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Abstract — We study the confluence property of abstract rewriting systems internal to cubical
categories. We introduce cubical contractions, a higher-dimensional generalisation of reductions
to normal forms, and employ them to construct cubical polygraphic resolutions of convergent
rewriting systems. Within this categorical framework, we establish cubical proofs of fundamental
rewriting results - Newman’s lemma, the Church-Rosser theorem, and Squier’s coherence theorem
- via the pasting of cubical coherence cells. We moreover derive, in purely categorical terms, the
cube law known from the A-calculus and Garside theory. As a consequence, we show that every
convergent abstract rewriting system freely generates an acyclic cubical groupoid, in which higher-
dimensional generators can be replaced by degenerate cells beyond dimension two.
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1. INTRODUCTION

This work started from the study of n-branchings of rewriting paths in polygraphic resolutions and
homotopical reduction-completion procedures of higher-dimensional rewriting systems [16,[19]. Such
branchings can be regarded as computations starting in the same state. An important property of
branching computations is confluence, which holds if these computations may eventually join in a
common state. Higher-dimensional rewriting is usually based on strict w-categories [2]], wich compose
cells of globular shape. Yet it often seems more natural to assemble confluence and other rewriting
diagrams into higher-dimensional cubes. So why not use cubical categories instead for rewriting?
The relationship between rewriting theory [38] — a fundamental model of computation with far-
reaching applications in mathematics and computer science — and higher globular categories is natural
and well studied [2]. We consider it in its purest form through abstract rewriting systems, through
(1-poly)graphs 07, 9" : X7 — X, where Xj is a set of 0-cells or vertices, X is a set of 1-cells or directed
edges, and 9~, 9* are source and target maps relating them. A rewriting path or computation is then a
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morphism or 1-cell in the (free) path category generated by such a graph. Higher structure emerges in
rewriting either through structured objects, or alternatively through relationships between rewriting
paths and higher relationships between higher relationships. The free monoid used in string rewriting,
for instance, is a category with a single 0-cell; rewriting steps then become 2-cells. Alternatively, in the
left square below, the 2-cell A expresses a relationship between the rewriting paths along its faces.

f f
w —> X w —>
gl A Ih
y—’k z

X
9| A(f.9) |g|f
y z
The square on the right expresses confluence of the branching y w i) x more specifically in the
sense that the paths f, g can be extended from y and z to some common vertex z, the notation A(f, g)
indicating the existential dependency of its faces f|g and g|f on f and g. Likewise, confluences of n-
branchings lead naturally to coherence n-cubes, which globular categories obviously model as globes.

Rewriting with higher cells requires higher-dimensional rewriting systems supplying generators,
relations and rewriting paths in higher dimensions: so-called computads [36] [37]] or polygraphs [10]].
Polygraphic resolutions [2, [19] 32]] then amount to the construction of higher-dimensional rewriting
systems with desirable properties such as confluence and termination guarantees. When rewriting with
structured objects, these can be obtained via reduction-completion procedures that resolve obstacles to
confluence given by certain n-branchings [16]. These have been developed for resolving algebraic and
categorical structures in homological algebra for categories [[19, [32]], associative algebras [18| 27] and
operads [31]], as well as for algebraic [16] and categorical [11]] coherence proofs.

Proofs about rewriting systems are often presented in semi-formal diagrammatic style. The liter-
ature abounds in particular with diagrams gluing cubes [4, [38]]. In higher-dimensional rewriting, this
amounts to composing higher cells in the underlying categories.

The idea of using cubical categories for higher-dimensional rewriting is not new. A cubical approach
has been pioneered by Lucas [28-30], building on Brown and Higgin’s cubical categories [[1} 8], which
in turn add compositions to the cubical sets of Serre [34] and Kan [21]]. Lucas has in particular proved
the existence of cubical polygraphs, adapting ideas by Batanin [5] and Garner [15]. His polygraphs
carry a monoidal structure to capture “string” rewriting with monoid objects. Using this formalism
he has verified some standard confluence properties using cubical 2-polygraphs, and studied certain
polygraphic resolutions for monoids. Our work is strongly influenced by his. Al-Agl, Brown and Steiner
have shown that cubical categories with connection maps are equivalent to globular ones [1I], which
suggests that one may translate between these two approaches to higher-dimensional rewriting,.

Higher confluence properties, in dimension 3 and with emphasis on cubes, have received longstand-
ing interest in the rewriting literature, too. Lévy has derived a cube law in the A-calculus, showing that
all 3-branchings of certain rewriting paths of A-terms extend around the edges of 3-dimensional conflu-
ence cubes [26]]. Several sections in Barendregt’s monograph on the A-calculus [4] are devoted to this
cube law and a theory of residuals akin to f|g and g|f in the diagram above. A comprehensive survey on
the cube law in rewriting has been writen by Endrullis and Klop [14], including work by Klop himself,
who has returned to 3-confluences and the cube law several times within four decades. Endrullis and
Klop not only open up fascinating relationships with knot and Garside theory [12] [14], they also use
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the cube law as a hypothesis for a 3-confluence proof. By contrast, van Oostrom has recently sketched
a combinatorial bricklaying procedure for 3-confluence proofs that is meant to satisfy the cube law by
construction [39].

Here, we combine the two lines of work on cubical higher-dimensional rewriting and higher conflu-
ence proofs in the context of polygraphic resolutions of higher-dimensional cubical abstract rewriting
systems, which we present as constructions of certain cubical w-groupoids.

To this end, we first extend the framework of cubical higher-dimensional rewriting with contrac-
tions, which are essential for constructing cubical polygraphs with the rewriting properties desired. For
this, we work with cubical (w, p)-categories where cells in dimensions greater than p + 1 are invertible.
Their definitions are recalled in Section 2] Our notion of contraction, introduced in Section[3] is given
by a family of lax transformations [[} 28] [29]], a generalisation of natural transformations to cubical
categories. Intuitively, contractions extend rewriting strategies to higher dimensions. For their defini-
tion, we first impose a quotient structure in dimension p on the underlying (w, p)-category, and then
define a section as a choice of a representative, for instance a normal form. Contractions extend this
choice function recursively to higher dimensions. This leads to a notion of contracting cubical (w, p)-
category, in which all cells of dimension greater than p + 1 can be contracted. The main result in this
context, Theorem3.2.5] shows that every contracting (w, 0)-category (hence every cubical w-groupoid)
is acyclic, so that all boundaries with a cubical hole can be filled with a cell.

As examples of abstract cubical rewriting, we revisit some classical diagrammatic confluence proofs
in higher dimensions as cubical cell compositions in Section[4], including variants of Newman’s lemma
and the Church-Rosser theorem in two cubical directions. We also prove a variant of Squier’s theo-
rem [35]], which requires contractions and can be seen as a low-dimensional version of Theorem [3.2.5]
for confluent and terminating rewriting systems. In particular, we present a proof of Newman’s lemma
in three cubical directions without explicitly use of the cube law, as it is an immediate consequence of
the geometry imposed by the axioms of cubical categories. Using contractions, we can even derive the
cube law without involving coherence 3-cells. To simplify proofs, we use an internal abstract rewriting
system in an (w, p)-category, which can be seen as a generalisation of a polygraph.

Our final contribution, in Section[5] lies in the study of polygraphic resolutions of cubical categories.
More specifically, we construct an acyclic cubical w-groupoid from an abstract rewrite systems 9~, 9" :
X; — Xy, using a normalisation strategy based on contractions. For this, we first introduce an explicit
construction of cubical polygraphs and prove Theorem a converse of Theorem showing
that free cubical w-groupoids on polygraphs are acyclic if and only they are contracting. We then
turn to polygraphic resolutions of confluent and terminating abstract rewriting systems, extending
them recursively to acyclic w-groupoids in Theorem which involves studying their n-branchings.
Finally, in Theorem |5.3.2] we refine this construction so that it generates no non-trivial higher cells in
dimension greater than 2. This result confirms in a more structural way that the cube law does not
require coherence 3-cells in our setting. For abstract rewriting systems, no cubes are needed, because
homotopically, all cubes are empty.

In combination, these contributions shed in particular some light on the cube law and address a
longstanding question in the rewriting community, which has been asked quite poignantly by Klop [22]]:
“One would expect [...] in higher category theory [...] that the Cube Equation [...] would be very much
present [...]. But it seems that the contrary is the case: nowhere [...] one encounters the Cube Equation or
residual notions. (I would love to be corrected!) How come? [...] Is a fundamental notion as confluence a
total stranger in categories? .
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2. PRELIMINARIES ON CUBICAL CATEGORIES

Cubical categories, introduced by Brown and Higgins [7, [9], are cubical sets equipped with partial
composition operations along the faces of higher-dimensional cubes, and with identity cells in every
dimension. In this section, we adopt the axioms of Al-Agl, Brown and Steiner [1I], augmented with the
cell-invertibility structure introduced by Lucas [28]], and we recall the notion of lax transformations
of cubical categories—referred to as 1-fold left homotopies in [1]]. Our setting is that of cubical w-
categories, possibly equipped with connections and inverses, as formalised in [17]. For each n € N, a
cubical n-category is defined as the truncation of a cubical w-category.

2.1. Cubical w-categories

We henceforth assume that Greek letters «, § occurring as superscripts of operators range over {—, +}.
2.1.1. A cubical w-category C consists of
i) a family (Cy)o<k of sets of k-cells of C,

ii) face maps o] . : Cx — Cg-1, for 1 <i < k, satisfying the cubical relations

o b =

k-1,i%,j A ; (1<i<j<k), (2.1.2)

1,j-1

iii) degeneracy maps ey ;: Cr—1 — C, for1 <i <k,
iv) composition maps oy ; : Cx Xk,; Cr — Ck, for 1 < i < k, defined on the pullback Cy X ; C of the
EH -

ki ki
cospan Cy — Cg-;1 « Ck.

These data are subject to the relations listed in Appendix Throughout this paper we consider
cubical w-categories with

v) connection maps T, : Cx—1 — Ci, for 1 < i < k, satisfying the relations in Appendix

A functor F : C — D of cubical w-categories is a family of maps (Fy : Cx — Dy )o<k that preserve
all face, degeneracy, composition and connection maps, see Appendix
All categories considered are cubical, so we drop this adjective wherever possible.

2.1.3. Any k-cell A and its faces can be represented, for 1 < i < j < k, by the diagram

9 A
- — > - +
) ak—l,iak,jA ak—l,iak,jA
1
l a,;’jAl A l 9 A

J
+ — + +
ak—l,iak,jA 7 A ak—l,iak,jA
W1



2.2. Cubical (o, p)-categories and lax transformations

The arrows on the left indicate the two directions along which the faces of the cell A are drawn. De-
generacies, cells in the codomains of degeneracy maps, are illustrated as follows, where boxes as those
on the right have been introduced in [1:

x x xX ——y
i
J
—_ X —
y Yy 7 Yy

The arrows between the two copies of x or y are drawn as equality arrows to indicate that these faces
are themselves degenerate.

The oy ;-composition of two k-cells A, B in direction i glues these cells along i if the upper faces of
the first cell in all other directions match the lower faces in all other directions of the second:

l_)i A f ok,,-fé B

J

A Ok,i B or A B

v v
> R —

Such diagrams make it easy to check that the degeneracies ¢ ; provide identities for the o ;-composition.
Connections are cells in the codomains of the connection maps I', ;. Their diagrams are as follows [1]]:

j\

y
| -

— y X

Cy
J

2 — X

X
|f or ﬁ
Yy

~ Fj
<y

A cellin C is thin if it is a composite of degeneracies and connections [[6,[7,[9]. An example is

I

We follow common practice and omit dimension indices k if suitable.

2.2. Cubical (w, p)-categories and lax transformations

2.2.1. Invertibility. Invertible cubical cells were introduced by Brown and Higgins [9] to define cu-
bical w-groupoids. Here we start with more general definitions for cubical (w, p)-categories [28]. A
k-cell A of an w-category C is R;-invertible, for 1 < i < k, if there is a k-cell B such that

Ao;B=¢0; A and Bo; A = ¢d] A.

The k-cell B is thus uniquely defined and denoted R;A, using the (partial) inversion map R;. A k-cell A
has an R;-invertible shell, for 1 < i < k, if
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i) the cells 8}”.‘A are R;_j-invertible, for every 1 < j < i,
ii) the cells 8;?‘A are R;-invertible, for every i < j < k.

Inverting a k-cell A along direction i swaps the faces 9; A, 97 A and inverts all other faces:

i R;
| ;A A |atA > ofA| RA Jora
J

Using the map R;, Lucas [28] introduced an alternative inversion map
TA = (05,4 011 I 9T A) o (Ri (I 07314 0141 @ 0141 Iy 05,1 A)) 01 (I 05 A 0 €:07,,A),

for all 1 < i < k and every k-cell A. The T; exchange the faces of a cell A between the directions i and
(i + 1) while applying inversion maps to all other faces:

9; A 9;,A
_—
l_) o 9, A A a A 'i’ ;A TA dtA
Y i+1 i+1 i 1 i
: _— _—
IfA 97, A

Additional properties of inversion maps, which are needed later, are listed in Appendix

2.2.2. (w, p)-categories and w-groupoids. An (w, p)-category C is an w-category in which every k-
cell with an R;-invertible shell is R;-invertible for all k > p and 1 < i < k. A functor of (w, p)-categories
is a functor between the underlying w-categories. An w-groupoid is an (w, 0)-category.

2.2.3. Lax transformations. We recall Lucas’ definition of lax transformations (called lax 1-transfors
by him) [28] 29]. They adapt natural transformations to cubical categories. We use them to define
contractions of (w, p)-categories in Section 3.1

A lax transformation n : F = G between (w, p)-functors F,G : C — 9D is a family of maps that
sends each k-cell x in C to a (k + 1)-cell n, in D, for every k € N. It satisfies, forall 1 < i < k and
k-cells x,y in C,

i) if i # 1 then 9 ny = F(x), 9{nx = G(x) and 97 nx = 1= x,
ii) 7xo;y = Nx ©i+1 Ny if x and y are i-composable,
iii) 7., = gy ifk <n-1,
iv) nre, =T mifi <k <n-1

Axiom [i) indicates that oy is a transformation from F(x) to G(x), in the sense that its source and
target faces in direction 1 are determined by F(x) and G(x), respectively. Its faces in the other directions
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are determined by the value of ¢ at the faces of x, suggesting that ¢ can be defined recursively in the
dimensions. The shape of oy is

F(o,_,x) M F(o7_,x)

i
o9~ O 5+
l 3i_1xl U, Ox l 9 _yx

1
G(9_,x) m G(o7_x)

3. CUBICAL CONTRACTIONS AND ACYCLICITY

In this section, we introduce contractions for cubical categories, extending the corresponding notion
for globular categories [[19], and generalising the normalisation strategies of rewriting theory to higher
dimensions. The main result in this section, Theorem shows that contracting w-groupoids are
acyclic, providing a constructive method for proving acyclicity.

3.1. Contractions

Defining contractions for an (o, p)-category C requires a notion of section, and in turn the construction
of quotient p-categories on (w, p)-categories.
3.1.1. The face maps in the coequaliser
%
CP+1 ? Cp _— Cp
1

in the category Set compare the two faces of a (p + 1)-cell in direction 1. We could have chosen any
other direction i instead to construct C), as the following lemma shows.

3.1.2. Lemma. In every cubical (w, p)-category C, the following coequalisers are equal for2 < j < p+1:

o7 a7
1 T —_— Jj T —_—
CP+1:;CP—)CP and CP'H:;CP—)CP'
o ;
J

Proof. Two p-cells f, g in C are in the same equivalence class of the second coequaliser if and only if
thereisa (p + 1)-cell A in C such that, forall 1 < i < p + 1 such thati # j,

€j_1aiaf ifi < j,

9;A=f, A =g, %A =
iA=S 0= ' {gjal.“_lf ifi> j.

These identities assemble to the diagram
X ——y

l—> i

J

X —>Uy
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Let A be such a cell and define B = RiT>...T;4 (1"(+1 j)f 0jAo; 1"(_1 j)g) where F(+1 7 and F(_l ;) are

extended connections defined as T”; m = Im=1--. T,Hr;* , for all [ < m. The faces of B in direction 1 are
equal to f and g; all others are degenerate. Thus f and g are in the same equivalence class for the first
coequaliser. The reverse direction is similar. O

3.1.3. Quotient category Ep. We equip the set Ep with face, composition, degeneracy and connec-

9% ;
tion maps. For the composition map o;, for i < p, we write X X¢, X for the pullback of X — C; < X
for any set X. We use the coequaliser
oy xay _ —
Cp+] Xci Cp+1 ﬁ; Cp Xci Cp I Cp Xci Cp = Cp Xci Cp
1 1

(=~ is unique because coequalisers and pullbacks commute in Set) to define o; : Ep Xc; Ep - Ep as the
unique map for which the diagram

Cp+1 X¢e; Cp+1 — Cp Xc; Cp — Cp Xci Cp

. ) o
0; o; i04
v

Cp+1 fr— Cp _ Cp

commutes. Face, degeneracy and connection maps are defined likewise, using the universal property of
the coequaliser C,. This extends C,,_; to an (w, p)-category, also denoted C,. Its p-cells are equivalence
classes modulo C 41, and it has degenerate and connection cells in dimensions higher than p.

3.1.4. Unital sections. The canonical projection (w, p)-functor 7 : C — Ep is an identity on k-cells
for k < p. It sends p-cells to their equivalence classes in Ep and k-cells of dimension k > p to degenerate
cells. The fibre of & over a p-cell u in Ep extends to the (w, 0)-category C,, defined as follows:

i) its O-cells are the p-cells x in C such that 7(x) = u,

ii) its k-cells are the (p + k)-cells f in C such that 8;‘;1’16;12’1 e aZika € u, for every k > 1,

iii) its face maps 8;(“1 on C, are the 8z+k’l., forall1 <i <k,

iv) likewise for the degeneracy, connection and composition maps.

A section of the projection 7 : C — Ep is a family
1=(1,:1— Cu)ueEp

of (w, 0)-functors, where 1 is the terminal category in C. We only consider unital sections, which satisfy
Lz(¢) = t for every thin p-cell t in C and for all p > 1, but usually omit this adjective.

The section ¢ sends each p-cell u in Ep to a functor 1, with the representative p-cell of u in C in its
image, while leaving all thin cells unchanged. We write 1, for this representative of u as well. Moreover,
for every k-cell f of C with p < k we write f for the image of 1;(r) in C,(f) by abuse of notation,.
Example diagrams for sections are given in
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3.1.5. Contractions. Let:be a section of the projection 7 : C — Ep. A i-contraction of C is a family o
of lax transformations
id
7
C

u ﬂo‘u u
ueC,
where { is the unique (w, 0)-functor into 1, such that

0, = €1ly and og = I oy, (3.1.6)

for each u in Ep and f in Cy with p < k, and where oy stands for (o, (4))4 for each cell g in C, for p < £.
Expanding this definition, a t-contraction ¢ is a family of maps (Cx — Ck+1)k>p such that for each
k-cells f, g in C and every i with p + 1 < i < k, the conditions i)-iv) from §2.2.3|hold:

i) The boundary d(cy) is the (k — 1)-square f° defined by
o f°=f, Nf=ek...epn%, o f’ =00 s,

which yields the diagram

f
X ——y
l_> l fa = UXJ lay
1 ~ ~
X y
ii) If f and g are o;-composable, then
f g
x y z
i+1 o
l_> Ofo;g = Of Oit+1 Og = O_xl of l Y Oy lo—z
1
X y z

iii)

i+2

X
f_> i+1 O¢if = €i+10f = of l
y

x

1
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iv) If i < k, then

i+2

X
lL» i+1 orer =Tfor= | op |
1 y
X

i

X
[T?2 og=To= ‘
%

1

of
7

The first condition in (3.1.6) is equivalent to o3 = £ X for each p-cell x in C:

Examples of contractions in low dimensions are given in §3.1.8] Contractions, understood as fami-
lies of lax transformations, can be computed recursively across all dimensions, starting from a chosen
section. They are also compatible with inverses, as stated in the following lemma.

3.1.7. Lemma. For everyk-cell f withp < k, and forall1 <i<kand1< j<k,
OR,f = Riv10f and or;f = Tjri0¥.

Proof. For og,r = Riy107, we check that og, r 0;41 0f and oy 0;41 og,  are thin cells. The claim then holds
because thin cells with the same boundaries are equal [28]. The proof of o7, s = Tj,107 is similar. O

3.1.8. We present example diagrams for £ and o for a cell f of low dimension in an w-groupoid C.

i) If x € Cy, then x? is the 0-square (x,x) and o, : x — X the 1-cell filling it.

i) If f € Cy, then f? is an 1-square and o a 2-cell filling it:

|-

Q) — @
q:Q

g |

Q) —
QQ

% pea

1

Ox

R) —— R
R) —— R

10
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iii) If A € C,, then A? is a 2-square and o4 a 3-cell filling it:

-

Y3
714

2
l OarA
Y3 =

m)<—t:

L‘:) <_|
| >
N
) «—— <«

AN
N

\

3 X ——

f—»Z

B
x

x
X

3.1.9. An (w, p)-category is contracting if it admits a contraction. This property does not depend on

Y2 Y

particular choices of sections. For each (/—\)-00ntraction o, we can define a (:d)-contraction 7 such that,
for every k-cell f, with p < k < n, the (k + 1)-cell 7 is the composition

Tf = 0f 01 RiOgy e, % = Of O1 €41 - - - Ep+2R10%,

where x = 8;“ e 8,;f For p = 0 and x € C,, for instance, 7y is the o;-composition

Ox . Rozx _
X X X

and for f € Cy, 7y is the o;-composition

of

R Ogix = &R05

Rl e—— R) «—— &
m;<—m)<—c

3.2. Acyclic w-groupoids
We now show that acyclicity of w-groupoids can be obtained by constructing contractions. Our proof
unfolds cubes into cubes with degenerate faces in each direction i > 2 using folding and unfolding
maps [} Def. 3.1].
3.2.1. Acyclicity. Defining acyclicity for a cubical (w, p)-category C requires three further notions:
i) A k-square of C, for k > 0, is a family (f;*)i<i<k+1,« of k-cells in C such that
o fjﬁ - a]ﬁ_ e (3.2.2)

forall 1 <i < j < k+1. We write Sq;(C) for the set of k-squares of C.

11
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ii) The boundary dA of a k-cell Ain C, for k > 1, is the (k — 1)-square (9{A) <i<ka-
iii) A filler of a k-square S is a (k + 1)-cell A such that 9A = S.

An (o, p)-category C is acyclic if, for k > p, every k-square of C has a filler.
The following diagrams show a 2-cell A and its boundary 1-square:

oA oA
_— R ——
2
I az—A| LA |aZ+A 0A = a;A‘ |aZ+A
1
_—
arA arA

3.2.3. Folding and unfolding. Let C be an w-category. The folding maps y;, ¥;, ® : C;, — C,, are
defined,for1<i<m-1,1<j<mand0 < k < mas

Yi(x) = Iﬂi+ai_+1x Oit+1 X Oj+1 rl-_é‘;'ﬂx = | * - )
L ifj=1, - y
I Yj-1¥j—1 otherwise R EA A A

id ifk=0,
‘Dkz{ =¥ .. Y=t (1) ... (Yk-1... Y1),

®;_1¥, otherwise
They extend to maps from (m — 1)-squares to (m — 1)-squares [[1} Prop. 8.5].
Consider the sets
SqFy,_; = {(5,4) € 5q,,_;(C) X C | 9A = p(5)}

of squares with corresponding fillers, for ¢ € {t;, ¥;, ®r}. The unfolding maps ¥/; : SqFf:_1 — Cms
Wj : SqFZj_1 — Cpp and @ : Squ’“_1 — C,y, are defined as

V(8. A) = (657 01 T;'S}y) 01 Aoi (I Siyy 011 S}) = A
-4
_ A if j=1,
\IIJ(S,A) =93— — .
¥io1(S¢;-1(¥-1(5), A)) otherwise,
_ A ifk=0,
O(S,A) =1 _
Wi (S, @p_1(¥r(S),A)) otherwise.

3.2.4. Lemma. Every folding or unfolding map¢ € {Ji, W, &} satisfies dp(S, A) = S, for every (m—1)-
square S and m-cell A such that 0A = ¢(S).

12



3.2. Acyclic w-groupoids

Proof. The proof of Jl- is straightforward. Those for ¥; and @ follow by induction. ]

We are now prepared for the main result of this section.
3.2.5. Theorem. Every contracting w-groupoid is acyclic.

Proof. Suppose C is an w-groupoid with a section (/\—) of the projection 77 : C — C, and a contraction o.
For m > 2, let S be an (m — 1)-square. We set T = ®,(S), g¢* = T* and A = 0~ o1 Ry04+. Then

T = 10] TY = €10/ I,' = 1009 = €19¢g"
for every 1 < k < m by [l Prop. 3.6]. It follows that 9;g~ = d;g", for every 1 < k < m. Hence A is a

filler of T, because, for 1 < k < m,
(04 — (04 (04 — — — — — o
akA = ak O'g— 04 Rlak O'g+ = 0-32,197 01 R103z719+ = 0-31?,197 04 Rlo-ag,197 = 81(91 Cfa]l:ilgf = Tk s

and the case k = 1 is obvious. Finally, set B = ®,,(S, A). By the above calculation and Lemma
0B = S, that is, B is a filler of S and acyclicity of C follows. m]

3.2.6. The casen = 2. Theoremremains valid for n-groupoids with n > 2. First, the definitions
of sections and contraction in and extend to n-groupoids, forgetting all cells of dimension
greater than n. The proof replays that for w-groupoids, except that only (m—1)-squares with2 < m < n
require consideration. As an example, we show that every contracting 2-groupoid C is acyclic. Suppose
Chasa (/\—)—Contraction 0. We start with a 1-square

5
a——b
—d
c 57
The folding maps yield the 1-square
ST S ST St
a ¢ ——>b—25d a—>b—sd
T=0,5) =05 =a(8) = | T [ S l ; H - H
a —> ¢ d——4d a —> ¢ d
S Sy S, St
The contraction o fills the 1-square T with
o Tssiasp
[
Ox or- Ox’ a d
A= Zf C’l\ = O'Tl— 04 R1C7T1+ H :
Ox R10'Tl+ [O—x' a T1+ d
a d

T7=S; o18]
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4. Cubical coherent confluence

The unfolding maps then allow us to construct the following filler of S, showing that C is acyclic:

a a i b —==1»
el
a a b d
B=0,(S,A) = ¥5(S,A) = §,(S,A) = A H
a c d=—=14d
SRR
c c—— d=—==4d

Sy

Lucas has established a variant of Theorem3.2.5/for cubical monoidal (2, 0)-polygraphs [30]. Instead
of using folding and unfolding maps, he rotates cells with the same shape as contractions with the
inversion maps R; and T;, and then glues them using connection maps. Folding and unfolding maps
seem to make the proof for cubical w-groupoids easier. These maps rotate all the faces of cubes in
direction 1, so that the proof does not become more difficult with increasing dimension.

4. CUBICAL COHERENT CONFLUENCE

We now use the cubical machinery introduced in the previous section to establish confluence properties
of abstract rewriting systems (ARS) in cubical (p + 2)- or (p + 3)-categories, for any p € N. Although
cubes have (p + 2) dimensions, we restricted rewriting relations in two or three fixed directions. Apart
from coherent versions of Newman’s lemma and the Church-Rosser theorem in two directions, we
also prove Newman’s lemma also in three directions, for which additional structure was present or a
specific cube law had to be imposed previously [4] 14} 24} 26]. The coherence in these results expresses
the way to tile confluence or local confluence diagrams by pasting a given set of higher-dimensional
witnesses. Finally, as a special case of Theorem 3.2.5| we derive a cubical version of Squier’s theorem,
using normalisation strategies as special kinds of sections and contractions. We assume familiarity
with the basics of classical rewriting [[3] 13} 23] [38]].

4.1. Confluence fillers

4.1.1. Abstract rewriting in cubical categories. Let C be a (p +2)-category for some p € N. We fix
an integer i such that 1 < i < p — 1, representing a choice of direction. A p-ARS in C is a subset X¢
of Cp11, whose elements are non-degenerate in direction i. We write X Zf (resp. X Z,’) for the small-
est subsets of Cpy; that contain X¢ and are stable under o;-compositions (resp. o;-compositions and
inversions). The elements of X Zf are sequences (fi, ..., fx) of o;-composable (p + 1)-cells in C, called
rewriting paths of length k, which we identify with their composite f; o; ... o; fi in C. The elements
of X Ei are sequences of o;-composable (p + 1)-cells in C and their R;-inverses, called rewriting zigzags.

14



4.1. Confluence fillers

The p-ARS X ¢ is Noetherian (in direction i) if it admits no rewriting path of infinite length. This
property is needed for proofs by induction on rewriting paths.

A branching (in direction i) of X ¢ is a pair (fi, f2) of (p + 1)-cells in XO‘ such that 9] f; = 9; f>. It is
local if fi, f» € X¢. We denote by B(X¢) (resp. LB(X¢)) the set of branchlngs (resp. local branchlngs)
of X¢. The p-ARS X is (locally) confluent (in direction i) if for every (local) branching (f}, f2) of X¢,
there are g1, g, € X°* such that

Gh=9 9,  =09g» 9 g1=0g
These identities determine the confluence diagram

f2
X — 1

I~ i+l fl{ lgz (4.1.2)

i
Y —5—> %

91
The p-ARS X ¢ is convergent if it is confluent and Noetherian.

4.1.3. Confluence fillers. A (local) confluence filler (in direction i) of a (local) branching (f;, fz) of X¢
isa (p + 2)-cell A2(f1, f2) in C such that

al_AZ(fl’fé) = fz’ al_-}.lAZ(fbfZ) = flﬂ a+A2(f13fé)> 1+1A2(ﬁ3ﬁ) € XOl .

This determines a (local) confluence diagram similar to (4.1.2):

2

x
i+1
Az (flfz ,+1A2 (fi.f2)
i
Y1

8+Az (A fz)

We write LCf(X¢) (resp. Cf(X)) for the subset of Cp2 of cells with the shape of a local confluence
filler (resp. confluence filler), that is, (p + 2)-cells A such that

dt(A), %, (A) € X 9; (A),0;,,(A) € X¢, (resp. 9; (A),0;,,(A) € X‘g).

Therefore, A, defines a map A, : LB(X¢) — LCf(X¢) (resp. Az : B(X¢) — Cf(X¢)).
We can now state and prove a coherent cubical version of Newman’s lemma.

4.1.4. Proposition. For a Noetherian p-ARS X¢, each map A, extends from LB(Xs) — LCf(X¢)
toB(X¢) — Cf(X¢).

Proof. We extend the map A; by Noetherian induction in direction i on the source of branchings. We
order p-cells by the relation < generated by X¢, defined by x < y if there is a rewriting path f such
that 9, f =y and o} f = x.
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4. Cubical coherent confluence

The base case is trivial. For the induction step, le (fi, f2) be a branching. If f; is a degeneracy in
direction i, the result is trivial, as the map A; is extended by the formula A;(fi, f2) = €;f2. The case
where f, is a degeneracy in direction i is similar. In the other cases, we decompose f; = g; o; h; and
f2 =gz 0; hy, with g1,9, € X¢ and hy, hy € X cg and extend A, recursively as

Az (fi, f2) = (A2(g1, 92) 0ir1 A2(9] A2(91,92), h2)) 0 Az (hy, 3} (A2(g1, 92) 01 A2(97 Az(g1, g2), h2))).

This pasting of cubes ressembles the classical diagrammatic proof of Newman’s lemma:

92 , hy ’
x x x
. 91 Az2(g1,92) A2(97 A2(1,92), ha)
f’ 1 ; y M (4.1.5)
l hy | Az(h1, 07 (A2(91,92) i1 A2(97 A2(g1, 92), ha)))
z z/

O

4.1.6. Church-Rosser fillers. A Church-Rosser filler (in direction i) of a cell f in X Zi isa (p+2)-cell
B(f) in C such that

B(f)=f  B(f) =€d;d{B(f).,  9,B(f),%,B(f) € X7,

which determines the Church-Rosser diagram

|-

N —

, oLiB(f)
1

X
i+ 1
I ai‘HB(f)l B(f)
y4

Once again this correspondence defines a map B : X Ei — CR(X¢), were CR(X ) denotes the subset
of Cp42 of cells of the shape of a Church-Rosser fillers.
With these definitions, we prove a coherent cubical version of the Church-Rosser theorem.

4.1.7. Proposition. For a p-ARS X¢ ina (p + 2,p + 1)-category C, each map Az : B(X¢) — Cf(X¢)
induces a map B : XZ," — CR(X¢).

Proof. Every cell fin X Zf is an zigzag fi o; - - - o; fx of minimal length k of non-o;-identity cells in X Zf

and of R;-inverses of such cells. We define the map B on cells of X Z," by induction on their length k.
The base case k = 1 is trivial. For the induction step, for k > 2 and f; € X}, we extend B recursively:

B(f) = (I7 fi ois1 & (f2 0 -~ i fi)) 0 B(fa 0i - -~ 0; fio),
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4.2. 3-Confluence and the cube law

which corresponds to the diagram

i fereefc
X

x x
f I” & ‘
- i+1 M N f2oir-0if o (4.1.8)
I B(f0; -0 fx) |
y y

Otherwise, for k > 2 and R;f; € X OC’ we extend B recursively using the map Aj:

B(f) = (eifi o1 I} fi 0101 B(f2 01 -+ 0 fi)) 01 (RiniIy fi 0ie1 A2(f1.9)) 0i I 97 A2 (f1, 9),

where g denotes the (p + 1)-cell 9, B(f; o; - - - o; fi). This corresponds to the diagram

ﬁ ’ xl féoi.“oif;c x//

& rr gl B(f2 i+ i fr)
x x’ y y
I~ t+l 4.1.9
. Ri I Ax(f1,9) (4.1.9)
i
x x z
z z

O

The diagrams in the proof of the coherent Church-Rosser theorem reduce to the familiar triangular
shapes in the classical diagrammatic Church-Rosser proof once degeneracies are collapsed and the
corresponding p-cells are identified.

4.2. 3-Confluence and the cube law

4.2.1. 3-confluence fillers. A 3-branching (in direction i) of a p-ARS X in a (p + 3)-category C is
a triple (fi, fo. f3) of (p + 1)-cells in X such that o] fi = 9; fo = 9; f5. It is local if fi, f, fs € X¢. We
denote by B3(X¢) (resp. LB3(X)) the set of 3-branchings (resp. local 3-branchings) of X ¢.

A (local) 3-confluence filler with respect to a map A, : B(X¢) — Cf(X¢) of a (local) 3-branching
(fis 2, f3) is a (p + 3)-cell A3(fi, fo, f3) in C with faces

9; As(fi. for f3) = Aa(fo: o), 9 As(fi, fo f3) = A2(07 Az (fr, f2), 97 Aa(fi. f5)),
9143(fi, for f3) = A2 (fr, f3), InAs(fis fo f3) = Aa(3 A2 (fis o), 7 A (for 12)),
I243(fi, for f3) = A2 (fr, o), T2 As(fir for 3) = As (911 A2 (i, f3), Oy Aa(f2o 3))-
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4. Cubical coherent confluence

We write Cf3(X ¢, Az) (resp. LCf3(X ¢, Az)) for the set of confluence fillers (resp. local confluence fillers)
with respect to the map A,.

These definitions allow us to prove a coherent cubical Newman’s lemma in three directions, and
thus in three dimensions.

4.2.2. Proposition. Let X¢ be a Noetherian p-ARS in a (p +3)-category C with a map A, : LB(X¢) —
LCf(X ). Then each map As extends from LB3(X ) — LCf3(X¢, Az) to B3(X¢) — Cf3(X¢, Az).

Proof. By Proposition[4.1.4] the map A, extends from local to arbitrary branchings and confluences. We
extend the map As by induction in direction i on the source of the 3-branchings.

The base case is trivial. Let (fi, f2, f3) be a 3-branching with source x and suppose that the map A;
extends to 3-branchings with source a p-cell reduced from x. For each 1 < i < 3, we write f; = f/ o; f/,

where f belongs to X¢. By assumption, the local 3-branching (f/, f,, f;) is filled by the 3-confluence
filler B = As(f], f;, f;). Then, using the induction hypothesis,

— the 3-branching (97,07,

i+17i+2

B, d; d7,,B, f3”) is filled by the 3-confluence filler

i+2

C = A3(ai_+la;r+zB5 8;8;_23,]%”),

— the 3-branching (9,0}, B, f;’, 9;

i+17i+1 Y1 T+l

(B oy C)) is filled by the 3-confluence filler

D = A3(ai_+18;—+1B’ 2”’ ai_a;rﬂ(B 042 C)),

— the 3-branching (£}, 9;,,9} ((B 042 C) 0j+1 D), 9; 97 ((B 0442 C) 0441 D)) is filled by the 3-confluence
filler
E = A3(f{’,0;119] ((B o2 C) 0j41 D), 0; 9] ((B oz C) 0j41 D)).
We then extend the map As; inductively, setting

As(fi, fo, f3) = ((Bojyp C) 041 D) o; E.

This construction corresponds to the diagram

 c .7
i+2 / /

|
i | 2] > |7
| = |7

i
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4.2. 3-Confluence and the cube law

4.2.3. The cube law. Our functional approach to confluence fillers admits an interpretation in terms
of residual paths and of the cube law. Indeed, the map A, allows defining a residuation operation

fil fo = 9aA(fi. fo),

for every branching (fi, f2). This operation is well-known from the A-calculus [4] 26]]. It gives rise to
the confluence diagram

f2

X —> 12

f1| lfllfz

Y1 ——=> =2

flfi

To work with residuals, it helps memorising f; | f as the translation of f along f; in the square spanned
by fi and f7, and f; | fi as the translation of f; along f;.

Lévy has shown that residuation satisfies the cube law in A-calculus [26] Lemma 2.2.1], see also [4}
Lemma 12.2.6] and [[12, Def. 4.49], which is often presented as a single cube law up to permutation of
indices. For a 3-branching (f;, f2, f3), the cube law state that

Kl Gl ) = Fil fid (i | fios

for all pairwise distinct i, j, k in {1, 2, 3}. Geometrically, this law assembles rewriting paths around the
following cube spanned by the 3-branching:

GANARNCZN )

fBlh
T (Bl (A f)

A1) (flf)

flf AR IR

filfe
f

flfs
5

Sl fe

fo

In this cube, the residual path fi| f; is obtained by translating f; along f; in the front square and
the residual path f; | f; by translating f; along f; in the bottom square, so that (fi | f2) [(f5 | f2) is the
residual path of these two residual paths on the back face of the cube. Similar translations show that
(fil f5) |(f2 | f3) represents the same arrow. The other instantiations of fi, f;, f3 in the cube law produce
the remaining blue arrows and thus assemble all arrows around the cube.
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4. Cubical coherent confluence

The cube law follows from the cubical relations applied to the cube As(f1, f2, f3), for instance,
A1) = 05105 As(fis fo ) = 01107043 (fiu fo. ) = (A1 ) 1(f2] o).

They are thus a natural and immediate consequence of the way faces are attached to cells of cubical
sets, hence of the geometry of cubes that emerges somewhat accidentally from the laws of A-calculus.
The cube law has appeared more recently as a postulate in 3-confluence proofs in classical abstract
rewriting [[14] [24]].

4.3. Normalising confluence

Next we bring the sections and contractions from Section (4| into play and prove normalising variants
of Newman’s lemma and the Church-Rosser theorem. We also state and prove a cubical version of
Squier’s theorem, which requires normalisation.

4.3.1. Normal forms and contractions. Let X be a convergent p-ARS in a (p + 2)-category C.
A cell x € Cp is a normal form (in direction i) if there are no cells f € X¢ for which 9 f = x. By
convergence, any rewriting path that starts from any x € C, terminates in a unique normal form Xx.

This determines a section (/—\) of the projection 7 : C — Ep, as defined in \ For every x € C,
we choose a (p + 1)-cell o, € X‘g such that 0 : C, — C)41 is a contraction in the (p + 1, p)-category

generated by C 41, as defined in §3.1.5]

4.3.2. Normalising fillers. A normalising (local) confluence filler (in direction i) of a (local) branching
(fi, f2) of X is a (p + 2)-cell Ax(fi, f2) in C such that

o A(fif)=fo  dmA(ffo)=fi  GAR) =05s  Fuh(ff2) = 05y

These identities assemble to a (local) confluence diagram

> Y2

X
I+ 1
o |z(f1,fz) (433)
i
vt Gyl

A normalising Church-Rosser filler (in direction i) of a cell f in XZ," isa (p +2)-cell B(f) in C of shape

y
l“y

X

5 |

l—>i+1

i

><><—><

We write NCf3(X ¢, A2) (resp. NLCf3(X ¢, Az)) for the set of normalising confluence fillers (resp.
normalising local confluence fillers) with respect to A, and NCR(X¢) the set of normalising Church-
Rosser fillers of X ¢.

These notions allow us to prove normalising variants of Newman’s lemma and the Church-Rosser
theorem with the same diagrams as before, but with normal forms and degeneracies in suitable places.
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4.3. Normalising confluence

4.3.4. Lemma. For a Noetherian p-ARS X¢, each map A, extends from LB(X¢c) — NLCf(X¢) to
B(Xc) = NCf(Xe).

Proof. The proof is similar to that of Proposition [4.1.4] but confluence fillers are now normalising. In
Diagram (4 we thus replace y’, y”” and z’ by X and arrows between the X by degeneracies. ]

4.3.5. Lemma. For a p-ARS X¢ in a (p + 2,p + 1)-category C, each map A, : B(X¢) — NCf(X¢)
induces a map B : Xz,i — NCR(X¢).

Proof. By the obvious replacements in the diagrams in the proof of Proposition [4.1.7} O

Finally, we state a cubical version of Squier’s theorem [35] for 1-groupoids. Its formulation moti-
vates the extension of the notion of cubical normalization strategies to higher dimensions, which is the
subject of the next section.

4.3.6. Proposition. For a convergent ARS X¢ each map A, : LB(X¢) — NLCf(X() extends to a
witness 2-cell for a proof of acyclicity of the groupoid X¢c ™.

Proof. Lemmas and allow us to construct a map B from zigzags to normalising Church-Rosser
fillers. Every square S is then obtained by the following composition of cubes:

S
x —
Iy, l B(3;,S5) l RooT;
N Fe—
2 N +
l_) 82_,25 TZle(az,zS) R2,2T2’1B(82’25) 8‘2"’25
1
N
R2,1F2+1 ‘ Ry, 13(5315) ‘ Ry1R 0T
yl [— y

4.3.7. Remark. Proposition is a low-dimensional version of Theorem [3.2.5, proved without using
folding maps. The same method has been used by Lucas [30]], rotating and glulng confluence fillers to
fill a square. Yet extending to higher dimensions as in Theorem seems combinatorially difficult,
as it requires rotating and gluing all confluence fillers of the faces of a k-square.

For a converse of Squier’s theorem for cubical w-groupoids freely generated by (w, 0)-polygraphs
see Theorem [5.1.3| below.
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5. Cubical groupoids in abstract rewriting

4.3.8. The cube law revisited. Contractions allow defining (f|g) = 05 (4) for any branching (f, g).
For 3-branchings (fi, f2, f3), we can then derive the cube law,

il s 112) = 0ot (o, 5, = €97 (f2) = €97 (f5) = 05100 ) = (il ) [(f2 ] f5),

without using 3-confluence fillers explicitly. Contractions also allow constructing 3-confluence fillers
more easily, and extending the techniques in this section to higher dimensions. In Section[5|we formalise
higher-dimensional versions of normalising confluence diagrams, generated from the confluence of n-
branchings, in cubical n-polygraphs and for n > 2. We use them further to construct w-groupoids on
convergent ARS.

5. CUBICAL GROUPOIDS IN ABSTRACT REWRITING

In this section, we present extensions and applications of Theorem to cubical polygraphs, after
briefly recalling their structure in Subsection Theorem shows that a free w-groupoid on a
polygraph is acyclic if and only if it is contracting. In Subsection we construct free w-groupoids
extending convergent ARS, defining for each k > 2 a map Aj from local k-branchings to local k-
confluence fillers and thereby accounting for the confluence of higher-dimensional branchings. Finally,
in Theorem [5.3.2] we show that a suitable choice of 2-cells for A, refines this construction so that all
k-cells are thin for k > 2. This shows that abstract rewriting with normalisation strategies does not
require the generation of coherence cells in dimensions higher than 2. Together, these two results
provide cubical analogues of Squier’s theorem for ARSs.

5.1. Cubical polygraphs, contractions and acyclicity of cubical groupoids

First we recall the notion of cubical polygraph. The existence of this structure was originally established
by Lucas in the context of Gray categories [28] . Yet the explicit construction of the free category
generated by a cubical polygraph was not made explicit therein. For completeness, we provide such a
construction while deferring a detailed development to Appendix including a proof of existence of
the free (cubical) (n — 1)-groupoid X|_,.

5.1.1. Cubical polygraphs. A cubical (1,0)-polygraph (a 1-polygraph) (Xo, X1) consists of a set Xj
of 0-generators and a set X; of 1-generators or rewriting steps, equipped with source and target maps
of, : X1 — Xo. It freely generates a 1-category X", as well as a 1-groupoid X'. A cubical cellular
extension of a cubical (n —1,0)-category C is a set X, of n-generators and face maps 8’01‘,1. : X, = Cnoq
for 1 < i < n which satisfy the cubical relations (2.1.2).

A cubical (n,0)-polygraph X = (X, . .., X,) is formed by a cubical (n—1, 0)-polygraph (X, . . ., X;-1)
and a cubical cellular extension X, of the free (cubical) (n—1)-groupoid X,_,. A cubical (w, 0)-polygraph
is obtained by a colimit construction; it consists of a family of sets X = (Xj, Xj, ...) such that every
subfamily (X, . .., X,) is a cubical (n, 0)-polygraph. A polygraph is acyclic if and only if the associated
free groupoid is acyclic.

All polygraphs considered in the sequel are cubical.

In order to construct acyclic polygraphs that extend a convergent ARS in Sections [5.2]and [5.3] we
characterise acyclicity via the existence of contractions in Theorem adapting a similar result for
globular polygraphs [19]]. We start with the following characterisation of contractions.
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5.2. An acyclic w-groupoid from convergence

5.1.2. Lemma. Let X be an (w, 0)-polygraph and (/—\) a section of the projection m : XT — XT,. The
contractions of X' are in bijective correspondence with the following data:

i) a family of 1-cells oy in X,' with boundary x° = (x,x), for every 0-cell x in X, such that x # X,

ii) a family of (k +1)-cells oy in X[ |, for every k > 0, with boundary f°, for every k-cell f in X that
is not of the form o, for some g in X;_,.

Here, f° is defined recursively with respect to the dimension of k-cells f in X", as in Section

Proof. A contraction has fixed values on thin cells, R-inverses, compositions and on elements of the
form X for x € X; or g, for some g in X" . So the values of o for f in X;” are uniquely and completely
determined by its values on generators of the form given in the lemma. A construction of the free
groupoid X" can be found in Appendix|[A.2} ]

We can now prove the converse direction to Theorem for polygraphs.

5.1.3. Theorem. The free w-groupoid generated by an (w,0)-polygraph is acyclic if and only if it is
contracting.

Proof. Let X be an acyclic cubical (w, 0)-polygraph. We construct a contraction o recursively in the
dimension of cells. This yields a contraction of the cubical (k + 1, 0)-polygraph (X, ..., Xk4+1) for each
0 < k < n. For k = 0 and every 0-cell x € Xj such that x # X, we choose o, : x — X in X, which exists
by definition. This yields a contraction of (X, X;). For k > 0, suppose ¢ is a contraction of (X, . .., Xk)
and take a k-cell f € X which is not of the form o, for some g € X, |. By acyclicity, the k-square
9 admits a filler A in X/,,» and we set o := A. By Lemma o extends to a contraction of the
(k +1,0)-polygraph (X, ..., Xk+1). Taking the colimit yields a contraction of X.

The reverse implication follows from Theorem considering the w-groupoid C = X7 freely
generated by X. ]

We use Theorem in Theorems[5.3|and below to calculate acyclic extensions of ARS.

5.2. An acyclic w-groupoid from convergence

Next we describe the construction that extends a convergent ARS into an acyclic w-groupoid generated
by its higher-order branchings.

5.2.1. Abstract rewriting systems. For a 1-polygraph X, we consider the cellular extension Xj as an
ARS on 0-cells in the free category X*, as defined in and a section (—) defined by the normal

forms in ~. A normalisation strategy for X is a contraction o : X, — X with respect to (—) defined,
for each x € X, as

Ox = Nx ©1 09} (ny)>

where 1, € Xj is the first rewriting step of oy.
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5. Cubical groupoids in abstract rewriting

5.2.2. The polygraph C_(X). Let X be a convergent 1-polygraph and ¢ a normalisation strategy
for X. For every x € X, we fix a strict order < on the set {f € Xj | 9 f = x}, making 7, the least
element. We construct an (w, 0)-polygraph involving higher-order branchings and their confluences
by transfinite recursion, defining a sequence of cellular extensions (C, (X))x>0 by

i) Cy(X) := Xp and C,(X) = X,

ii) For k = 2, C,(X) = {A:(fi. o) | fi. o € X, fi < fo, 97 (fi) = 9] (f2)}, whose face maps of the
2-cell Ay(f1, f2), drawn in (4.3.3), are defined by, for 1 < i < 2,

iii) For k > 3, C.(X) = {Ax(fi,... fi) | fi € X}, fi < fisr, 97 (fi) = 9y (firn) for 1 <i<k-1},
whose face maps of Ax(f}, ..., fi) are defined by, for 1 < i <k,

FAfioe e fi) = Akr(fives fiots fisr oo S, AR o) =Ty T 00t )

The (w, 0)-polygraph C, (X) is the colimit of this construction.
The following lemma shows that the k-generators Ax(fi, .. ., fx) are well-defined.

5.2.3. Lemma. Foreveryk > 2, Cr(X) defined in is a cubical cellular extension of C, _ (X)".

Proof. We need to check the square equations (3.2.2). For k = 2,

91 9y Az (f1. f2) = x = 97 9, Ao (1, fo),
0101 Az (fi, f2) = y2 = 9195 Az (i, fo),
a;Lal_Az(fl’fz) == 650§Az(ﬁ,fz),
NI Az (fi. o) = X = 91 0, As (i, o),

which shows that A, (fi, f2) forms a 2-cell. Fork > 3and 1 <i < j <k,

9; 95 Ak(fis- s fi) = Aka(fis- s fimns firns s fi-1s i i) = 0521005 Ak (frs - fo)
0; G AK(fi- - fi) =Ty Iy 0ny(5) = 9,19 Ac(fis - -, o),
FTAfi s fi) =Ty T 0wy = 05 Ak (s - fis
3 A(fir s fi) =T T O Ty . Ty o5
=T ... I e 100y ) = €1...6X
=Ty T gjm1. .. €10] 01y (fy)
=Ty T8 4Ty Ty on )
=9;_10; Ac(fi, - fo)-

Thus Ax(fi, - - -, fx) is a (k — 1)-square. m|

5.2.4. Extending o to a contraction of C,(X)T. We further extend o to a contraction of the «w-
groupoid C,,(X)T. By Lemma it suffices to define a (k + 1)-cell of, for each k > 1, only for those
k-generators f that are not of the form g, for some g € C, | (X)".
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5.2. An acyclic w-groupoid from convergence

For each f € Xj not of the form o, for some z € X, we define the following 2-cell o7 in C,, x)"
that fills the 1-square:

f
X —y
f?= UXJ lay
X X
If f # ny with x = 9] (f), and x" = 9] (77x), then we set
f
X ——y
Ik
of = A2('7x,f) 01 rl_ax’ = x’ - x

=)

Opy = I_Ux 01 E20y = X

x/
JO'X/
X

For k > 2, let A be a k-generator in C,(X) that is not of the form o, for some g € C, _, (X)T. Then
A= Ar(fis. .., fr) and we define a (k + 1)-cell 64 in C,(X) " that fills the k-square A°. If f; # 1, for all
i, where x = 9] (f;) and x" = 9] (7)), then we set

oA = Ak (Mxs frs - fi) o1 I - T o (5.2.5)

If fi = 1y, then we set
oa:=I7 Aoy el ... T ox. (5.2.6)

5.2.7. Lemma. Each o, defined as above is well-defined and a filler of A°.
Proof. In the case (5.2.5), the formula is well-defined because
O Akt (Mo fis - o i) =Ty Ty 0w = 0 Ty ... T 0.

Also, o4 fills A? because,

9y 04 =0 Akr1 (M, f1o- -5 fi) = Ac(fis -, fo) = A
doa=0T] ..T O = €1...610]Oxr = €41 - - - €1%,
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5. Cubical groupoids in abstract rewriting

and, for j > 1,

d;04 = 81-_Ak+1(r7x,fl, o fr) o1 ;T ... I  ox
= Ac(x fio oo fi-2 fis oo ) o1 Ty T 07 T T o
:Ak(ﬂx,ﬁ,...,f}_z,f},.. ﬁc) 01 k 1- F Oy’

= OAg1(fisenfij-2fisenfi) = 097445

8}’0’A = 8J7Ak+1(77x,f1, oo fr) o1 8}'1‘_ I o
=0, .. TLopupor - F 813 F I oy
=T, ...Iy 04(fiy) ©1 €k-1--- gja}’l“j__l . I“l_()'x/
=T, ... I 0uy(fir) ©1 €k—1- .. €19 Oxr
=L, - Tionpy =T - r2—0"to(fi71)

= O T o (fioy) = O-a;—lA'

In the case , the formula is well-defined because
NIy A=e0{A=eI_,...IT 0w =0 &l ...T] 0w,
and o4 fills A? because, we have dyoa=09; A=A, and
djoa=01el .. T o =610]T] ... T 0 = €1...£10{ Oy = k41 ... 15,
and, for j > 1,

8GA—8I‘A01852Fk I o
I o;_jAor el ,... Fj,16j_,11“: I oy
= r]_Ak—l(fia .. 'af}—Zaf}a .. ﬁ{) ol gzrk 2" r O- ’ = O-a A:

(9+GA—(9 Iy Aola el ...I] ox
= Ao el , F- 1€j-10; _lrj‘_z I oy
= Fl Fk_z T 04 (fmy) ©1 E26k-2 - €j-19, 1Ty ... T} O
=0L_,... rl_ato(f}—l) 01 €9€k_9 ... 813T0'xf
=T _,...IT op(y 01 61-.. 8%
=0L_,... Fl‘ato(fj_l) =0L_,... FZ_O-UtO(fj,l)
= O, Iy o5y = 00%_ A

We can now state the main theorem of this section.

5.2.8. Theorem. Every convergent 1-polygraph X extends to an acyclic w-groupoid C, (X)".
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5.3. A refined acyclic w-groupoid from convergence

Proof. In we have defined a family of 1-cells oy in X]” with boundary x° = (x,X), for every
0-cell x in X, such that x # X. We have also defined a family of (k + 1)-cells of in Ck+1(X)T, for
every 0 < k < n, with boundary £, for every k-cell f in C,(X) which is not of the form o, for
some ¢ in Ck_l(X)T. Then o is a contraction on C, (X) by Lemma and the claim follows from
Theorem[5.1.3l i

5.3. A refined acyclic w-groupoid from convergence

Finally, we refine the construction leading to Theorem so that it generates an acyclic w-groupoid from
a ARS without introducing any generating cells of dimension higher than 2. We begin with a technical
lemma, which is an immediate consequence of [20] Prop. 2.1].

5.3.1. Lemma. In every w-groupoid, each k-square with thin faces can be filled by a thin cell.

Proof. Let S be a k-square. Applying the folding maps, as defined in yields a k-square T = O (S),
which satisfies 9] ¥, T = 9] ¥k T by [dl Prop. 3.6] and has a unique thin filler B by [20, Prop. 2.1(iii)].
Applying the unfolding maps yields a k-cell A = @ (S, B) which is a filler of S by Lemma m|

5.3.2. Theorem. Every convergent 1-polygraph X extends to an acyclic w-groupoid C!7(X)T which is
generated by the (w, 0)-polygraph defined by

Co(X)=Xo, CI(X)=X,  C'(X):={Ane.f)|feXi o{(f) =x nx# [}
where the boundary of A2(nx, ) is given by (4.3.3), and which has no k-generators for k > 2.

Proof. Let X be a convergent 1-polygraph equipped with the normal form section and with normalisa-
tion strategy o. We consider the acyclic w-groupoid C,(X) " from Theorem Let (fi, f2) be a local
branching with source x such that f;, fo # 7, let x” be the target of .. The 2-generator A;(f;, f) has
the same faces as the 2-cell

x Y2
e | Aa(ne, f2) l"yz
(T nx 02 Ao (nx, 3)) 01 (T1A2(nx, i) 02 Ty o) = x x' X (5.3.3)
h |T1A2 (e f1)| Tj o
Y X=———x

Oy,

We can thus replace A,(fi, f2) by this 2-cell that depends only on the generators Az (1, f1), A2(1x f2).
Let (f1, f2, f3) be a local 3-branching with source x and let x” be the target of . Suppose fi = 1

and f5, f3 # nx. The 3-generator A;(ny, f2, f3) has faces Az (7, f2), A2(Nx, f3), A2(f2, f3) and three thin
cells. We replace A, (f, f3) by (5.3.3), so that A3(7x, f2, f3) has the same faces as the 3-cell

(07T e 03 I Az (s ) 02 (T TiAz (s f2) 03 T Ty o) (5.3.4)
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5. Cubical groupoids in abstract rewriting

The cases where f; = 1, or f3 = 15 lead to similar thin cells.

Now suppose fi, fo, f5 # nx. If we replace Ax(fi, f2), A2(fi. f3) and Ax(f3, f3) by (5.3.3), then the
3-generator As(fi, fo, f3) has the same faces as the 3-cell

(7T nx o1 R T k) 03 I Az (0, £3)) 02 (TIy TiAz (s, f2) 03 T Ty o)) (5.3.5)
01 Fz_ (TlAz(T]x,ﬁ) [e]) rl_o'x/) .

So again we replace As(fi, f2, f3) by this thin cell.

Lemmaimplies that, if we replace the faces of any 4-generator in C_(X) " by the thin 3-cells
described in formulas and (5.3.5), then the 4-generator itself can be replaced by a thin cell. The
same argument applies inductively in all higher dimensions.

This allows constructing a trucacted (@, 0)-polygraph C!’ (X) from the acyclic w-groupoid C,,(X) T,
retaining only the 0-generators, the 1-generators and the 2-generators of the form A,(7y, f), where
f € Xy and f # ny. By construction, it freely generates an acyclic w-groupoid C!7(X)". In particular, it
has no k-generators and no non-thin k-cells for any k > 3. ]

5.3.6. Example. To illustrate the difference between Theorem and Theorem we consider the
1-polygraph X defined by the diagram

X

N
Y1 Y2 Y3
AN e
z

It is convergent, and z is the normal form of every 0-cell. We define the normalisation strategy o by
ox = fio191,04 =giforevery1 <i<3,ando, =1;,andsetn, = fiand f; < f; < f3.

The ARS X has the critical 2-branchings (fi, f2), (fi, f3), (f2, f3) and the critical 3-branching (fi, f2, f3)-
The (v, 0)-polygraph C, (X) extending X has the 2-generators A;(fi, f2), A2(fi, f5), A2(f2, f3) and the
3-generator A;(fi, f2, f3). The w-groupoid C,,(X) T freely generated this way is acyclic.

By contrast, the (2, 0)-polygraph C."(X) extending X has the 2-generators A, (fi, f2), A2(fi, f3), but
no 3-generator. The 2-groupoid CY"(X) " freely generated this alternative way also acyclic. The critical
2-branching (fs, f3), for instance, converges to z via the confluence (g, g3), and it gives rise to the

1-square S = (f2, f3, 93, g2), filled with the 2-cell

f

I‘1+f1 Az(fl’fS) g3
(I7 fi o2 A2 (fi. f3)) o1 (T1A2(fi, f2) 02 Iy g1) =

fi| TA(f. )| T g

g2
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5.4. Concluding remarks

The critical 3-branching (fi, f2, fs) converges to z via the confluence (g1, g2, ¢g3). This induces the 2-
square S defined by

S =Ty g1, 35S =Ty g2, 58S =Ty g3,
a1_5 = (r1+ﬁ 02 AZ(ﬁ;fé)) 01 (TlAZ(ﬁ:f‘z) O2 rl_gl)a az_s = Az(ﬁ:fé)a ag_s = AZ(ﬁ:ﬁ)

It can be filled by the thin 3-cell

(I Ty fi o3 Iy Az (fi, f3)) 02 (T TiA2(fi, f2) 03 Iy Ty g1).

Then C7(X) T is indeed acyclic; the 2-generator A, ( f5, f3) and the 3-generator A;(fi, f2, f3) are no longer
needed.

5.4. Concluding remarks

The only 3-confluence fillers in the proof of Theorem [5.3.2] are thin cells. The 2-confluence fillers em-
ployed are normalising, as explained in Remark and the cube law holds a fortiori. Hence, the
cube law always holds for any ARS, since rewriting rules have no application context and the critical
branching lemma from classical rewriting is trivial.

By contrast, in algebraic rewriting systems (string, term, linear, etc.), the cube law is not inherent
and must be proved separately - as, for instance, in the A-calculus (see [4.2.3). Future work will apply
the cubical constructions developed in this paper to such systems. Note also that, unlike for ARS, con-
vergent algebraic extensions generally do not terminate after finitely many steps (see Theorem 5.3.2).

In globular higher-dimensional rewriting, the constructions of w-groupoids and related structures
from polygraphs are known as polygraphic resolutions, as mentioned in the introduction, and contrac-
tions may be regarded as contracting homotopies. This topological terminology is justified by the folk
model structure on strict w-categories and the fact that polygraphic resolutions are cofibrant approx-
imations [25] 32] 33]]. In the cubical case, much less is known; polygraphic resolutions as cofibrant
approximations remain an avenue for future work. The proof of Theorem has been inspired in
particular by a categorical approach to Tietze transformations in globular polygraphs [16], which ap-
pears worth exploring via cubical categories as well.
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A. Appendices

A. APPENDICES

A.1. Axioms of cubical categories

We give a comprehensive axiomatisation of cubical categories, which were outlined in Subsection [2.1]
A.1.1. Cubical categories. Cubical categories satisfy the following axioms, for all i, j,k € N such
that 1 < i, j < k:
Ek_l’j_lag_l,l. ifi < Js
al(:,ié‘k!j = idck—l ifi = j,

o e
k-1 _1;_, ifi > j,

Ekr1,ifk,j+1 = Eka1,j€ki 1<, Ekt1,i€k,j = Ek+1,jEki+1 1> ],

(a Ok,i b) Ok,j (c Ok,i d) = (a Ok,j c) Ok,i (b Ok,j d),
aog;(bogic)=(aor;b)og;ec,

Ek+1,i@ Ok41,j+1 Ek+1,ib 1<,

ek+ri(@aog;b) = .
Ek41,i@ Ok41,j €k+1,ib if i > j,

. _
@ Ok &k,i0) ;A4 = £k,i0 ;4 Ok,i 4 = 4,

« o e
9y 4 0k, j-1 8k,l.b ifi < j,
9 ;4 ifi=jand a = -,

a7y (aoy;b) =
a4 0% b) o .b ifi=jand a =+,

o aok; b ifi>j,
A.1.2. Connections. Cubical categories with connections satisfy the following additional axioms:

P ifi<,

k-1,j-1%~-1,
zx_rﬁ.: idck—l ifi=j>j+landa:ﬁ’
kik,j fk-1j%_,; fi=jj+landa=-p,
rkﬁ—l,jal?—l,i—l ifi>j+1,

e S a i
e n i<, Dl Hi<J,

re rf ={r* re ifi=j+1landa=p,

a _ e
rk+1,i€kaj =\ €k+1,i€k,i ifi = j, k+lik,j — | k+Lj kj
a T e
5k+1,jrk,i—1 ifi>j, l“liljl“]f‘l._1 ifi>j+1.
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+ —_—
I‘k,ia Ok,i I‘k,ia = &k, i+14,

b

104 o
o .
1—‘k+1,ia k.j+1 1—‘k+1,i

Di(@or;b) =

k+1,i
a T
01,9 Ok, Lt

+ -_—
Tk’l.a Ok,i+1 Fk,l.a = &k,ia,

ifi < j,

(T 1,48 ki Ekst,in1b) O i1 (ekanib o Ty, ;b) ifi=janda=—,

(0148 ki €k41,10) Okist (Eksrivr@ ok T, ;0) ifi=janda =+

ifi > j,

A.1.3. Functors. Afunctor F : C — D of cubical w-categories is a family of maps (Fx : Cx = Di)o<k

satisfying
Fi(a o b) = Fea oy Fib,

7 SN 4
Fk—lak,i = ak,iFk’

104 a
Frepi = ekiFi-1, Bl =T k-1,

foralli,j,k € Nsuchthat1 <i<kand1 < j <k, and all o ;-composable a,b € Cy.
A.1.4. Inverses. The inversion maps R; and T; defined in are compatible with

i) the face maps

Ti—10%f ifi<j,
Ri_10%f ifi<j, 119 /
IR f ai“f T e T f Pl T
‘Rif =10; if i = j, 'Tif =
B P L A
79 Js o e
Toff  ifi>j+1,
ii) the compositions
Rgo; Rif ifi=j Bif om Ty ifj=1
Ri(foj9)= {leol-Rl-g s GU9= TSl ifj=iv1,
s ’ Tifo;Tg ifj#ii+]1,
iii) the degeneracies
&iT;i ifj<i,
eRf  ifi< ], Siaf Hy<
P . £i+1f If] =1
Riejf = &f ifi=j, Tiejf = o
e &f ifj=i+1,
iji—lf lfl > ], . .
e Tif ifj>i+1,
iv) the connections
T%R;f ifi < j,
i i ; Al ifi=7 = —
enRif ewa I f - ifi=j a=-, TeTf  ifi <,
[ f o; €i41R; ifi=ja=+,
Rjr;‘lf: lf i Ci+l lf+ o ] Tlrjaf: riaf lfl=];
gi-1Ri1f o I f ifi=j+1,a=-, LT, i
I~ foreiRiof ifi=j+1a= TS >
i—1J Qi fi-1Ri-1 ti=j+1l,a=+,
FJ.”‘Ri_lf ifi > Jj+1,

7}+1Fi“Tif = Tiri%f,

T Tif = TiaIY f,
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v) other inversion maps

ifi =j, ifi =j,
RiR;f = ! o TTif = ! e
RiRif ifi# ], T, Tf ifli—j|>2,
Ri+1Tif ifj =1,
TR;f = RTf ifj=i+1, LTinTif = T TiTin f,

RTf ifj#ii+1.
A.2. Cubical polygraphs and free cubical categories

In this appendix, we detail the construction of the cubical polygraphs used in Section [5} Cubical poly-
graphs form systems of generators for cubical categories, defined inductively on the dimension. Our
presentation follows the method developed by Métayer in the globular setting [33]]. We first introduce
the notion of cubical extension, a set of (n+1)-generators adjoined to a cubical n-category. LemmalA.2.2]
makes the construction of the free cubical (n + 1)-category generated by a cubical n-category and
equipped with a cubical extension explicit. This construction is then used to define cubical polygraphs
recursively by adjoining cubical extensions to freely generated cubical categories.

A.2.1. Cubical extensions. For n € N, a precubical n-set is a family C = (Cy)o<k<n 0f k-cells with
face maps o : Ck = Cr-1, for 1 < i < k < n, satisfying the cubical relations (2.1.2). A functor
F : C — D of precubical sets is a family of maps (Fi : Cx — Dy )ken that preserve face maps, that
is Fk_lag’l. = 8,‘;”1.Fk, for every 1 < i < n. We denote by PreCub, the category of precubical n-sets and
their functors. We denote by Cub," the category of cubical n-categories and their functors as defined
in

The category of cubical extensions of cubical n-categories is defined by the following pullback in CAT

(CUbnr)+ > PreCubpyq

|

Cub,," =, PreCub,

where the bottom arrow is the forgetful functor and the right arrow the truncation functor.

Explicitly, a cubical extension of a cubical n-category C consists of a set X,.1 of (n + 1)-generators
and a set of face maps 9% e Xn+1 — Cp, for 1 < i < n+ 1, that satisfy the cubical relations .
A morphism of cubical extensions F : (C,X) — (D,Y) consists of a functor between the cubical
n-categories G : C — D and amap H : X — Y such that 97, .H = G, forall1 <i<n+1.

Consider the forgetful functor ’ ’

W, : Cubpyt — (Cub,h)*

sending a cubical (n + 1)-category C to the pair (C<p, Cn+1), Where Cg, is the n-category made of
k-cells of C, for k < n, and C,, is the set of (n + 1)-cells viewed as a cubical extension. It has a left
adjoint L,, which maps a cubical n-category C, equipped with a cubical extension X,;, to the freely
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generated cubical (n+1)-category C[Xy+1]. For Gray categories and polygraphs, a proof of the existence
of this adjoint functor has been given by Lucas [28]], although no explicit construction is given there.
We provide a fully syntactic construction of the free functor L, using a type system analogous to that
of Métayer in the globular case [33] Section 4.1]. Our syntax differs from the globular one in several
respects: we introduce constants for degeneracy and connection maps rather than identity maps, and
we quotient by the cubical axioms instead of the globular ones. Another difference concerns the type
of (n+ 1)-cells: in the globular case one uses n-globes; here the corresponding types are n-squares.

A.2.2. Lemma. The forgetful functor W, : Cubyt — (Cubnr)Jr has a left adjoint L,,.

Proof. Consider (C, X,41) in (Cubnr)+, with face maps of X}, denoted 8,01‘“’1. forall1 <i<n+1 We
define a formal syntax & formed by

i) a constant symbol c,, for each x € X4,

ii) a constant symbol e;., foreachce Cp,and 1 <i<n+1,
iii) a constant symbol g, foreachc € Cpand1<i<n,
iv) a binary function symbol o;, foreach 1 < i < n+1.

Then & is the smallest set of that contains all constants and is closed under the operation A o; B, for
all A,Be Eand1 < i < n+1. A typeisany n-square in C,. For every A € & and every type S, we
recursively defined the judgement A : S — A has type S: following rules:

i) ¢y : dx, for every x € X11,

ii) e;. : S, for every n-cell ¢ in C, where

o e
5n,ian,j-1c ifi <j,

a _ o s
57 =1¢ ifi = j,
en,,-_lal‘fjc ifi > j,

iii) g7, : S, for every n-cell ¢ in C, where

redf ¢ ifi<j-1,

ni 'n,j—1
F_]C ifj=ii+land a=p,
! €n,id € ifj=ii+1land a =-p,

« e
l"n)i_@f)jc ifi > j,

iv) (A o; B) : U, for expressions A : S and B : T, where

S%0n TE i<,

U - S ifi=jand a = —,

J T* ifi=jand a =+,
ST oni-1 T ifi> .
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An expression A is typableif A : S for some type S. A simple structural induction shows that typable
expressions are uniquely type. Let & C & denote the set of typable expressions. By uniqueness of
types, there exist unique maps df' : & — Cp, for 1 < i < n+1, such that df’(cx) = ), ;(x) and
A (df(A))iq forallx € Cpand A € Er.

We write >; for the relation of being o;-composable on C,,. We extend this relation to &r by setting
Ap;Bifd; (A) = df (B). Let ~ be the smallest equivalence on Er generated by the following conditions,
forall1<i,j<n ABCDEeG&Erandc,d e Cy:

l) Ao; (BOIC) ~ (AOIB) Oic,ifADiBDiC,
ii) ifi < j,A>; B,C>; D, A>;Cand Br>; D, then

(AojB)oj(Co;D) ~(Ao;jC)o;(Bo;D),

iii) e;c 0; A~ A,if d; (A) =,
iv) Aoje;. ~ A ifd (A) =c,
v) if ¢ >; d, then
€icOj+1€q i<,
ei,cojd ~ ip . .
€icOj€id ifi > j,
vi) Cienjc ~ €jtLenic ifi < j,
vii) if ¢ >; d, then
o o e
87 ©j+1 8y ifi < j,
(8. ©i €iv1,a) oir1 (€1q0: g;,) ifi=janda=-,

(87 ©i €ic) oir1 (e c0i gf,) ifi=janda=+

o o P .
gi,c oj gi,d lfl > _}s

(04
gl’,COnyjd ~

esen 4 _ " _
viii) 8icCi8ic ™ Citlc and Bic Ci+1 8Bic ~ Cics
ix)
ej+1,r;iic ifi < Js

a a ) o
gi,g,,,jc ~ gi,fn,ic el,é‘n,iC lfl =

o o re
B, c ™ €IS c ifi > j,

o e o o
X) 85~ Bjraifi<jand gl ~ gl o .
g , , ,
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Let = be the congruence generated by ~ on Er. We define X | = &r/=, and write [A] for the
equivalence class of an expression A. we define the operations

aZH,i([A]) = d?(A) and [A;] opy1,i [A2] = [A;0; Ag],
on X, whenever A; >; A;. We further define maps &1, l"r’fﬂ,i :Cp — X, forevery c € Cy, by

ent1,i(c) == [ejc] and rfﬂ,,-(c) = [gfc],

Finally, we define L, (C, X;,+1) to be the cubical (n+ 1)-category with underlying n-category C,, set
of (n+ 1)-cells X, and structure induced by the operations just introduced.

It is routine to check that this construction produces a cubical (n + 1)-category, and that it extends
to make L, : (Cubnr)Jr — Cuby,," functorial.

Next, we check the adjunction L, 4 W,. Let (C, Xp41) be in (Cub,')*, let D be in Cuby,;" and let

f = (gc = Denh: Xps1 = Dur)

be a morphism f : (C, Xp41) — Wp(D) in (Cub,b)*.
We recursively define amap ' : &7 — D, forallx € Xj11,c € Chand A, Be Er,1<i<n+1,as

filex) =h(x),  f(eid) = en1i(9()),  f (g1 )T414(9(0),  f'(AeiB) = f'(A) onsri f'(B).

It is compatible with = in the sense that f"(A) = f’(B) whenever A = B, hence it induces a well-defined
map f* : L,(C, Xp41) — D. It is straightforward to check that f* is a cubical (n + 1)-functor. Hence
we obtain a map of type

(Cub," ) ((C, Xp41), Wn(D)) = Cubps’ (Ln(C, Xns1), D).

It is also easy to check that this map is natural in (C, X,,+1) and D, and that it is invertible, the inverse
sending a cubical (n + 1)-functor f to the pair (g, h) where g is the n-truncation of f and h is the map
between the sets of (n+1)-cells. This yields a natural isomorphism between the above hom-sets, which
establishes L,, 4 W,,. |

The construction of the left adjoint for cubical (n, p)-categories proceeds as above, after adjoining
inverse as constants to the syntax and the associated invertibility axioms to the congruence ~.

A.2.3. Lemma. The forgetful functor W, p) : Cat(ns1p) — Cat(np)" has a left adjoint Ly, p).

A.2.4. Cubical polygraphs. We can now construct cubical polygraphs along the lines of their globu-
lar siblings [2]]. We recursively define the categories CubPol, of cubical n-polygraphs and the functors
F,, : CubPol, — Cub,', which send a cubical n-polygraph to the cubical n-category F,(X) = X* freely
generates by it:

i) The category CubPolj is Set and the functor F, the identity.
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ii) Given CubPol, and F,, the category CubPol,; is defined by the pullback

CubPoly1 SN (Cub,")*

L

CubPol, — Cub,'

in CAT, and the functor F,; is defined as the composition
n Ly
CubPol,; 25 (Cub,D)* 23 Cubyys”.

Explicitly, a cubical n-polygraph is a family (Xj, ..., Xy), where each X, is a cubical extension of X7
for every k < n. The category CubPol,, of cubical w-polygraphs is the projective limit of the following
diagram in CAT

Vi Vn
CubPoly «— CubPol; «— -+ «— CubPol,, <= CubPol,,;; «— ...

where, for every n > 1, the functor V,, is the truncation functor forgetting the (n + 1)-dimensional
cubical extension.

Finally, adding inverses both to the definition of cubical polygraphs and to the construction of the
free cubical category in LemmalA.2.3|leads to the notion of cubical (n, p)-polygraphs for all p < n. Each
cubical (n, p)-polygraph X freely generates a cubical (n, p)-category, denoted X .
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