IDENTITIES AMONG RELATIONS
FOR HIGHER-DIMENSIONAL REWRITING SYSTEMS

by

Yves Guiraud & Philippe Malbos

Abstract — We generalize the notion of identities among relations, well known for
presentations of groups, to presentations of n-categories by pohgyrap each poly-
graph, we associate a track n-category, generalizing the notion afect@sodule for
groups, in order to define the natural system of identities among relativaselate
the facts that this natural system is finitely generated and that the polyhespimite
derivation type.

Résumgldentités entre les relations pour la réécriture en dimension supéeure)

Nous généralisons la notion d’identités entre les relations, bien connuegsou
présentations de groupes, aux présentations de n-catégories maapbhs. A chaque
polygraphe, nous associons une track n-catégorie, généralisaatida de module
croisé pour les groupes, afin de définir son systéme naturel des idesniité les re-
lations. Nous relions le fait que ce systeme naturel soit de type fini aviad gue le
polygraphe soit de type de dérivation fini.

Introduction

The notion ofidentity among relationsriginates in the work of Peiffer and Reide-
meister, in combinatorial group theor$4, 17. It is based on the notion afrossed
module introduced by Whitehead, in algebraic topology, for the classificatiomof h
motopy2-types RO, 2]. Crossed modules have also been defined for other algebraic
structures than groups, such as commutative algeéhslie algebras/11] or cat-
egories 5. Then Baues has introducdthck 2-categories which are categories

2000Mathematics Subject Classification— 18C10, 18D05, 55U99, 68Q42.
Key words and phrases— n-category, rewriting, polygraph, identities among relations, finite deriv
tion type.

This work has been partially supported by ANR Inval project (ANRBIAN-0267).



2 YVES GUIRAUD & PHILIPPE MALBOS

enriched in groupoids, as a model of homot@ptype [2,1], together withlinear
track extensionsas generalizations of crossed moduMs [

There exist several interpretations of identities among relations formiedms of
groups: as homologicalsyzygies p], as homotopical-syzygies/12] or as Igusa’s
pictures L2, 10J. One can also interpret identities among relations as the critical pairs
of a group presentation by a convergent word rewriting sys®nThis point of view
yields an algorithm based on Knuth-Bendix’s completion procedure timapotes a
family of generators of the module of identities among relati®js [

In this work, we define the notion of identities among relationsrarategories
presented by higher-dimensional rewriting systems caltdggraphg 6], using no-
tions introduced in§]. Given ann-polygraphZ, we consider the fre¢rack n-
categoryX " generated by, that is, the freén — 1)-category enriched in groupoid
on Z. We definddentities among relations far as the elements of abelian natu-
ral systemiT(Z) on then-categoryZ it presents. For that, we extend a result proved
by Baues and Jibladz@&][for the casen = 2.

Theorem 2.2.2.A trackn-category7J is abelian if and only if there exists a unique

(up to isomorphism) abelian natural syst&i) on T such thaf1(T) is isomorphic
to Aut”.

We defindlT(X) as the abelian natural system associated by that result to the abelian-
ized trackn-categoryng. In Section 2.2, we give an explicit descriptionl®fX).

Then, in Section 214, we interpret generator$I0L) as elements of homotopy
basisof the trackn-categoryZ ", see B]. More precisely, we prove:

Theorem 2.4.1.1f an n-polygraphX has finite derivation type then the abelian nat-
ural systenT(ZX) is finitely generated.

To prove this result, we give a way to compute generatof$(&f) from the critical
pairs of a convergent polygragh Indeed, there exists, for every critical branching
(f,g) of £, a confluence diagram:

N
A% / /g/W

u/

—

An (n + 1)-cell filling such a diagram is called generating confluencef . It is
proved in B] that the generating confluences Dfform a homotopy basis of .
We show here that they also form a generating set for the natural systEmof
identities among relations.
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1 Preliminaries

In this section, we recall several notions froB):[presentations ofi-categories
by polygraphs((1.1), rewriting properties of polygraphs (1.2), tnaaategories and
homotopy bases (1.3).

1.1 Higher-dimensional categories and polygraph®/e fix an n-categoryC
throughout this section.

1.1.1. Notations — We denote by the set (and th&-category) ofk-cells of C.
If fisin Cy, thensi(f) andti(f) respectively denote thiesource and-target off;
we drop the suffiX wheni = k — 1. The source and target maps satisfygtabular
relations

sisip1 = sitipr and  tisip = titig. (1)
If f andg arei-composablé-cells, that is wheni(f) = si(g), we denote byf x; g
theiri-composite-cell. We also writef g instead off x5 g. The compositions satisfy
the exchange relationgiven, for everyi = j and every possible celfs g, h andk,
by:

(fxi g) % (hxik) = (fxh)xi(g=*k). (2)

If fis ak-cell, we denote by ¢ its identity (k 4+ 1)-cell and, by abuse, all the higher-
dimensional identity cells it generates. Whigris composed with cells of dimension
k + 1 or higher, we simply denote it bfy A k-cell f with s(f) = t(f) = uis called a
closedk-cell with base point.

1.1.2. Spheres— Let C be ann-category and lek € {0,...,n}. A k-sphere of®
is a pairy = (f, g) of parallelk-cells of G, that is, withs(f) = s(g) andt(f) = t(g);
we callf thesourceof y andg its target We denote bysC the set ofn-spheres of.
An n-category isasphericalwhen all of itsn-spheres have shapé f).

1.1.3. Cellular extensions— A cellular extension of is a pairl” = (T},,1,9) made
of asetl},,; and a ma@ : I, .1 — SC. By considering all the formal compositions
of elements of", seen a$n + 1)-cells with source and target &) one builds thdree
(n + 1)-category generated Hy, denoted bye[I'].

The quotient ofC by I', denoted byC/T, is then-category one gets frorfi by
identification ofn-cellss(y) andt(y), for everyn-spherey of I'. We usually denote
by f the equivalence class of ancell f of Cin C/T. We writef =r g whenf =g
holds.

1.1.4. Polygraphs— We definen-polygraphs and frea-categories by induction
onn. A 1-polygraphis a graph, with the usual notion of free category.
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An (n + 1)-polygraphis a pairX = (£,,, Z,1+1) made of am-polygraphX,, and
a cellular extension,, 1 of the freen-category generated [&y,,. Thefree(n + 1)-
category generated by and then-category presented by are respectively denoted
by £* andZ and defined by:

An n-polygraphX is finite when each sefy is finite,0 < k < n. Twon-polygraphs
whose presentefth — 1)-categories are isomorphic aretze-equivalentA property
onn-polygraphs that is preserved up to Tietze-equivalendetze-invariant

An n-categoryC is presenteddy an(n + 1)-polygraphZ when it is isomorphic
to Z. It is finitely generatedvhen it is presented by am + 1)-polygraphZ whose
underlyingn-polygraphZ., is finite. It isfinitely presentedvhen it is presented by a
finite (n + 1)-polygraph.

1.1.5. Example — Let us consider the monoids = {ag, a;} with unit ap and
producta;a; = a;. We seeAs as a {-)category with oné-cell ap and one non-
degeneraté-cell a; : ap — ap. As such, it is presented by tRepolygraphZ, with
one0-cell ag, onel-cell a; : ap — ap and one2-cell a; : aja; = aj. ThusAs
is finitely generated and presented. In what follows, we use graphitalions for
those cells, where thi-cell a; is pictured as a vertical “string| and the2-cell a,

as'y.

1.1.6. Contexts and whiskers— A context of© is a pair(x, C) made ofar{n —1)-
spherex of € and ann-cell C in €[x] such thatC contains exactly one occurrence
of x. We denote byC[x], or simply byC, such a context. If is ann-cell which is
parallel tox, thenC[f] is then-cell of € one gets by replacing by f in C.

Every contexiC of € has a decomposition

C = fn *n—1 (fn71 *n—2 ( RS f1X91 L3 IR ) *n—2 9n71) *n—1 9n,

where, for evenyk in {1,...,n}, fx and gy arek-cells of €. A whisker ofC is a
context that admits such a decomposition withand g,, being identities. Every
contextC of G,,_ yields a whisker of® such thatC[f x,,_1 gl = C[f] xn_1 Clg]
holds.

If T is a cellular extension dt, then every non-degenerdte + 1)-cell f of C[I']
has a decomposition

f = C][(P1] Kt kn Ck[(Pk]a
with k > 1 and, for eveniin{1,...,k}, @i in T andC; a context ofC.

The category of contexts df is denoted byCC, its objects are tha-cells of C
and its morphisms fronfito g are the context§ of € such thatC[f] = g holds. We
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denote byW¢e the subcategory of € with the same objects and with whiskers as
morphisms.

1.1.7. Natural systems— A natural system ore is a functorD from CG@ to the
category of groups. We denote B, andD ¢ the images of am-cell u and of a
contextC of € by the functorD. When no confusion arise, we writga] instead of
Dc(a). A natural systenD on C is abelianwhenD,, is an abelian group for every
n-cellu.

1.2 Rewriting properties of polygraphsWe fix an(n+1)-polygraphX throughout
this section.

1.2.1. Termination — One says that an-cell u of X} reducesinto ann-cell v

whenX* contains a non-identityn + 1)-cell with sourceu and target. One says
thatu is anormal formwhen it does not reduce into ancell. A normal form of
u is ann-cell v which is a normal form and such thatreduces intov. A reduc-
tion sequencés a countable familyfu,,)nc1 Of n-cells such that each,, reduces
into u,,1; it is finite or infinite when the indexing sdtis.

One says thak terminateswhen it does not generate any infinite reduction se-
quence. In that case, everycell has at least one normal form and one can use
Noetherian inductionone can prove properties encells by induction on the length
of reduction sequences.

1.2.2. Confluence— A branching(resp.confluencgis a pair(f, g) of (n+1)-cells

of Z* with same source (resp. target), considered up to permutation. A branching
(f,g) is local whenf and g contain exactly one generatirig + 1)-cell of £. It is
confluentwhen there exists a conflueng, g’) with t(f) = s(f’) andt(g) = s(g’).

A local branchingf, g) is critical when the common source 6faindg is a minimal
overlapping of the sources of tlie + 1)-cells contained irf andg. A confluence
diagramof a branching(f, g) is an (n + 1)-sphere with shapéf x, f’, g *n g’),
where(f’, g’) is a confluence. A confluence diagram of a critical branching is called
agenerating confluence &f.

One says thak is (locally) confluentwhen each of its (local) branchings is con-
fluent. A local branchindf, g) is critical when the common source éfandg is a
minimal overlapping of the sources of the generatingt+ 1)-cells of f andg. In
a confluentn + 1)-polygraph, everyn-cell has at most one normal form. For ter-
minating (n + 1)-polygraphs, Newman’'s lemma ensures that local confluence and
confluence are equivalent propertiés]|
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1.2.3. Convergence— One says thak is convergentwhen it terminates and it is
confluent. In that case, evernrcell u has a unique normal form, denoted fy
Moreover, we haver =5 ., vif and only if i = V. As a consequence, a finite
and convergentn + 1)-polygraph yields a syntax for the-cells of the category it
presents, together with a decision procedure for the correspondimbprablem.

1.2.4. Example — The2-polygraphZ, = (ay, a1, a2) presentingAs is convergent
and has exactly one critical pdia,ay, ajay), with corresponding generating con-
fluenceas, pictured in either of the following ways:

ajajag

Cly YZ
a3 ~
ajag ajasg w = v

k&%
ag

In turn, the3-polygraphXs = (ag, ai, az, az), which is a part of a presentation of the
theory of monoids, is convergent and has exactly one critical pair, witegponding
generating confluenoey:

ajajajaq ajajarag
aaja ‘ ajajaz azaja ajajaz
aja;ag aq (La] aja;ag ajaiaq ajaijag
azag \H/ ajas \a]a (12(11/
a.
aaq /‘11‘11“1\ ajaz éﬂ aaq ara; ajaz
a a

aza1/ \11(1% 3 3

% as

ajag E————1 ajag ajaq 2 ajaq
az % X; ﬂ %
ag aj

In fact, this4-cell a4 is Mac Lane’s pentagor8J:

- Y

o

<%
<) &
&v%
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1.3 Track n-categories and homotopy bases

1.3.1. Trackn-categories — A track n-categoryis ann-categoryJ whosen-cells
are invertible, that is, fon > 2, an(n — 1)-category enriched in groupoid. In a
trackn-category, we denote bfy” the inverse of thev-cell f. A trackn-category is
acyclicwhen, for every(n — 1)-spherg(u, v), there exists an-cell f with sourceu
and targev.

The n-category presentedby a track (n + 1)-category7 is the n-category
T = Tn/Tns1, WhereT, .1 is seen as a cellular extension®f. Two track(n + 1)-
categories ardietze-equivalentf the n-categories they present are isomorphic.
Given ann-categoryC and a cellular extensioh of €, thetrack (n + 1)-category
generated by is denoted bye(T") and defined as follows:

er) = e[ r]/ v

wherel'™ contains the samigv + 1)-cells asl", with source and target reversed, and
Inv(T") is made of thén +2)-cells(yxn vy, 1sy) and(y~ *nv, 1), Wherey ranges
overTl". Let us note that, whefiandg aren-cells of C, we havef = g if and only

if there exists ar(n + 1)-cell with sourcef and targetg in ¢(I"). WhenZX is an

(n + 1)-polygraph, one write& " instead of£* (. 1).

1.3.2. Homotopy bases— Let C be ann-category. Ahomotopy basis of is a
cellular extension™ of € such that the trackn + 1)-categoryC(T") is acyclic or,
equivalently, when the quotiemt-categoryC/T" is aspherical or, again equivalently,
when every spherff, g) of C satisfiesf = g.

1.3.3. LemmgSquier’s fundamental confluence lemma)— Let £ be a conver-
gentn-polygraph. The generating confluencesdbrm a homotopy basis &f'.

Remark — A complete proof of Lemma 1.3.3 is given i8][ Squier has proved the
same result for presentations of monoids by word rewriting systégslg. When
formulated in terms of homotopy bases, Squier’s result is a subcase @ighe & 2
of Lemma 1.3.3.

1.3.4. Example — The 2-polygraphX, = (ap, aj, a2) presentingAs has exactly
one generating conflueneg and, thus, thi$-cell forms a homotopy basis of the
track2—category£§. The 3-polygraphXs; = (ag, aj, az, az) also has exactly one
generating confluenagy, with Mac Lane’s pentagon as shape, which forms a homo-
topy basis of the tracB-categoryx ] .
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The resultingt-polygraphZs = (ag, ai, az, as, as) is a part of a presentation of
the theory of monoidal categories. I8][Mac Lane’s coherence theorem is reformu-
lated in terms of homotopy bases and proved by an application of Lemma 1.3.3 to a
convergenB-polygraph containing ;.

1.3.5. Lemma — LetT be a trackn-category and leB be a family of closed-cells
of 7. The following assertions are equivalent:

(1) The cellular extensiofs = {E B =1 BE B} is a homotopy basis af.
(2) Every closech-cell f in T can be written

f = (91 %n-1 C1[B}'] *n=197) *n—1 - *n-1 (9K *n-1 Cic [B*] *n-19¢) (3)

where, forevery € {1,...,k}, we have; € B, ¢; € {—,+}, C; € WT andg; € Th.

Proof. — Let us assume thadt is a homotopy basis @f and let us consider a closed
n-cell f : w — win 7. Then, by definition of a homotopy basis, there exists an

(m+ 1)-cellA: f — 1, in T(B). By construction ofJ(B), the (n + 1)-cell A
decomposes into
A = Aqkn - kn Ay,

where eaci; is an(n+1)-cell of T(B) that contains exactly one generating+1)-
cell of B. As a consequence, eadh has shape

gi*n-1Cq [f-’;f‘} *n-1hi
with B; € B, ¢; € {—, +}, C; € WT andg;, hy € Ty, . By hypothesis o\, we have
f =s(A), hence:
f = g1%n_1 Cils(B]" )] *n_1 1.
We proceed by case analysis on If ¢; = +, then we have:
f = g1xn1 CilB1] *n1hy
= (91 %n-1 C1lB1] *n-197) *n-1 (g1 *n_1 h1)
= (91 *n—1C1lB1] *n-197) *n_15s(A2).
And, if e = —, we get:
f=gi*n1h
= (91 *n-1 C1lB7]1 *n—197) *n—1 (g1 *n—1 C1[B1] ¥n_1 hy)
= (91 *n—1 C1[B7] *n_197) *n_1 s(A2).

An induction on the natural numbgrproves thaf has a decomposition as in (3).
Conversely, we assume that every closedell f in T has a decomposition as
in (3). Then we have =5 14 for every closedh-cell f in 7. Let us consider
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two parallein-cellsf andg in 7. Thenf x,,_1 g~ is a closedh-cell, hence we have
fxn-19" =5 ). We compose both members gpn the right hand to get=5 g.
Thus3B is a homotopy basis df. O

1.3.6. Finite derivation type— One says that an-polygraphX hasfinite deriva-
tion typewhen it is finite and when the trackcategoryZ " admits a finite homotopy
basis. This property is Tietze-invariant for finitepolygraphs, so that one says that
ann-category hadinite derivation typavhen it admits a presentation by am+ 1)-
polygraph with finite derivation type.

1.3.7. Lemma — LetT be a trackn-category and let’ be a cellular extension &f.
If T has finite derivation type, then so ddeq".

Proof. — Let B be a finite homotopy basis &f. Let us denote byB the cellular
extension ofJ /T made of ongn + 1)-cell A with sourcef and targefg for each
(n + 1)-cell A from f to g in B. ThenB is a homotopy basis df/T. O

2 ldentities among relations

2.1 Abelian track n-categories

2.1.1. Definition — Let 7 be a trackn-category. For everyn — 1)-cellwin T, we
denote by Auf the group of closed-cells of T with baseu. This mapping extends
to a natural system Atlton the(n — 1)-categoryT,,_1, sending a context of T,,_;
to the morphism of groups that mapso C[f].

A track n-category7 is abelianwhen, for every(n — 1)-cell u of T, the group
Autg is abelian. Theabelianizedof a trackn-category7J is the trackn-category
denoted byTyp and defined as the quotient@by then-spheregfx, 19, g*n_17),
wheref andg are closech-cells with the same base.

2.1.2. Lemma — EachAut’® is the abelianized group dfut’. As a consequence,
a track n-category7 is abelian if and only if the natural systeAut” on T, is
abelian.

2.1.3. Lemma — Let T be a trackn-category. For evernyn-cellg : v — u, the
mapping(-)9 from Aut? to Aut] and sending to

f9 = g *n-1 fon_1 g

is an isomorphism of groups. MoreoverJifis abelian andg, h : v — u are n-cells
of T, then the isomorphismis)9 and ()™ are equal.
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Proof. — We have:
(]u)g = gi*nfl ]u*nfl g = ]v-
Let f; andf; be closedh-cells of T with baseu. Then:

(fixn1f2)? = g *xnafixn1f2xng
=g *n-1 f14n—1 g*n-190 *n-1 fZ *n—19
= f? *n—1 fg
Hence(-)9 is a morphism of groups and it admitg9 as inverse. Now, ifJ is
abelian andy, h : v — u are paralleh-cells, we have:
f9 = g *n-1 f*n—1 g
= (97*n71 h) *n—1 (hi *n—1 f*nfl h) *n—1 (hi *n—1 g)
= (hi *n—1 f*nfl h) *n—1 (97 *n—1 h) *n—1 (hi *n—1 9)
= O
2.1.4. Proposition — If a track n-category7 has finite derivation type, then its
abelianized tracki-categoryTyy, has finite derivation type.

Proof. — We apply Lemma 1.3\7 to the quotiefy, of 7. O

2.2 Defining identities among relations

2.2.1. Definition — LetT be a trackn-category and leb be a natural system d¢n
We denote byD the natural system ofi,,_; defined byD,, = Dg. A trackn-
categoryJ is linear when there exists an abelian natural syst&) on T such that

TT1(7) is isomorphic to Aut.

Remark — If such an abelian natural systdihemsts then it is unique up to iso-
morphism. Indeed, by definition d, we haveD,, = D, wheneveru andv are
(n — 1)-cells of T such thafit = v holds. Thus, ifu is an(n — 1)-cell of T, then
D, = D,, for every(n — 1)-cellw of T with w = u. As a consequence, i andE
are abelian natural systems @nsuch that bottD andE are isomorphic to A,
thenD andE are isomorphic.

2.2.2. Theorem — A trackn-category is abelian if and only if it is linear.

Proof. — If T is linear, then each group AInis isomorphic to an abelian group.
ThusT is abelian.
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Conversely, let us assume thHatis abelian and let us define the abelian natural
systenI1(7T) onT. For an(n — 1)-cellu of T, the abelian groupl (7)., is defined as
follows, by generators and relations:

— It has one generatof | for everyn-cell f : a — a with @ = u.

— Its defining relations are:

i: [f*n_19]=1[f] +|g],forf:a— aandg:a — awitha =uy;

i: [fon19]=|g*n1f],forf:a—bandg:b— awitha=>b=u.
If uwandu’ are(n — 1)-cells of T and if C is a context ofT from u to u’, then the
action

MT)c : MTu — (T
is defined, on a generatof|, with f a closech-cell of T with basea such thatt = u,
by
C|f] = [BIfl],

whereB is a context ofT,,_;, from a to somea’ with @’ = u’, such tha8 = C
holds. We note thak[f] is a closech-cell of T with base somea’ such tha@’ = u’,
so that| B[f]| is a generating element bi( T),,,. Now, let us check that this action is
well-defined, that is, it does not depend on the choice of the repréisestaandB.

For f, we check thatl(T) ¢ is compatible with the relations defining( 7). If f
andg are closech-cells of T with basea such thata = u, then we have:

|B[f%n—19]] = [Blfl sn1Blgl] = |BIfl| + [Blgl].
And, forn-cellsf: a — bandg: b — a, with@ = b = u, we have:
[Blf xn—19l] = [Blfl ¥n_1Blgl] = [Blgl *n_1BIfl] = [Blg*n_1fl].

For B, we decompos€ in v x, > C’ x> w, wherev andw are (n — 1)-cells
of T andC’ is a whisker ofJ. SinceT andT,,_; coincide up to dimension — 2,
any representativB of C can be writterB = b %,,_» C’ x,,_» ¢, whereb andc are
respective representativesvodindw in T, _1. As a consequence, it is sufficient (and,
in fact, equivalent) to prove that the definition1d{T) ¢ is invariant with respect to
the choice of the representatiBeof C whenC has shape x,,_» x or x x,_o> w.

We examine the casé = v x,_2 x, the other one being symmetric. We consider
two representatives andb’ of v in T,,_1. By definition of T, there exists am-cell
g:b — b’in 7, as in the following diagram, drawn for the case- 2:

g e
N .

=

I
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Thanks to the exchange relation, we have:

(g *n—2 Cl) *n—1 (b/ *n—2 f) = 0*n-2 f = (b *n—2 f) *n—1 (g *n—2 a)-
Hence:
b’ *n—2 f = (9_ *n—2 (1) *n—1 (b *n—2 f) *n—1 (9 *n—2 a)-
As, a consequence, one gets, using the second defining relaliiof, ..
Lb/ *n-2 fJ = L(g_ *n—2 Cl) *n—1 (b *n—2 f) *n—1 (g *n—2 a)J
= L(b *n-2 f) *n—1 (9 *n—2 a) *n—1 (gi *n—2 CI)J
= I_b *n—2 fJ .
Now, let us prove that the abelian natural systé/rﬁf) and Aut’ are isomorphic. For
an(n — 1)-cellu of 7, we define®,, : TTI(T)y — Aut) as the morphism of groups
given on generators by
O ([f]) = 19,
wheref is a closedn-cell of T with basev such thatv = uw and g is anyn-cell
of T with sourcev and targett. Let us check tha®,, is well-defined. We already
know that®,, is independent of the choice gf Let us prove that this definition is
compatible with the relations definifg(7)x.
For the first relation, let; andf, be closedn-cells of T with basev such that
v =uand letg : v— u be ann-cell of T. Then:
O ([f1xn f2]) = (f1%n12)?
= f? *n—1 fg
= (Du( Lfd ) *n—1 (Du( LfZJ )
= Oy([f1] + [f2]).
For the second relation, we fix-cellsfy : vi — vy, f2 : v —» vy andg : vi — u,
with vy =v; = 1. Then:
O ([f1xnf2]) = (f1 %1 2)¢
= (g *n_1f1) *no1 (f2kn_1f1) *no1 (f; *n_19)
= (f2on g )9 0
= Oy([f2%n1f1]).
Thus®,, is a morphism of groups frofi(T); to Aut.. Moreover, it admits — |f|
as inverse and, as a consequence, is an isomorphism.

Finally, let us prove tha®,, is natural inu. Let C be a context ofl;, 1 from u
tov. Let us check that the morphisms of groupso I(T) = and Aul 0@, coincide.
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Let f be a closedh-cell of T with base point.” such thatit’ = . We fix ann-cell
g:u’ — uin T and we note that[g] is ann-cell of T with sourceC[u/] and target
Clu] =v. Then we have:

Oy o THT)([f)) = (CIf])C9
= Clg~] *n_1 C[f] *n_1 Cld]

=C [gi *n1 Fon 9]
= CI[fY]
= AutZ o® (| f]). O

Remark — Theorem 2.2.2 is proved ir2][ 3 for the casen = 2.

2.2.3. Definition — Let £ be ann-polygraph. Thenatural system of identities
among relations of is the abelian natural systef(Z), which we simply de-
note byTT(X). If wis an(n — 1)-cell of £, an element of the abelian groligx).,, is
called anidentity among relations associatedwo

2.3 Identities among relations of Tietze-equivalent polygraphs

2.3.1. Lemma — Let X andY be two Tietze-equivalemt-polygraphs. Then there
existn-functors

F: Z;‘rb — Y;b and G: Y;b — Z;—b

such that the following two diagrams commute:

Zab 1, Yab Yab &, ab
Jef o

Proof. — To simplify notations, we consider that tita — 1)-categoriesz and Y
are equal, instead of simply isomorphic. Let us biildhe construction o6 being
symmetric.

First, we define am-functorF from X' toY'". Oni-cells, withi < n—2, Fis the
identity, which makes the diagram commute up to dimensien2 sincerty andry
are also identities on the same dimensions.

If aisan(n — 1)-cell in £, we arbitrarily choose afin — 1)-cell in n;lnz(a)
for F(a). SinceF is the identity up to dimension — 2, we have that the source and
target ofF(a) are equal to the source and targetipfespectively.
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Then,F is extended to anyn — 1)-cell of 2T by functoriality. Lete : u — v be
ann-cell of X. We have, by definition of(u) andF(v):

my o F(u) = mz(u) = mg(v) = 7y o F(v).

Thus, there exists an-cell from F(u) to F(v) in £T. We arbitrarily choos&(¢) to
be one of those-cells and, then, we exterfdto anyn-cell of ZT by functoriality.
Let f and g be closedn-cells inZ". We haveF(f 1 g) = F(f) #n_1 F(g)
by definition of F. As a consequencé, induces an-functor from £, to Y that
satisfies, by construction, the relatiait o F = 7ty. O

2.3.2. Notation — We fix two Tietze-equivalenti-polygraphs: and Y, together
with n-functorsF and G as in Lemma 2.3/1. We denote 6 the morphism of
natural systems of = Y, from TI(Y) to TT(£), defined byG(|f]) = | G(f)].

For every(n — 1)-cellw in £, we define am-cell A, fromw to GF(w) in ,,
by structural induction omv. If w is an identity, them\,,, = 1,,. Now, letw be an
(n —1)-cell in £. By hypothesis ofir andG, we have:

7ty o GF(w) = myo F(w) = mg(w).

As a consequence, there exists @tell from w to GF(w) in £, and we arbi-
trarily chooseA,, to be such am-cell. Finally, if w = wy x; wy, for somei in
{0,...,m—2}, thenA,, = Ay, *i Ay, If f 1 u — vis ann-cell of £, we denote
by At the closech-cell with basisu defined by:

Af = Frn1 Ay *n_1 GF(f)™ xn_1 A
Finally, we define:
Ar = {|Ao] |0 €Ln}.
2.3.3. Lemma — Letf be ann-cell in £, with a decomposition
f = Cile7" ] *n1 - *n_1 Ciloys],
with @i € Zn, ¢ € {—, +}andC; € WX*. Then we have:

k
Al = ) eCilAg . 4)
i=1

Proof. — Letf:u— vandg:v — w ben-cellsinZ),. We have:
Af*n,1 g = f*n—l g *n—1 /\w *n—1 GF(Q)i *n—1 GF(ﬂi *n—1 A;_
= f*an /\g *n—1 /\v *n—1 GF(f)i *n—1 /\;

= f*n AgHn—1 7 %1 As.
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Hence:
(At 1o] = [FrnaAgrntf o1 Af] = [Af]+[Ag). (B

Now, letf : w — w’ be ann-cell andu be ani-cell, i < n — 1, of £], such that
u*; w is defined. Then we have:

Ausif = (Wi F) *n 1 Aggnr *n1 GF(w ki )7 w1 A
— (Wi 1) et (Awti Aws) et (GF(W) % GF() )kt (Ag % Ay)
= (UWsn—1 Au*n—1 GF(u) xn—1 AL) *i (f *xn—1 Ay *n—1 GF(f) ™ %1 Ay,)
= u*iAs.

Similarly, we prove that\¢, , = A¢*ivif visani-cell,i <n—1, suchthatvx;vis
defined. As a consequence, we ggtiy = C[A¢], for every whiskelC of £*, hence:

[Acin] = ClA¢]. (6)
We prove(4) by induction ok, using (5) and (6). O

2.3.4.Lemma— LetB be a generating set for the natural systéifiy’). Then the
setAy I1 G(B) is a generating set for the natural systéhx).

Proof. — Letf be a closed-cell with basisw in L. By definition of A ¢, we have:
[f] = |Af*na1 AwHno1 GF(f) xn_1 A ] = [Ag] + [GF()].
On the one hand, we consider a decompositiofiinfgeneratingh-cells of Z,,:
f = Cile7 T *n 1 *n1 Crlokl.

Hence:
k
[Ael = D eiCilAg ]
i=1

On the other hand, the natural systEifY') is generated b, so that|F(f)| admits
a decompositionF(f) | = 3 ;.ym;Bj [g5], with [g;] € B. Hence:

|GF(f)] = ) B;[Glgy)] = D B;[G([g;)).
j€] €]
Thus,|f| can be written as a linear combination of elementd gfand of B, proving
the result. O

2.3.5. Proposition — Let X and Y be two Tietze-equivalent-polygraphs such
that X, andY,, are finite. Then the natural systdi{L) is finitely generated if and
only if the natural systefi(Y') is finitely generated.



16 YVES GUIRAUD & PHILIPPE MALBOS

2.4 Generating identities among relations

2.4.1. Theorem — If an n-polygraphX has finite derivation type then the natural
systen1(X) is finitely generated.

Proof. — Let us assume that thepolygraphX has finite derivation type. By Propo-
sition/2.1.4, the abelian track categd% has finite derivation type. L&t be a finite
homotopy basis of_ pand letB be the set of closed-cells on p defined by:

B = {s(B)xn1tB)"|BEB}.
By Lemma 1.3.5, any closed-cell f in £, can be written
f = (91 *n-1 C1lB] T *n—197) *n—1 - *n-1 (9k *n—1 CklBE] *n—1 9),

where, for everyin {1,... k}, B; € B, ei € {—,+}, C; € WE* andg; € . As a
consequence, for any identity among relatipfisin TT(Z), we have:

k
| =) eilgimn 1 GilBil*n10;] Z eiCi |
i

Thus, the elements c[fﬁJ form a generating set faf(X). O

2.4.2. Proposition — For a convergenti-polygraphZ, the natural systerfil(X) is
generated by the generating confluences .of

Proof. — By Squier’s confluence lemma (Lemma 1.3.3), the set of generating con-
fluences of forms a homotopy basis &f". Following the proof of Theorem 2.4.1,
we transform it into a generating set for the natural systgin). O

2.4.3. Example — We consider th&-polygraphX = (ao, aj, a) presenting the
monoidAs. Here is a part of the fre&-categoryZ*:

azaiaiar
azaag
azaq ajazarag
a (/,—;—:s\\\\ aiara ﬁ
a; e—2_— a]Q]( araja; ——2"_qjaja;a; ajajaiaia;
S v
aiaz v a1a1aza;
ajajaz
ajayjajaz

The 2-polygraphX is convergent and has exactly one generating confluence, which
we can denote with either notation:

a3 ~
ara71 %1 A2==>a10y %1 A2 wgv
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Thus the natural systefii(Z) on the categorf = As is generated by following the
element, where the last equality uses the exchange relation:

[s(az) *1 tlaz) ™| = [a2ai*1 azx1 a5 % a1a; | = |axar* aja; | = [axa; .

The graphical notations, whelg'™ is pictured as4,, make this last equality more

clear:
[s(S)  t() ] = V#AJ - T4 = l'val

One can prove the same result by a combinatorial analysis. Indeedaomeie that
the minimal2-cells froma*' to al are theaja,al ', foriin {0,...,n — 1}
Thus, the natural systehfi( L) is generated by the following elements, foe> 2 and
0<i<ji<n—1.

lotj] = {a% azap™ g d az_a?fHJ :
Then, one uses the exchange relations to get:

o a%(azm *1 alaz_)a?_i_] ifi=14+1
9ij = S —j— o
ajaza; - “a,aq ifj>1i+2.
Hence, iff =i+ 1, we have, using the relations definiigX) and|a;| = 0:
lgiit1] = ilai] + [marxraia; |+ (n—1—1) [a1] = |axa;].
And, if j > i+ 2, we get:
lgij) = ilar] + [az] + (G —1=2) [ar] — [az] + (n—=j—T)[a1] = 0.
Thus, the natural systef(X) is generated by one elemerhnzagj.
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