝑋⊤

𝑘+1, and we set 𝜎𝑓 := 𝐴. By Lemma 5.1.2, 𝜎 extends to a contraction of the
(𝑘 + 1, 0)-polygraph (𝑋0, . . . , 𝑋𝑘+1). Taking the colimit yields a contraction of 𝑋 .

The reverse implication follows from Theorem 3.2.5, considering the 𝜔-groupoid C = 𝑋⊤ freely
generated by 𝑋 . □

We use Theorem 5.1.3 in Theorems 5.3 and 5.3.2 below to calculate acyclic extensions of ARS.

5.2. An acyclic 𝝎-groupoid from convergence

Next we describe the construction that extends a convergent ARS into an acyclic𝜔-groupoid generated
by its higher-order branchings.

5.2.1. Abstract rewriting systems. For a 1-polygraph 𝑋 , we consider the cellular extension 𝑋1 as an
ARS on 0-cells in the free category 𝑋 ∗, as defined in §4.1.1, and a section (̂−) defined by the normal
forms in §3.1.5. A normalisation strategy for𝑋 is a contraction 𝜎 : 𝑋0 → 𝑋 ∗1 with respect to (̂−) defined,
for each 𝑥 ∈ 𝑋0, as

𝜎𝑥 = 𝜂𝑥 ◦1 𝜎𝜕+1 (𝜂𝑥 ) ,

where 𝜂𝑥 ∈ 𝑋1 is the first rewriting step of 𝜎𝑥 .
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5. Cubical groupoids in abstract rewriting

5.2.2. The polygraph C𝝎 (𝑿). Let 𝑋 be a convergent 1-polygraph and 𝜎 a normalisation strategy
for 𝑋 . For every 𝑥 ∈ 𝑋0, we fix a strict order < on the set {𝑓 ∈ 𝑋1 | 𝜕−1 𝑓 = 𝑥}, making 𝜂𝑥 the least
element. We construct an (𝜔, 0)-polygraph involving higher-order branchings and their confluences
by transfinite recursion, defining a sequence of cellular extensions (C

𝑘
(𝑋 ))𝑘⩾0 by

i) C0(𝑋 ) := 𝑋0 and C1(𝑋 ) := 𝑋1,

ii) For 𝑘 = 2, C2(𝑋 ) := {𝐴2(𝑓1, 𝑓2) | 𝑓1, 𝑓2 ∈ 𝑋 ∗1 , 𝑓1 < 𝑓2, 𝜕−1 (𝑓1) = 𝜕−1 (𝑓2)}, whose face maps of the
2-cell 𝐴2(𝑓1, 𝑓2), drawn in (4.3.3), are defined by, for 1 ⩽ 𝑖 ⩽ 2,

iii) For 𝑘 ⩾ 3, C
𝑘
(𝑋 ) := {𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) | 𝑓𝑖 ∈ 𝑋 ∗1 , 𝑓𝑖 < 𝑓𝑖+1, 𝜕−1 (𝑓𝑖) = 𝜕−1 (𝑓𝑖+1) for 1 ⩽ 𝑖 ⩽ 𝑘 − 1},

whose face maps of 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) are defined by, for 1 ⩽ 𝑖 ⩽ 𝑘 ,

𝜕−𝑖 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) = 𝐴𝑘−1(𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖+1, . . . , 𝑓𝑘 ), 𝜕+𝑖 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) = Γ−
𝑘−2 . . . Γ

−
1 𝜎𝜕+1 (𝑓𝑖 ) .

The (𝜔, 0)-polygraph C𝜔 (𝑋 ) is the colimit of this construction.
The following lemma shows that the 𝑘-generators 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) are well-defined.

5.2.3. Lemma. For every 𝑘 ⩾ 2, 𝐶𝑘 (𝑋 ) defined in §5.2.2 is a cubical cellular extension of C
𝑘−1(𝑋 )

⊤.

Proof. We need to check the square equations (3.2.2). For 𝑘 = 2,

𝜕−1 𝜕
−
1 𝐴2(𝑓1, 𝑓2) = 𝑥 = 𝜕−1 𝜕

−
2 𝐴2(𝑓1, 𝑓2),

𝜕−1 𝜕
+
1𝐴2(𝑓1, 𝑓2) = 𝑦2 = 𝜕+1 𝜕

−
2 𝐴2(𝑓1, 𝑓2),

𝜕+1 𝜕
−
1 𝐴2(𝑓1, 𝑓2) = 𝑦1 = 𝜕−1 𝜕

+
2𝐴2(𝑓1, 𝑓2),

𝜕+1 𝜕
+
1𝐴2(𝑓1, 𝑓2) = 𝑥 = 𝜕+1 𝜕

+
2𝐴2(𝑓1, 𝑓2),

which shows that 𝐴2(𝑓1, 𝑓2) forms a 2-cell. For 𝑘 ⩾ 3 and 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘 ,

𝜕−𝑖 𝜕
−
𝑗 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) = 𝐴𝑘−2(𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖+1, . . . , 𝑓𝑗−1, 𝑓𝑗+1, . . . , 𝑓𝑘 ) = 𝜕−𝑗−1𝜕

−
𝑖 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ),

𝜕−𝑖 𝜕
+
𝑗𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) = Γ−

𝑘−3 . . . Γ
−
1 𝜎𝑡0 (𝑓𝑗 ) = 𝜕+𝑗−1𝜕

−
𝑖 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ),

𝜕+𝑖 𝜕
−
𝑗 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) = Γ−

𝑘−3 . . . Γ
−
1 𝜎𝑡0 (𝑓𝑖 ) = 𝜕−𝑗−1𝜕

+
𝑖 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ),

𝜕+𝑖 𝜕
+
𝑗𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) = Γ−

𝑘−3 . . . Γ
−
𝑖 𝜕+𝑖 Γ

−
𝑖 . . . Γ−1 𝜎𝑡0 (𝑓𝑗 )

= Γ−
𝑘−3 . . . Γ

−
𝑖 𝜀𝑖 . . . 𝜀1𝜕

+
1𝜎𝑡0 (𝑓𝑗 ) = 𝜀1 . . . 𝜀1𝑥

= Γ−
𝑘−3 . . . Γ

−
𝑗−1𝜀 𝑗−1 . . . 𝜀1𝜕

+
1𝜎𝑡0 (𝑓𝑖 )

= Γ−
𝑘−3 . . . Γ

−
𝑗−1𝜕

+
𝑗−1Γ

−
𝑗−1 . . . Γ

−
1 𝜎𝑡0 (𝑓𝑖 )

= 𝜕+𝑗−1𝜕
+
𝑖 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) .

Thus 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) is a (𝑘 − 1)-square. □

5.2.4. Extending 𝝈 to a contraction of C𝝎 (𝑿)⊤. We further extend 𝜎 to a contraction of the 𝜔-
groupoid C𝜔 (𝑋 )⊤. By Lemma 5.1.2, it suffices to define a (𝑘 + 1)-cell 𝜎𝑓 , for each 𝑘 ⩾ 1, only for those
𝑘-generators 𝑓 that are not of the form 𝜎𝑔 for some 𝑔 ∈ C

𝑘−1(𝑋 )
⊤.
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5.2. An acyclic 𝜔-groupoid from convergence

For each 𝑓 ∈ 𝑋1 not of the form 𝜎𝑧 for some 𝑧 ∈ 𝑋0, we define the following 2-cell 𝜎𝑓 in C𝜔 (𝑋 )⊤
that fills the 1-square:

𝑓 𝜕 =

𝑥 𝑦

𝑥 𝑥

𝑓

𝜎𝑥 𝜎𝑦

If 𝑓 ≠ 𝜂𝑥 with 𝑥 = 𝜕−1 (𝑓 ), and 𝑥 ′ = 𝜕+1 (𝜂𝑥 ), then we set

𝜎𝑓 := 𝐴2(𝜂𝑥 , 𝑓 ) ◦1 Γ−1 𝜎𝑥 ′ =

𝑥 𝑦

𝑥 ′ 𝑥

𝑥 𝑥

𝑓

𝜂𝑥 𝜎𝑦

𝜎𝑥 ′

𝜎𝑥 ′

where 𝜎𝑥 = 𝜂𝑥 ◦1 𝜎𝑥 ′ and 𝜂𝑥 ∈ 𝑋1. Otherwise, if 𝑓 = 𝜂𝑥 , we set

𝜎𝜂𝑥 := Γ−1 𝜂𝑥 ◦1 𝜀2𝜎𝑥 ′ =

𝑥 𝑥 ′

𝑥 ′ 𝑥 ′

𝑥 𝑥

𝜂𝑥

𝜂𝑥

𝜎𝑥 ′ 𝜎𝑥 ′

For 𝑘 ⩾ 2, let 𝐴 be a 𝑘-generator in C
𝑘
(𝑋 ) that is not of the form 𝜎𝑔 for some 𝑔 ∈ C

𝑘−1(𝑋 )
⊤. Then

𝐴 = 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) and we define a (𝑘 + 1)-cell 𝜎𝐴 in C𝜔 (𝑋 )⊤ that fills the 𝑘-square 𝐴𝜕 . If 𝑓𝑖 ≠ 𝜂𝑥 for all
𝑖 , where 𝑥 = 𝜕−1 (𝑓𝑖) and 𝑥 ′ = 𝜕+1 (𝜂𝑥 ), then we set

𝜎𝐴 := 𝐴𝑘+1(𝜂𝑥 , 𝑓1, . . . , 𝑓𝑘 ) ◦1 Γ−𝑘 . . . Γ−1 𝜎𝑥 ′ . (5.2.5)

If 𝑓1 = 𝜂𝑥 , then we set
𝜎𝐴 := Γ−1 𝐴 ◦1 𝜀2Γ−𝑘−1 . . . Γ

−
1 𝜎𝑥 ′ . (5.2.6)

5.2.7. Lemma. Each 𝜎𝐴 defined as above is well-defined and a filler of 𝐴𝜕 .

Proof. In the case (5.2.5), the formula is well-defined because

𝜕+1𝐴𝑘+1(𝜂𝑥 , 𝑓1, . . . , 𝑓𝑘 ) = Γ−
𝑘−1 . . . Γ

−
1 𝜎𝑥 ′ = 𝜕−1 Γ

−
𝑘
. . . Γ−1 𝜎𝑥 ′ .

Also, 𝜎𝐴 fills 𝐴𝜕 because,

𝜕−1 𝜎𝐴 = 𝜕−1 𝐴𝑘+1(𝜂𝑥 , 𝑓1, . . . , 𝑓𝑘 ) = 𝐴𝑘 (𝑓1, . . . , 𝑓𝑘 ) = 𝐴,

𝜕+1𝜎𝐴 = 𝜕+1 Γ
−
1 . . . Γ−1 𝜎𝑥 ′ = 𝜀1 . . . 𝜀1𝜕

+
1𝜎𝑥 ′ = 𝜀𝑘+1 . . . 𝜀1𝑥,
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5. Cubical groupoids in abstract rewriting

and, for 𝑗 > 1,

𝜕−𝑗 𝜎𝐴 = 𝜕−𝑗 𝐴𝑘+1(𝜂𝑥 , 𝑓1, . . . , 𝑓𝑘 ) ◦1 𝜕−𝑗 Γ−𝑘 . . . Γ−1 𝜎𝑥 ′

= 𝐴𝑘 (𝜂𝑥 , 𝑓1, . . . , 𝑓𝑗−2, 𝑓𝑗 , . . . , 𝑓𝑘 ) ◦1 Γ−𝑘−1 . . . Γ
−
𝑗 𝜕
−
𝑗 Γ
−
𝑗 . . . Γ−1 𝜎𝑥 ′

= 𝐴𝑘 (𝜂𝑥 , 𝑓1, . . . , 𝑓𝑗−2, 𝑓𝑗 , . . . , 𝑓𝑘 ) ◦1 Γ−𝑘−1 . . . Γ
−
1 𝜎𝑥 ′

= 𝜎𝐴𝑘−1 (𝑓1,...,𝑓𝑗−2,𝑓𝑗 ,...,𝑓𝑘 ) = 𝜎𝜕−
𝑗−1𝐴

,

𝜕+𝑗 𝜎𝐴 = 𝜕+𝑗𝐴𝑘+1(𝜂𝑥 , 𝑓1, . . . , 𝑓𝑘 ) ◦1 𝜕+𝑗 Γ−𝑘 . . . Γ−1 𝜎𝑥 ′

= Γ−
𝑘−1 . . . Γ

−
1 𝜎𝑡0 (𝑓𝑖−1 ) ◦1 Γ−𝑘−1 . . . Γ

−
𝑗 𝜀 𝑗 𝜕

+
𝑗 Γ
−
𝑗−1 . . . Γ

−
1 𝜎𝑥 ′

= Γ−
𝑘−1 . . . Γ

−
1 𝜎𝑡0 (𝑓𝑖−1 ) ◦1 𝜀𝑘−1 . . . 𝜀 𝑗 𝜕+𝑗 Γ−𝑗−1 . . . Γ−1 𝜎𝑥 ′

= Γ−
𝑘−1 . . . Γ

−
1 𝜎𝑡0 (𝑓𝑖−1 ) ◦1 𝜀𝑘−1 . . . 𝜀1𝜕+1𝜎𝑥 ′

= Γ−
𝑘−1 . . . Γ

−
1 𝜎𝑡0 (𝑓𝑖−1 ) = Γ−

𝑘−1 . . . Γ
−
2 𝜎𝜎𝑡0 (𝑓𝑖−1 )

= 𝜎Γ−
𝑘−2 ...Γ

−
1 𝜎𝑡0 (𝑓𝑖−1 )

= 𝜎𝜕+
𝑗−1𝐴

.

In the case (5.2.6), the formula is well-defined because

𝜕+1 Γ
−
1 𝐴 = 𝜀1𝜕

+
1𝐴 = 𝜀1Γ

−
𝑘−2 . . . Γ

−
1 𝜎𝑥 ′ = 𝜕−1 𝜀2Γ

−
𝑘−1 . . . Γ

−
1 𝜎𝑥 ′,

and 𝜎𝐴 fills 𝐴𝜕 because, we have 𝜕−1 𝜎𝐴 = 𝜕−1 Γ
−
1 𝐴 = 𝐴, and

𝜕+1𝜎𝐴 = 𝜕+1 𝜀2Γ
−
𝑘−1 . . . Γ

−
1 𝜎𝑥 ′ = 𝜀1𝜕

+
1 Γ
−
1 . . . Γ−1 𝜎𝑥 ′ = 𝜀1 . . . 𝜀1𝜕

+
1𝜎𝑥 ′ = 𝜀𝑘+1 . . . 𝜀1𝑥,

and, for 𝑗 > 1,

𝜕−𝑗 𝜎𝐴 = 𝜕−𝑗 Γ
−
1 𝐴 ◦1 𝜕−𝑗 𝜀2Γ−𝑘−1 . . . Γ

−
1 𝜎𝑥 ′

= Γ−1 𝜕−𝑗−1𝐴 ◦1 𝜀2Γ−𝑘−2 . . . Γ
−
𝑗−1𝜕

−
𝑗−1Γ

−
𝑗−1 . . . Γ

−
1 𝜎𝑥 ′

= Γ−1 𝐴𝑘−1(𝑓1, . . . , 𝑓𝑗−2, 𝑓𝑗 , . . . , 𝑓𝑘 ) ◦1 𝜀2Γ−𝑘−2 . . . Γ
−
1 𝜎𝑥 ′ = 𝜎𝜕−

𝑗−1𝐴
,

𝜕+𝑗 𝜎𝐴 = 𝜕+𝑗 Γ
−
1 𝐴 ◦1 𝜕+𝑗 𝜀2Γ−𝑘−1 . . . Γ

−
1 𝜎𝑥 ′

= Γ−1 𝜕+𝑗−1𝐴 ◦1 𝜀2Γ−𝑘−2 . . . Γ
−
𝑗−1𝜀 𝑗−1𝜕

+
𝑗−1Γ

−
𝑗−2 . . . Γ

−
1 𝜎𝑥 ′

= Γ−1 Γ−
𝑘−2 . . . Γ

−
1 𝜎𝑡0 (𝑓𝑗−1 ) ◦1 𝜀2𝜀𝑘−2 . . . 𝜀 𝑗−1𝜕+𝑗−1Γ−𝑗−2 . . . Γ−1 𝜎𝑥 ′

= Γ−
𝑘−1 . . . Γ

−
1 𝜎𝑡0 (𝑓𝑗−1 ) ◦1 𝜀2𝜀𝑘−2 . . . 𝜀1𝜕+1𝜎𝑥 ′

= Γ−
𝑘−1 . . . Γ

−
1 𝜎𝑡0 (𝑓𝑗−1 ) ◦1 𝜀1 . . . 𝜀1𝑥

= Γ−
𝑘−1 . . . Γ

−
1 𝜎𝑡0 (𝑓𝑗−1 ) = Γ−

𝑘−1 . . . Γ
−
2 𝜎𝜎𝑡0 (𝑓𝑗−1 )

= 𝜎Γ−
𝑘−2 ...Γ

−
1 𝜎𝑡0 (𝑓𝑗−1 )

= 𝜎𝜕+
𝑗−1𝐴

. □

We can now state the main theorem of this section.

5.2.8. Theorem. Every convergent 1-polygraph 𝑋 extends to an acyclic 𝜔-groupoid C𝜔 (𝑋 )⊤.
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5.3. A refined acyclic 𝜔-groupoid from convergence

Proof. In §5.2.4, we have defined a family of 1-cells 𝜎𝑥 in 𝑋⊤1 with boundary 𝑥𝜕 = (𝑥, 𝑥), for every
0-cell 𝑥 in 𝑋0 such that 𝑥 ≠ 𝑥 . We have also defined a family of (𝑘 + 1)-cells 𝜎𝑓 in C

𝑘+1(𝑋 )
⊤, for

every 0 < 𝑘 < 𝑛, with boundary 𝑓 𝜕 , for every 𝑘-cell 𝑓 in C
𝑘
(𝑋 ) which is not of the form 𝜎𝑔 for

some 𝑔 in C
𝑘−1(𝑋 )

⊤. Then 𝜎 is a contraction on C𝜔 (𝑋 ) by Lemma 5.1.2 and the claim follows from
Theorem 5.1.3. □

5.3. A refined acyclic 𝝎-groupoid from convergence

Finally, we refine the construction leading to Theorem so that it generates an acyclic 𝜔-groupoid from
a ARS without introducing any generating cells of dimension higher than 2. We begin with a technical
lemma, which is an immediate consequence of [20, Prop. 2.1].

5.3.1. Lemma. In every 𝜔-groupoid, each 𝑘-square with thin faces can be filled by a thin cell.

Proof. Let 𝑆 be a 𝑘-square. Applying the folding maps, as defined in §3.2.3, yields a 𝑘-square𝑇 = Φ𝑘 (𝑆),
which satisfies 𝜕−1 Ψ𝑘𝑇 = 𝜕+1Ψ𝑘𝑇 by [1, Prop. 3.6] and has a unique thin filler 𝐵 by [20, Prop. 2.1(iii)].
Applying the unfolding maps yields a 𝑘-cell 𝐴 = Φ𝑘 (𝑆, 𝐵) which is a filler of 𝑆 by Lemma 3.2.4. □

5.3.2. Theorem. Every convergent 1-polygraph 𝑋 extends to an acyclic 𝜔-groupoid C𝑡𝑟
𝜔 (𝑋 )⊤ which is

generated by the (𝜔, 0)-polygraph defined by

C𝑡𝑟
0 (𝑋 ) := 𝑋0, C𝑡𝑟

1 (𝑋 ) := 𝑋1, C𝑡𝑟
2 (𝑋 ) := {𝐴2(𝜂𝑥 , 𝑓 ) | 𝑓 ∈ 𝑋1, 𝜕

+
1 (𝑓 ) = 𝑥, 𝜂𝑥 ≠ 𝑓 },

where the boundary of 𝐴2(𝜂𝑥 , 𝑓 ) is given by (4.3.3), and which has no 𝑘-generators for 𝑘 > 2.

Proof. Let 𝑋 be a convergent 1-polygraph equipped with the normal form section and with normalisa-
tion strategy 𝜎 . We consider the acyclic 𝜔-groupoid C𝜔 (𝑋 )⊤ from Theorem 5.3. Let (𝑓1, 𝑓2) be a local
branching with source 𝑥 such that 𝑓1, 𝑓2 ≠ 𝜂𝑥 , let 𝑥 ′ be the target of 𝜂𝑥 . The 2-generator 𝐴2(𝑓1, 𝑓2) has
the same faces as the 2-cell

(
Γ+1 𝜂𝑥 ◦2 𝐴2(𝜂𝑥 , 𝑓2)

)
◦1

(
𝑇1𝐴2(𝜂𝑥 , 𝑓1) ◦2 Γ−1 𝜎𝑥 ′

)
=

𝑥 𝑥 𝑦2

Γ+1 𝜂𝑥 𝐴2(𝜂𝑥 , 𝑓2)

𝑥 𝑥 ′ 𝑥

𝑇1𝐴2(𝜂𝑥 , 𝑓1) Γ−1 𝜎𝑥 ′

𝑦1 𝑥 𝑥

𝑓2

𝜎𝑦2

𝑓1

𝜎𝑦1

(5.3.3)

We can thus replace 𝐴2(𝑓1, 𝑓2) by this 2-cell that depends only on the generators 𝐴2(𝜂𝑥 , 𝑓1), 𝐴2(𝜂𝑥 , 𝑓2).
Let (𝑓1, 𝑓2, 𝑓3) be a local 3-branching with source 𝑥 and let 𝑥 ′ be the target of 𝜂𝑥 . Suppose 𝑓1 = 𝜂𝑥

and 𝑓2, 𝑓3 ≠ 𝜂𝑥 . The 3-generator 𝐴3(𝜂𝑥 , 𝑓2, 𝑓3) has faces 𝐴2(𝜂𝑥 , 𝑓2), 𝐴2(𝜂𝑥 , 𝑓3), 𝐴2(𝑓2, 𝑓3) and three thin
cells. We replace 𝐴2(𝑓2, 𝑓3) by (5.3.3), so that 𝐴3(𝜂𝑥 , 𝑓2, 𝑓3) has the same faces as the 3-cell(

Γ−1 Γ+1 𝜂𝑥 ◦3 Γ−1 𝐴2(𝜂𝑥 , 𝑓3)
)
◦2

(
Γ−2 𝑇1𝐴2(𝜂𝑥 , 𝑓2) ◦3 Γ−2 Γ−1 𝜎𝑥 ′

)
. (5.3.4)
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The cases where 𝑓2 = 𝜂𝑥 or 𝑓3 = 𝜂𝑥 lead to similar thin cells.
Now suppose 𝑓1, 𝑓2, 𝑓3 ≠ 𝜂𝑥 . If we replace 𝐴2(𝑓1, 𝑓2), 𝐴2(𝑓1, 𝑓3) and 𝐴2(𝑓2, 𝑓3) by (5.3.3), then the

3-generator 𝐴3(𝑓1, 𝑓2, 𝑓3) has the same faces as the 3-cell( ( (
Γ−1 Γ+1 𝜂𝑥 ◦1 𝑅1Γ−1 Γ−1 𝜂𝑥

)
◦3 Γ−1 𝐴2(𝜂𝑥 , 𝑓3)

)
◦2

(
𝑇2Γ
−
1 𝑇1𝐴2(𝜂𝑥 , 𝑓2) ◦3 Γ−2 Γ−1 𝜎𝑥 ′

) )
(5.3.5)

◦1 Γ−2
(
𝑇1𝐴2(𝜂𝑥 , 𝑓1) ◦2 Γ−1 𝜎𝑥 ′

)
.

So again we replace 𝐴3(𝑓1, 𝑓2, 𝑓3) by this thin cell.
Lemma 5.3.1 implies that, if we replace the faces of any 4-generator in C𝜔 (𝑋 )⊤ by the thin 3-cells

described in formulas (5.3.4) and (5.3.5), then the 4-generator itself can be replaced by a thin cell. The
same argument applies inductively in all higher dimensions.

This allows constructing a trucacted (𝜔, 0)-polygraph C𝑡𝑟
𝜔 (𝑋 ) from the acyclic𝜔-groupoid C𝜔 (𝑋 )⊤,

retaining only the 0-generators, the 1-generators and the 2-generators of the form 𝐴2(𝜂𝑥 , 𝑓 ), where
𝑓 ∈ 𝑋1 and 𝑓 ≠ 𝜂𝑥 . By construction, it freely generates an acyclic 𝜔-groupoid C𝑡𝑟

𝜔 (𝑋 )⊤. In particular, it
has no 𝑘-generators and no non-thin 𝑘-cells for any 𝑘 ⩾ 3. □

5.3.6. Example. To illustrate the difference between Theorem 5.3 and Theorem 5.3.2, we consider the
1-polygraph 𝑋 defined by the diagram

𝑥

𝑦1 𝑦2 𝑦3

𝑧

𝑓1
𝑓2

𝑓3

𝑔1
𝑔2

𝑔3

It is convergent, and 𝑧 is the normal form of every 0-cell. We define the normalisation strategy 𝜎 by
𝜎𝑥 = 𝑓1 ◦1 𝑔1, 𝜎𝑦𝑖 = 𝑔𝑖 for every 1 ⩽ 𝑖 ⩽ 3, and 𝜎𝑧 = 1𝑧 , and set 𝜂𝑥 = 𝑓1 and 𝑓1 < 𝑓2 < 𝑓3.

TheARS𝑋 has the critical 2-branchings (𝑓1, 𝑓2), (𝑓1, 𝑓3), (𝑓2, 𝑓3) and the critical 3-branching (𝑓1, 𝑓2, 𝑓3).
The (𝜔, 0)-polygraph C𝜔 (𝑋 ) extending 𝑋 has the 2-generators 𝐴2(𝑓1, 𝑓2), 𝐴2(𝑓1, 𝑓3), 𝐴2(𝑓2, 𝑓3) and the
3-generator 𝐴3(𝑓1, 𝑓2, 𝑓3). The 𝜔-groupoid C𝜔 (𝑋 )⊤ freely generated this way is acyclic.

By contrast, the (2, 0)-polygraph C𝑡𝑟
2 (𝑋 ) extending 𝑋 has the 2-generators𝐴2(𝑓1, 𝑓2), 𝐴2(𝑓1, 𝑓3), but

no 3-generator. The 2-groupoid C𝑡𝑟
2 (𝑋 )⊤ freely generated this alternative way also acyclic. The critical

2-branching (𝑓2, 𝑓3), for instance, converges to 𝑧 via the confluence (𝑔2, 𝑔3), and it gives rise to the
1-square 𝑆 = (𝑓2, 𝑓3, 𝑔3, 𝑔2), filled with the 2-cell

(Γ+1 𝑓1 ◦2 𝐴2(𝑓1, 𝑓3)) ◦1 (𝑇1𝐴2(𝑓1, 𝑓2) ◦2 Γ−1 𝑔1) =

Γ+1 𝑓1 𝐴2(𝑓1, 𝑓3)

𝑇1𝐴2(𝑓1, 𝑓2) Γ−1 𝑔1

𝑓3

𝑔3

𝑓2

𝑔2
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5.4. Concluding remarks

The critical 3-branching (𝑓1, 𝑓2, 𝑓3) converges to 𝑧 via the confluence (𝑔1, 𝑔2, 𝑔3). This induces the 2-
square 𝑆 defined by

𝜕+1𝑆 = Γ−1 𝑔1, 𝜕+2𝑆 = Γ−1 𝑔2, 𝜕+3𝑆 = Γ−1 𝑔3,

𝜕−1 𝑆 = (Γ+1 𝑓1 ◦2 𝐴2(𝑓1, 𝑓3)) ◦1 (𝑇1𝐴2(𝑓1, 𝑓2) ◦2 Γ−1 𝑔1), 𝜕−2 𝑆 = 𝐴2(𝑓1, 𝑓3), 𝜕−3 𝑆 = 𝐴2(𝑓1, 𝑓2).

It can be filled by the thin 3-cell

(Γ−1 Γ+1 𝑓1 ◦3 Γ−1 𝐴2(𝑓1, 𝑓3)) ◦2 (Γ−2 𝑇1𝐴2(𝑓1, 𝑓2) ◦3 Γ−2 Γ−1 𝑔1) .

Then C𝑡𝑟
𝜔 (𝑋 )⊤ is indeed acyclic; the 2-generator𝐴2(𝑓2, 𝑓3) and the 3-generator𝐴3(𝑓1, 𝑓2, 𝑓3) are no longer

needed.

5.4. Concluding remarks

The only 3-confluence fillers in the proof of Theorem 5.3.2 are thin cells. The 2-confluence fillers em-
ployed are normalising, as explained in Remark 4.3.8, and the cube law holds a fortiori. Hence, the
cube law always holds for any ARS, since rewriting rules have no application context and the critical
branching lemma from classical rewriting is trivial.

By contrast, in algebraic rewriting systems (string, term, linear, etc.), the cube equation is not inher-
ent andmust be proved separately – as, for instance, in the 𝜆-calculus (see 4.2.3). Future work will apply
the cubical constructions developed in this paper to such systems. Note also that, unlike for ARS, con-
vergent algebraic extensions generally do not terminate after finitely many steps (see Theorem 5.3.2).

In globular higher-dimensional rewriting, the constructions of 𝜔-groupoids and related structures
from polygraphs are known as polygraphic resolutions, as mentioned in the introduction, and contrac-
tions may be regarded as contracting homotopies. This topological terminology is justified by the folk
model structure on strict 𝜔-categories and the fact that polygraphic resolutions are cofibrant approx-
imations [25, 32, 33]. In the cubical case, much less is known; polygraphic resolutions as cofibrant
approximations remain an avenue for future work. The proof of Theorem 5.3.2 has been inspired in
particular by a categorical approach to Tietze transformations in globular polygraphs [16], which ap-
pears worth exploring via cubical categories as well.
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A. Appendices

A.1. Axioms of cubical categories

We give a comprehensive axiomatisation of cubical categories, which were outlined in Subsection 2.1.

A.1.1. Cubical categories. Cubical categories satisfy the following axioms, for all 𝑖, 𝑗, 𝑘 ∈ N such
that 1 ⩽ 𝑖, 𝑗 ⩽ 𝑘 :

𝜕𝛼
𝑘,𝑖
𝜀𝑘,𝑗 =


𝜀𝑘−1, 𝑗−1𝜕

𝛼
𝑘−1,𝑖 if 𝑖 < 𝑗 ,

𝑖𝑑𝐶𝑘−1 if 𝑖 = 𝑗 ,
𝜀𝑘−1, 𝑗 𝜕

𝛼
𝑘−1,𝑖−1 if 𝑖 > 𝑗 ,

𝜀𝑘+1,𝑖𝜀𝑘,𝑗+1 = 𝜀𝑘+1, 𝑗𝜀𝑘,𝑖 if 𝑖 ⩽ 𝑗 , 𝜀𝑘+1,𝑖𝜀𝑘,𝑗 = 𝜀𝑘+1, 𝑗𝜀𝑘,𝑖+1 if 𝑖 > 𝑗 ,

(𝑎 ◦𝑘,𝑖 𝑏) ◦𝑘,𝑗 (𝑐 ◦𝑘,𝑖 𝑑) = (𝑎 ◦𝑘,𝑗 𝑐) ◦𝑘,𝑖 (𝑏 ◦𝑘,𝑗 𝑑),
𝑎 ◦𝑘,𝑖 (𝑏 ◦𝑘,𝑖 𝑐) = (𝑎 ◦𝑘,𝑖 𝑏) ◦𝑘,𝑖 𝑐,

𝜀𝑘+1,𝑖 (𝑎 ◦𝑘,𝑗 𝑏) =
{
𝜀𝑘+1,𝑖𝑎 ◦𝑘+1, 𝑗+1 𝜀𝑘+1,𝑖𝑏 if 𝑖 ⩽ 𝑗 ,
𝜀𝑘+1,𝑖𝑎 ◦𝑘+1, 𝑗 𝜀𝑘+1,𝑖𝑏 if 𝑖 > 𝑗 ,

𝑎 ◦𝑘,𝑖 𝜀𝑘,𝑖𝜕+𝑘,𝑖𝑎 = 𝜀𝑘,𝑖𝜕
−
𝑘,𝑖
𝑎 ◦𝑘,𝑖 𝑎 = 𝑎,

𝜕𝛼
𝑘,𝑖
(𝑎 ◦𝑘,𝑗 𝑏) =



𝜕𝛼
𝑘,𝑖
𝑎 ◦𝑘,𝑗−1 𝜕𝛼𝑘,𝑖𝑏 if 𝑖 < 𝑗 ,

𝜕−
𝑘,𝑖
𝑎 if 𝑖 = 𝑗 and 𝛼 = −,

𝜕+
𝑘,𝑖
𝑏 if 𝑖 = 𝑗 and 𝛼 = +,

𝜕𝛼
𝑘,𝑖
𝑎 ◦𝑘,𝑗 𝜕𝛼𝑘,𝑖𝑏 if 𝑖 > 𝑗 ,

A.1.2. Connections. Cubical categories with connections satisfy the following additional axioms:

𝜕𝛼
𝑘,𝑖
Γ
𝛽

𝑘,𝑗
=



Γ
𝛽

𝑘−1, 𝑗−1𝜕
𝛼
𝑘−1,𝑖 if 𝑖 < 𝑗 ,

𝑖𝑑𝐶𝑘−1 if 𝑖 = 𝑗, 𝑗 + 1 and 𝛼 = 𝛽 ,
𝜀𝑘−1, 𝑗 𝜕

𝛼
𝑘−1, 𝑗 if 𝑖 = 𝑗, 𝑗 + 1 and 𝛼 = −𝛽 ,

Γ
𝛽

𝑘−1, 𝑗 𝜕
𝛼
𝑘−1,𝑖−1 if 𝑖 > 𝑗 + 1,

Γ𝛼
𝑘+1,𝑖𝜀𝑘,𝑗 =


𝜀𝑘+1, 𝑗+1Γ

𝛼
𝑘,𝑖

if 𝑖 < 𝑗 ,

𝜀𝑘+1,𝑖𝜀𝑘,𝑖 if 𝑖 = 𝑗 ,
𝜀𝑘+1, 𝑗Γ

𝛼
𝑘,𝑖−1 if 𝑖 > 𝑗 ,

Γ𝛼
𝑘+1,𝑖Γ

𝛽

𝑘,𝑗
=


Γ
𝛽

𝑘+1, 𝑗+1Γ
𝛼
𝑘,𝑖

if 𝑖 < 𝑗 ,

Γ𝛼
𝑘+1, 𝑗Γ

𝛼
𝑘,𝑗

if 𝑖 = 𝑗 + 1 and 𝛼 = 𝛽 ,

Γ
𝛽

𝑘+1, 𝑗Γ
𝛼
𝑘,𝑖−1 if 𝑖 > 𝑗 + 1.
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Γ+
𝑘,𝑖
𝑎 ◦𝑘,𝑖 Γ−𝑘,𝑖𝑎 = 𝜀𝑘,𝑖+1𝑎, Γ+

𝑘,𝑖
𝑎 ◦𝑘,𝑖+1 Γ−𝑘,𝑖𝑎 = 𝜀𝑘,𝑖𝑎,

Γ𝛼
𝑘+1,𝑖 (𝑎 ◦𝑘,𝑗 𝑏) =



Γ𝛼
𝑘+1,𝑖𝑎 ◦𝑘,𝑗+1 Γ

𝛼
𝑘+1,𝑖𝑏 if 𝑖 < 𝑗 ,

(Γ−
𝑘+1,𝑖𝑎 ◦𝑘,𝑖 𝜀𝑘+1,𝑖+1𝑏) ◦𝑘,𝑖+1 (𝜀𝑘+1,𝑖𝑏 ◦𝑘,𝑖 Γ

−
𝑘+1,𝑖𝑏) if 𝑖 = 𝑗 and 𝛼 = −,

(Γ+
𝑘+1,𝑖𝑎 ◦𝑘,𝑖 𝜀𝑘+1,𝑖𝑎) ◦𝑘,𝑖+1 (𝜀𝑘+1,𝑖+1𝑎 ◦𝑘,𝑖 Γ

+
𝑘+1,𝑖𝑏) if 𝑖 = 𝑗 and 𝛼 = +,

Γ𝛼
𝑘+1,𝑖𝑎 ◦𝑘,𝑗 Γ

𝛼
𝑘+1,𝑖𝑏 if 𝑖 > 𝑗 ,

A.1.3. Functors. A functor 𝐹 : C → D of cubical𝜔-categories is a family of maps (𝐹𝑘 : C𝑘 → D𝑘 )0⩽𝑘
satisfying

𝐹𝑘 (𝑎 ◦𝑘,𝑖 𝑏) = 𝐹𝑘𝑎 ◦𝑘,𝑖 𝐹𝑘𝑏, 𝐹𝑘−1𝜕
𝛼
𝑘,𝑖

= 𝜕𝛼
𝑘,𝑖
𝐹𝑘 , 𝐹𝑘𝜀𝑘,𝑖 = 𝜀𝑘,𝑖𝐹𝑘−1, 𝐹𝑘Γ

𝛼
𝑘,𝑗

= Γ𝛼
𝑘,𝑗
𝐹𝑘−1,

for all 𝑖, 𝑗, 𝑘 ∈ N such that 1 ⩽ 𝑖 ⩽ 𝑘 and 1 ⩽ 𝑗 < 𝑘 , and all ◦𝑘,𝑖-composable 𝑎, 𝑏 ∈ C𝑘 .
A.1.4. Inverses. The inversion maps 𝑅𝑖 and 𝑇𝑖 defined in §2.2.1 are compatible with

i) the face maps

𝜕𝛼𝑖 𝑅 𝑗 𝑓 =


𝑅 𝑗−1𝜕𝛼𝑖 𝑓 if 𝑖 < 𝑗 ,
𝜕−𝛼
𝑖

𝑓 if 𝑖 = 𝑗 ,
𝑅 𝑗 𝜕

𝛼
𝑖
𝑓 if 𝑖 > 𝑗 ,

𝜕𝛼𝑖 𝑇𝑗 𝑓 =


𝑇𝑗−1𝜕𝛼𝑖 𝑓 if 𝑖 < 𝑗 ,
𝜕𝛼
𝑖+1 𝑓 if 𝑖 = 𝑗 ,
𝜕𝛼
𝑖−1 𝑓 if 𝑖 = 𝑗 + 1,
𝑇𝑗 𝜕

𝛼
𝑖
𝑓 if 𝑖 > 𝑗 + 1,

ii) the compositions

𝑅𝑖 (𝑓 ◦𝑗 𝑔) =
{
𝑅𝑖𝑔 ◦𝑖 𝑅𝑖 𝑓 if 𝑖 = 𝑗 ,
𝑅𝑖 𝑓 ◦𝑗 𝑅𝑖𝑔 if 𝑖 ≠ 𝑗 ,

𝑇𝑖 (𝑓 ◦𝑗 𝑔) =


𝑇𝑖 𝑓 ◦𝑖+1 𝑇𝑖𝑔 if 𝑗 = 𝑖 ,
𝑇𝑖 𝑓 ◦𝑖 𝑇𝑖𝑔 if 𝑗 = 𝑖 + 1,
𝑇𝑖 𝑓 ◦𝑗 𝑇𝑖𝑔 if 𝑗 ≠ 𝑖, 𝑖 + 1,

iii) the degeneracies

𝑅𝑖𝜀 𝑗 𝑓 =


𝜀 𝑗𝑅𝑖 𝑓 if 𝑖 < 𝑗 ,
𝜀𝑖 𝑓 if 𝑖 = 𝑗 ,
𝜀 𝑗𝑅𝑖−1 𝑓 if 𝑖 > 𝑗 ,

𝑇𝑖𝜀 𝑗 𝑓 =


𝜀 𝑗𝑇𝑖−1 𝑓 if 𝑗 < 𝑖 ,
𝜀𝑖+1 𝑓 if 𝑗 = 𝑖 ,
𝜀𝑖 𝑓 if 𝑗 = 𝑖 + 1,
𝜀 𝑗𝑇𝑖 𝑓 if 𝑗 > 𝑖 + 1,

iv) the connections

𝑅𝑖Γ
𝛼
𝑗 𝑓 =



Γ𝛼
𝑗
𝑅𝑖 𝑓 if 𝑖 < 𝑗 ,

𝜀𝑖+1𝑅𝑖 𝑓 ◦𝑖+1 Γ+𝑖 𝑓 if 𝑖 = 𝑗 , 𝛼 = −,
Γ−𝑖 𝑓 ◦𝑖 𝜀𝑖+1𝑅𝑖 𝑓 if 𝑖 = 𝑗 , 𝛼 = +,
𝜀𝑖−1𝑅𝑖−1 𝑓 ◦𝑖 Γ+𝑖−1 𝑓 if 𝑖 = 𝑗 + 1, 𝛼 = −,
Γ−𝑖−1 𝑓 ◦𝑖 𝜀𝑖−1𝑅𝑖−1 𝑓 if 𝑖 = 𝑗 + 1, 𝛼 = +,
Γ𝛼
𝑗
𝑅𝑖−1 𝑓 if 𝑖 > 𝑗 + 1,

𝑇𝑖Γ
𝛼
𝑗 𝑓 =


Γ𝛼
𝑗
𝑇𝑖 𝑓 if 𝑖 < 𝑗 ,

Γ𝛼
𝑖
𝑓 if 𝑖 = 𝑗 ,

Γ𝛼
𝑗
𝑇𝑖−1 𝑓 if 𝑖 > 𝑗 ,

𝑇𝑖+1Γ
𝛼
𝑖 𝑇𝑖 𝑓 = 𝑇𝑖Γ

𝛼
𝑖+1 𝑓 , 𝑇𝑖Γ

𝛼
𝑖+1𝑇𝑖 𝑓 = 𝑇𝑖+1Γ

𝛼
𝑖 𝑓 ,
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v) other inversion maps

𝑅𝑖𝑅 𝑗 𝑓 =

{
𝑓 if 𝑖 = 𝑗 ,
𝑅 𝑗𝑅𝑖 𝑓 if 𝑖 ≠ 𝑗 ,

𝑇𝑖𝑇𝑗 𝑓 =

{
𝑓 if 𝑖 = 𝑗 ,
𝑇𝑗𝑇𝑖 𝑓 if |𝑖 − 𝑗 | ⩾ 2,

𝑇𝑖𝑅 𝑗 𝑓 =


𝑅𝑖+1𝑇𝑖 𝑓 if 𝑗 = 𝑖 ,
𝑅𝑖𝑇𝑖 𝑓 if 𝑗 = 𝑖 + 1,
𝑅 𝑗𝑇𝑖 𝑓 if 𝑗 ≠ 𝑖, 𝑖 + 1.

𝑇𝑖𝑇𝑖+1𝑇𝑖 𝑓 = 𝑇𝑖+1𝑇𝑖𝑇𝑖+1 𝑓 ,

A.2. Cubical polygraphs and free cubical categories

In this appendix, we detail the construction of the cubical polygraphs used in Section 5. Cubical poly-
graphs form systems of generators for cubical categories, defined inductively on the dimension. Our
presentation follows the method developed by Métayer in the globular setting [33]. We first introduce
the notion of cubical extension, a set of (𝑛+1)-generators adjoined to a cubical 𝑛-category. Lemma A.2.2
makes the construction of the free cubical (𝑛 + 1)-category generated by a cubical 𝑛-category and
equipped with a cubical extension explicit. This construction is then used to define cubical polygraphs
recursively by adjoining cubical extensions to freely generated cubical categories.

A.2.1. Cubical extensions. For 𝑛 ∈ N, a precubical 𝑛-set is a family C = (C𝑘 )0⩽𝑘⩽𝑛 of 𝑘-cells with
face maps 𝜕𝛼

𝑘,𝑖
: C𝑘 → C𝑘−1, for 1 ⩽ 𝑖 ⩽ 𝑘 ⩽ 𝑛, satisfying the cubical relations (2.1.2). A functor

𝐹 : C → D of precubical sets is a family of maps (𝐹𝑘 : C𝑘 → D𝑘 )𝑘∈N that preserve face maps, that
is 𝐹𝑘−1𝜕𝛼𝑘,𝑖 = 𝜕𝛼

𝑘,𝑖
𝐹𝑘 , for every 1 ⩽ 𝑖 ⩽ 𝑛. We denote by PreCub𝑛 the category of precubical 𝑛-sets and

their functors. We denote by Cub𝑛Γ the category of cubical 𝑛-categories and their functors as defined
in §2.1.1.

The category of cubical extensions of cubical 𝑛-categories is defined by the following pullback in CAT

(Cub𝑛Γ)+ PreCub𝑛+1

Cub𝑛Γ PreCub𝑛
𝑈𝑛

where the bottom arrow is the forgetful functor and the right arrow the truncation functor.
Explicitly, a cubical extension of a cubical 𝑛-category C consists of a set 𝑋𝑛+1 of (𝑛 + 1)-generators

and a set of face maps 𝜕𝛼
𝑛+1,𝑖 : 𝑋𝑛+1 → C𝑛 , for 1 ⩽ 𝑖 ⩽ 𝑛 + 1, that satisfy the cubical relations (2.1.2).

A morphism of cubical extensions 𝐹 : (C, 𝑋 ) → (D, 𝑌 ) consists of a functor between the cubical
𝑛-categories 𝐺 : C → D and a map 𝐻 : 𝑋 → 𝑌 such that 𝜕𝛼

𝑛+1,𝑖𝐻 = 𝐺𝑛𝜕
𝛼
𝑛+1,𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛 + 1.

Consider the forgetful functor

𝑊𝑛 : Cub𝑛+1Γ → (Cub𝑛Γ)+

sending a cubical (𝑛 + 1)-category C to the pair (C⩽𝑛, C𝑛+1), where C⩽𝑛 is the 𝑛-category made of
𝑘-cells of C, for 𝑘 ⩽ 𝑛, and C𝑛+1 is the set of (𝑛 + 1)-cells viewed as a cubical extension. It has a left
adjoint 𝐿𝑛 , which maps a cubical 𝑛-category C, equipped with a cubical extension 𝑋𝑛+1, to the freely
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generated cubical (𝑛+1)-category C[𝑋𝑛+1]. For Gray categories and polygraphs, a proof of the existence
of this adjoint functor has been given by Lucas [28], although no explicit construction is given there.
We provide a fully syntactic construction of the free functor 𝐿𝑛 using a type system analogous to that
of Métayer in the globular case [33, Section 4.1]. Our syntax differs from the globular one in several
respects: we introduce constants for degeneracy and connection maps rather than identity maps, and
we quotient by the cubical axioms instead of the globular ones. Another difference concerns the type
of (𝑛 + 1)-cells: in the globular case one uses 𝑛-globes; here the corresponding types are 𝑛-squares.

A.2.2. Lemma. The forgetful functor𝑊𝑛 : Cub𝑛+1Γ → (Cub𝑛Γ)+ has a left adjoint 𝐿𝑛 .

Proof. Consider (C, 𝑋𝑛+1) in (Cub𝑛Γ)+, with face maps of 𝑋𝑛+1 denoted 𝜕𝛼
𝑛+1,𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛 + 1. We

define a formal syntax E formed by

i) a constant symbol c𝑥 , for each 𝑥 ∈ 𝑋𝑛+1,

ii) a constant symbol e𝑖,𝑐 , for each 𝑐 ∈ C𝑛 and 1 ⩽ 𝑖 ⩽ 𝑛 + 1,

iii) a constant symbol g𝛼
𝑖,𝑐
, for each 𝑐 ∈ C𝑛 and 1 ⩽ 𝑖 ⩽ 𝑛,

iv) a binary function symbol ◦𝑖 , for each 1 ⩽ 𝑖 ⩽ 𝑛 + 1.

Then E is the smallest set of that contains all constants and is closed under the operation 𝐴 ◦𝑖 𝐵, for
all 𝐴, 𝐵 ∈ E and 1 ⩽ 𝑖 ⩽ 𝑛 + 1. A type is any 𝑛-square in C𝑛 . For every 𝐴 ∈ E and every type 𝑆 , we
recursively defined the judgement 𝐴 : 𝑆 – 𝐴 has type 𝑆 : following rules:

i) c𝑥 : 𝜕𝑥 , for every 𝑥 ∈ 𝑋𝑛+1,

ii) e𝑖,𝑐 : 𝑆 , for every 𝑛-cell 𝑐 in C, where

𝑆𝛼𝑗 =


𝜀𝑛,𝑖𝜕

𝛼
𝑛,𝑗−1𝑐 if 𝑖 < 𝑗,

𝑐 if 𝑖 = 𝑗,

𝜀𝑛,𝑖−1𝜕𝛼𝑛,𝑗𝑐 if 𝑖 > 𝑗,

iii) g𝛼
𝑖,𝑐

: 𝑆 , for every 𝑛-cell 𝑐 in C, where

𝑆
𝛽

𝑗
=


Γ𝛼
𝑛,𝑖
𝜕
𝛽

𝑛,𝑗−1𝑐 if 𝑖 < 𝑗 − 1,
𝑐 if 𝑗 = 𝑖, 𝑖 + 1 and 𝛼 = 𝛽,

𝜀𝑛,𝑖𝜕
𝛼
𝑛,𝑖
𝑐 if 𝑗 = 𝑖, 𝑖 + 1 and 𝛼 = −𝛽,

Γ𝛼
𝑛,𝑖−1𝜕

𝛽

𝑛,𝑗
𝑐 if 𝑖 > 𝑗,

iv) (𝐴 ◦𝑖 𝐵) : 𝑈 , for expressions 𝐴 : 𝑆 and 𝐵 : 𝑇 , where

𝑈 𝛼
𝑗 =


𝑆𝛼
𝑗
◦𝑛,𝑖 𝑇𝛼

𝑗
if 𝑖 < 𝑗,

𝑆−𝑖 if 𝑖 = 𝑗 and 𝛼 = −,
𝑇 +𝑖 if 𝑖 = 𝑗 and 𝛼 = +,
𝑆𝛼
𝑗
◦𝑛,𝑖−1 𝑇𝛼

𝑗
if 𝑖 > 𝑗 .
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An expression𝐴 is typable if𝐴 : 𝑆 for some type 𝑆 . A simple structural induction shows that typable
expressions are uniquely type. Let E𝑇 ⊆ E denote the set of typable expressions. By uniqueness of
types, there exist unique maps 𝑑𝛼

𝑖
: E𝑇 → C𝑛 , for 1 ⩽ 𝑖 ⩽ 𝑛 + 1, such that 𝑑𝛼

𝑖
(c𝑥 ) = 𝜕𝛼

𝑛+1,𝑖 (𝑥) and
𝐴 : (𝑑𝛼

𝑖
(𝐴))𝑖,𝛼 for all 𝑥 ∈ C𝑛 and 𝐴 ∈ E𝑇 .

We write ▷𝑖 for the relation of being ◦𝑖-composable on C𝑛 . We extend this relation to E𝑇 by setting
𝐴▷𝑖 𝐵 if 𝑑−𝑖 (𝐴) = 𝑑+𝑖 (𝐵). Let ∼ be the smallest equivalence on E𝑇 generated by the following conditions,
for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛, 𝐴, 𝐵,𝐶, 𝐷 ∈ E𝑇 and 𝑐, 𝑑 ∈ C𝑛 :

i) 𝐴 ◦𝑖 (𝐵 ◦𝑖 𝐶) ∼ (𝐴 ◦𝑖 𝐵) ◦𝑖 𝐶 , if 𝐴 ▷𝑖 𝐵 ▷𝑖 𝐶 ,

ii) if 𝑖 < 𝑗 , 𝐴 ▷𝑖 𝐵, 𝐶 ▷𝑖 𝐷 , 𝐴 ▷𝑗 𝐶 and 𝐵 ▷𝑗 𝐷 , then

(𝐴 ◦𝑖 𝐵) ◦𝑗 (𝐶 ◦𝑖 𝐷) ∼ (𝐴 ◦𝑗 𝐶) ◦𝑖 (𝐵 ◦𝑗 𝐷),

iii) e𝑖,𝑐 ◦𝑖 𝐴 ∼ 𝐴, if 𝑑−𝑖 (𝐴) = 𝑐 ,

iv) 𝐴 ◦𝑖 e𝑖,𝑐 ∼ 𝐴, if 𝑑+𝑖 (𝐴) = 𝑐 ,

v) if 𝑐 ▷𝑖 𝑑 , then

e𝑖,𝑐◦𝑗𝑑 ∼
{
e𝑖,𝑐 ◦𝑗+1 e𝑖,𝑑 if 𝑖 ⩽ 𝑗,

e𝑖,𝑐 ◦𝑗 e𝑖,𝑑 if 𝑖 > 𝑗,

vi) e𝑖,𝜀𝑛,𝑗𝑐 ∼ e𝑗+1,𝜀𝑛,𝑖𝑐 , if 𝑖 ⩽ 𝑗 ,

vii) if 𝑐 ▷𝑖 𝑑 , then

g𝛼
𝑖,𝑐◦𝑛,𝑗𝑑 ∼


g𝛼
𝑖,𝑐
◦𝑗+1 g𝛼𝑖,𝑑 if 𝑖 < 𝑗,

(g−𝑖,𝑐 ◦𝑖 e𝑖+1,𝑑 ) ◦𝑖+1 (e𝑖,𝑑 ◦𝑖 g−𝑖,𝑑 ) if 𝑖 = 𝑗 and 𝛼 = −,
(g+𝑖,𝑐 ◦𝑖 e𝑖,𝑐) ◦𝑖+1 (e𝑖+1,𝑐 ◦𝑖 g+𝑖,𝑑 ) if 𝑖 = 𝑗 and 𝛼 = +,
g𝛼
𝑖,𝑐
◦𝑗 g𝛼𝑖,𝑑 if 𝑖 > 𝑗,

viii) g+𝑖,𝑐 ◦𝑖 g−𝑖,𝑐 ∼ e𝑖+1,𝑐 and g+𝑖,𝑐 ◦𝑖+1 g−𝑖,𝑐 ∼ e𝑖,𝑐 ,

ix)

g𝛼𝑖,𝜀𝑛,𝑗𝑐 ∼


e𝑗+1,Γ𝛼

𝑛,𝑖
𝑐 if 𝑖 < 𝑗,

g𝛼
𝑖,𝜀𝑛,𝑖𝑐

∼ e𝑖,𝜀𝑛,𝑖𝑐 if 𝑖 = 𝑗,

g𝛼
𝑖,𝜀𝑛,𝑗𝑐

∼ e𝑗,Γ𝛼
𝑛,𝑖−1𝑐

if 𝑖 > 𝑗,

x) g𝛼
𝑖,Γ

𝛽

𝑛,𝑗
𝑐
∼ g𝛽

𝑗+1,Γ𝛼
𝑛,𝑖

𝑐
if 𝑖 < 𝑗 and g𝛼

𝑖,Γ𝛼
𝑛,𝑖

𝑐
∼ g𝛼

𝑖+1,Γ𝛼
𝑛,𝑖

𝑐
.
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Let � be the congruence generated by ∼ on E𝑇 . We define 𝑋 ∗𝑛+1 ≔ E𝑇 /�, and write [𝐴] for the
equivalence class of an expression 𝐴. we define the operations

𝜕𝛼𝑛+1,𝑖 ( [𝐴]) ≔ 𝑑𝛼𝑖 (𝐴) and [𝐴1] ◦𝑛+1,𝑖 [𝐴2] ≔ [𝐴1 ◦𝑖 𝐴2],

on 𝑋 ∗𝑛+1 whenever 𝐴1 ▷𝑖 𝐴2. We further define maps 𝜀𝑛+1,𝑖 , Γ𝛼𝑛+1,𝑖 : C𝑛 → 𝑋 ∗𝑛+1, for every 𝑐 ∈ C𝑛 , by

𝜀𝑛+1,𝑖 (𝑐) ≔ [e𝑖,𝑐] and Γ𝛼𝑛+1,𝑖 (𝑐) ≔ [g𝛼𝑖,𝑐],

Finally, we define 𝐿𝑛 (C, 𝑋𝑛+1) to be the cubical (𝑛 + 1)-category with underlying 𝑛-category C𝑛 , set
of (𝑛 + 1)-cells 𝑋 ∗𝑛+1, and structure induced by the operations just introduced.

It is routine to check that this construction produces a cubical (𝑛 + 1)-category, and that it extends
to make 𝐿𝑛 : (Cub𝑛Γ)+ → Cub𝑛+1Γ functorial.

Next, we check the adjunction 𝐿𝑛 ⊣𝑊𝑛 . Let (C, 𝑋𝑛+1) be in (Cub𝑛Γ)+, let D be in Cub𝑛+1Γ and let

𝑓 ≔ (𝑔 : C → D⩽𝑛, ℎ : 𝑋𝑛+1 → D𝑛+1)

be a morphism 𝑓 : (C, 𝑋𝑛+1) →𝑊𝑛 (D) in (Cub𝑛Γ)+.
We recursively define a map 𝑓 ′ : E𝑇 → D, for all 𝑥 ∈ 𝑋𝑛+1, 𝑐 ∈ C𝑛 and 𝐴, 𝐵 ∈ E𝑇 , 1 ⩽ 𝑖 ⩽ 𝑛 + 1, as

𝑓 ′(c𝑥 ) = ℎ(𝑥), 𝑓 ′(e𝑖,𝑐) = 𝜀𝑛+1,𝑖 (𝑔(𝑐)), 𝑓 ′(g𝛼𝑖,𝑐)Γ𝛼𝑛+1,𝑖 (𝑔(𝑐)), 𝑓 ′(𝐴 ◦𝑖 𝐵) = 𝑓 ′(𝐴) ◦𝑛+1,𝑖 𝑓 ′(𝐵) .

It is compatible with � in the sense that 𝑓 ′(𝐴) = 𝑓 ′(𝐵) whenever𝐴 � 𝐵, hence it induces a well-defined
map 𝑓 ∗ : 𝐿𝑛 (C, 𝑋𝑛+1) → D. It is straightforward to check that 𝑓 ∗ is a cubical (𝑛 + 1)-functor. Hence
we obtain a map of type

(Cub𝑛Γ)+((C, 𝑋𝑛+1),𝑊𝑛 (D)) → Cub𝑛+1Γ (𝐿𝑛 (C, 𝑋𝑛+1),D).

It is also easy to check that this map is natural in (C, 𝑋𝑛+1) and D, and that it is invertible, the inverse
sending a cubical (𝑛 + 1)-functor 𝑓 to the pair (𝑔, ℎ) where 𝑔 is the 𝑛-truncation of 𝑓 and ℎ is the map
between the sets of (𝑛+1)-cells. This yields a natural isomorphism between the above hom-sets, which
establishes 𝐿𝑛 ⊣𝑊𝑛 . □

The construction of the left adjoint for cubical (𝑛, 𝑝)-categories proceeds as above, after adjoining
inverse as constants to the syntax and the associated invertibility axioms to the congruence ∼.

A.2.3. Lemma. The forgetful functor𝑊(𝑛,𝑝 ) : Cat(𝑛+1,𝑝 ) → Cat(𝑛,𝑝 ) + has a left adjoint 𝐿(𝑛,𝑝 ) .

A.2.4. Cubical polygraphs. We can now construct cubical polygraphs along the lines of their globu-
lar siblings [2]. We recursively define the categories CubPol𝑛 of cubical 𝑛-polygraphs and the functors
𝐹𝑛 : CubPol𝑛 → Cub𝑛Γ , which send a cubical 𝑛-polygraph to the cubical 𝑛-category 𝐹𝑛 (𝑋 ) = 𝑋 ∗ freely
generates by it:

i) The category CubPol0 is Set and the functor 𝐹0 the identity.
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ii) Given CubPol𝑛 and 𝐹𝑛 , the category CubPol𝑛+1 is defined by the pullback

CubPol𝑛+1 (Cub𝑛Γ)+

CubPol𝑛 Cub𝑛Γ

𝐽𝑛

𝐹𝑛

in CAT, and the functor 𝐹𝑛+1 is defined as the composition

CubPol𝑛+1
𝐽𝑛→ (Cub𝑛Γ)+

𝐿𝑛→ Cub𝑛+1Γ .

Explicitly, a cubical 𝑛-polygraph is a family (𝑋0, . . . , 𝑋𝑛), where each 𝑋𝑘+1 is a cubical extension of 𝑋 ∗
⩽𝑘

for every 𝑘 < 𝑛. The category CubPol𝜔 of cubical 𝜔-polygraphs is the projective limit of the following
diagram in CAT

CubPol0
𝑉0←− CubPol1 ←− · · · ←− CubPol𝑛

𝑉𝑛←− CubPol𝑛+1 ←− . . .

where, for every 𝑛 ⩾ 1, the functor 𝑉𝑛 is the truncation functor forgetting the (𝑛 + 1)-dimensional
cubical extension.

Finally, adding inverses both to the definition of cubical polygraphs and to the construction of the
free cubical category in Lemma A.2.3 leads to the notion of cubical (𝑛, 𝑝)-polygraphs for all 𝑝 ⩽ 𝑛. Each
cubical (𝑛, 𝑝)-polygraph 𝑋 freely generates a cubical (𝑛, 𝑝)-category, denoted 𝑋⊤.
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