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INTRODUCTION

Rewriting. This is a combinatorial theory that studies presentations by generatorglatidns. For
that, the latter are replaced lbgwriting rules which are relations only usable in one direction [20].
There exist many flavours of rewriting, depending on the objects to Isepied: word rewriting [7], for
monoids; term rewriting [2, 14, 26], for algebraic theories [16]; rewgitim topological objects, such as
Reidemeister moves, for braids and knots [1].

In this work, we study presentations by rewriting of higher-dimensionebeaies, which encompass
the ones above [8, 15, 10, 11], plus many others, like Petri nets [1f8fmral proofs of propositional
calculus and linear logic [12].

For example, the presentation of the mon@id aa = a) by the word rewriting systema — a
is interpreted as follows: the generaioiis a 1-cell and the rewriting rule is &-cell aa = a over
the 1-category freely generated y Similarly, the presentation of the associative theory by the term
rewriting systemx - y) -z — x- (y - z) becomes: the binary operation is treated ascall ', while
the rewriting rule is seen as3acell over the2-category freely generated by, with shape

Rl S

Another example is the categorical presentation of the groups of permutatieed in particular for
the explicit management of pointers in polygraphic programs [6]: it has2eredl ><, standing for a
generating transposition, and the following téeells, respectively expressing that is an involution
and that it satisfies the Yang-Baxter relation:

S= || and E}%e}{j
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Polygraphs. The categorical rewriting systems presented in the previous paragmgfamicular in-
stances of objects callgmblygraphsor computads Those objects are presentations by "generators" and
“relations” of higher-dimensional categories [23, 8, 24, 25] and theyefined by induction as follows.
A 0-polygraph is a set and &polygraph is a directed graph. Am + 1)-polygraph is given by an
n-polygraphZ,,, together with a family ofn + 1)-cells between parallel-cells of then-categoryX;,
freely generated by,,. Then-category presented by such arpolygraph is the quotient of the free
n-categoryX;, by the congruence relation generated by(ther 1)-cells of ;1.

We recall the notions of polygraph and of presentation-afategories in Section 1.4, as originally
described by Burroni [8, 19]. Here we particularly focusopolygraphs fom < 3, because they
contain well-known examples of rewriting systems: indeed, abstract regvatistems, word rewriting
systems and Petri nets are special instancelsmilygraphs,2-polygraphs and-polygraphs, respec-
tively, while term rewriting systems and formal proofs can be interpretedipolygraphs with similar
computational properties.

Among those properties, we are mostly interesteddnvergencelike other rewriting systems, a
polygraph isconvergentwhen it is bothterminatingand confluent The termination property ensures
that no infinite reduction sequence exists, while the confluence propertiegrpat all reduction se-
guences starting at the same point yield the same result. The aforegamiples of3-polygraphs, for
associativity and permutations, are convergent, as proved in Sectioasb24, respectively.

Homotopy type. In order to studyn-polygraphs from a homotopical point of view, we introduce the
notion of higher-dimensional track categoim Section 3: a tracki-category is ar(n — 1)-category
enriched in groupoid (am-category whosen-cells are invertible). This notion generalises track
categories, introduced by Baues [3] as an algebraic model of the hoyrtgfmpin dimensior.

To ann-polygraphZ, we associate the free trankcategoryZ ' it generates, used as a combinatorial
complex to describe the convergence property ofTowards this goal, we define in 3.2h@motopy
relationon ' as a trackKn + 1)-category withZ " as underlyingh-category. Every family ofn + 1)-
cells overL" generates a homotopy relationhamotopy basisf £ is such a family that generates a
"full" homotopy relation,.e., a homotopy relation that identifies any two paratietells of £ .

An (n + 1)-polygraphZ hasfinite derivation typewhen it is finite and wherL " admits a finite
homotopy basis. This property is an invariant of theategory being presented by when two(n+1)-
polygraphs ardietze-equivaleni.e.,, when they present the samecategory, then both or neither have
finite derivation type (Propositian 3.3.4). Hence, having finite derivatigee fig a finiteness property
of n-categories in dimension + 2, in a way that is comparable to finite generation type (finiteness in
dimensionn) and finite presentation type (finiteness in dimensiohf 1).

Critical branchings and homotopy bases. A critical branchingin a polygraph is a pair of reductions
acting on overlapping "subcells" of the same cell (Definition 4.1.5). Thadbiag is confluent when
there exist two reduction sequences that close the diagram. For exare@edlygraphaa = a has a
unique, confluent critical branching:
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The3-polygraph of associativity also has a unique, confluent critical viage which is also known as
the 2-dimensionakssociahedroor Stasheff polytope

< g
/ N
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Finally, the3-polygraph of permutations contains several critical branchingsngivé.4.4, all of which
are confluent. Among them, one finds thelimensionapermutohedrongenerated by an overlapping
of the Yang-Baxtes-cell with itself:

/tﬁ%ﬁ\ .

I

\%2/

We prove that, when a polygraph is convergent, its critical branchingsrge a homotopy basis (Propo-
sition[4.3.4). As a consequence, every finite and convergent polygvip a finite number of critical
branchings has finite derivation type (Proposition 4.3.5).

This property is relevant when one considers higher-dimensionaltimeywas a computational model,
for example in the case of polygraphic programs [5, 6]. Indeed, lebnsider a convergent polygraph
with finite derivation type: then, there exist finitely many elementary choicgsegponding to critical
branchings, between parallel computation paths. Hence, Propasitiont@l8.ds that being of finite
derivation type is a first step to ensure thatresategory admits a presentation by a rewriting system,
together with a deterministic and finitely generated evaluation strategy.
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Convergence of2-polygraphs. The notion of trackn-category freely generated by anpolygraph
generalises th2-dimensional combinatorial complex associated to word rewriting systems$2gjer
introduced it to define finite derivation type for monoids and, then, linkedpitdperty with the possi-
bility, for a finitely generated monoid, to have its word problem decided by tinenal form algorithm.
This procedure consists in finding a finite convergent presentation ofith@idM by a word rewriting
system(X, R): given such a presentation, every element in the mohbidas a canonical normal form
in the free monoidX*; hence, one can decidef andv in X* represent the same elementdf by
computing their unique normal forms f@rand, then, by checking if the results are equal or nét'in

Squier has proved that, when a monoid admits a presentation by a finite ardgzmt word rewrit-
ing system, then it has finite derivation type. As a consequence, rewritirng ésuniversal way to decide
the word problem of finitely generated monoids: to prove that, Squier habkitd a finitely presented
monoid whose word problem is decidable, yet lacking the property of fieitwation type.

Here, we recover Squier’'s convergence theorem as a conseqoieiRoposition 4.3.5. Indeed 2a
polygraph has two kinds of critical branchings, namebfusionones anaverlappingones, respectively

corresponding to the following situations:
/ W\ . m

% N

Hence a finite2-polygraph can have only finitely many critical branchings, yielding a finitsdtopy
basis for its track-category when it is also convergent.

Convergence of3-polygraphs. This case is more complicated than the on@-gblygraphs, because
of the nature of critical branchings generated3egimensional rewriting rules o2-cells. In Section 5,
we analyse the possible critical branchingsgolygraph may have. We give a classification that unveil
a new kind of these objects, that we dalliexed critical branchingnd that describes situations such as
the following one:

where two3-cells respectively reduce ti2ecells

There, the-cell k belongs to none of the considergaells. Anormal instancef the critical branching
is such a situation wherfleis a normal formice., it cannot be reduced by agycell).

We prove that the existence of indexed critical branchings is an obstriotget a generalisation of
Squier’s result on finiteness and convergence for higher dimensindsed, for every natural number
n > 2, there exists am-category that lacks finite derivation type, even though it admits a prégenta
by a finite convergenin + 1)-polygraph (Theorem 4.3.9).



Introduction

To get this result, we use ti3epolygraph

¢1=(e. =19 (U= U=l
for which we prove, in Section 5.5, that it is finite and convergent, bus amé have finite derivation

type. Let us note that thiz-polygraph has a topological flavour: it presentseategory whos@-cells
are "planar necklaces with pearls" considered up to homotopy.

Finitely indexed 3-polygraphs. From our classification of critical branchings, we give a family of extra
sufficient conditions that ensure that a finite convergeptlygraph has finite derivation type.

First, a finite converger®-polygraph without indexed critical branching always has finite déawa
type (Theorem 5.1/4): this is the case of the associativity one and of theignone. We illustrate
the construction of a homotopy basis for this kind3gbolygraphs on this last example in Section 5.2:
the basis corresponds to the coherence diagrams satisfied by a momrdédgdrg. This yields a new
formulation and proof of Mac Lane’s coherence theorem assertingithatmonoidal category, all the
diagrams built from the monoidal structure are commutative [18].

More generally, we say thatapolygraph isfinitely indexedvhen every indexed critical branching
has finitely many normal instances (Definition 5.1.2). This is the case of theefarlass of non-indexed
3-polygraphs, but also of many known ones such asithelygraph of permutations. We prove that a
finite, convergent and finitely indexedpolygraph has finite derivation type (Theorem 5.3.4).

In the case of finitely indexe8polygraphs, building a homotopy basis requires a careful and com-
prehensive study of normal forms. We illustrate this construction in Sectihmibere we prove that the
3-polygraph of permutations is finitely indexed. Such an observation vasrfade by Lafont [15] and
we formalise it thanks to the notion of homotopy basis.

Perspectives. Our work gives methods to study, from a homotopical point of view, thevexaence
property of presentations @fcategories by-polygraphs. We think that further research on these meth-
ods shall allow progress on questions such as the following ones.

Our study of the3-polygraph of permutations adapts to polygraphic presentations of lravale
gebraic theories [16]. Indeed, there is a canonical translation of theseptations by term rewriting
systems int@-polygraphs [8, 15] and, when the original presentation is finite, lefalia@d convergent,
then the3-polygraph one gets is finite, convergent [11] and finitely indexed. [T%jus, if one proves
that a given Lawvere algebraic theory does not have finite derivatjm tne gets that it does not ad-
mit a presentation by a first-order functional program, which is a speitidl & finite, left-linear and
convergent term rewriting system.

We still do not know, for many specidlcategories, if they admit a convergent presentation by a
3-polygraph. Among thesg-categories, we are particularly interested in the one of braids. It istknow
that it admits a presentation by a finkgolygraph whose generators are, in dimengigihe elementary
crossing% and% and, in dimensio3, the Reidemeister moves:

$=0l 5ol B=KI MM

As a consequence of this work, we know that the presence of indekezhlcbranchings in this-
polygraph, similar to the ones encountered for permutations, is one of the ofajouctions to finding
a convergent presentation of theategory of braids.
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In this work, we use known notions from the theories of categories,-chtegories and of rewriting
that we do not necessarily explain in details. For more information on thégects; we respectively
recommend the books by Saunders Mac Lane [18], by Eugenia Cheén§aman Lauda [9], by Franz
Baader and Tobias Nipkow [2].

1. HIGHER-DIMENSIONAL CATEGORIES PRESENTED BY POLYGRAPHS

1.1. Generalities onn-categories andn-functors

In this document, we consider small, stricicategories and striet-functors between them. We denote
by Cat,, the (large) category they form.

1.1.1. Vocabulary and notations. If € is ann-category, we denote by, the set ofk-cells of C and

by sy andty thek-source andk-target maps. If is ak-cell, sy ;(f) andty,_;(f) are respectively called
its sourceandtargetand respectively denoted Byf) andt(f). The source and target maps satisfy the
globular relations

Sk O Sk+1 = Sk © tiq and  tgosppy = tro tiyr.

Two cellsf and g areparallel when they have same source and same target. A(fpaij of parallel
k-cells is called &-sphere Theboundaryof ak-cell is the(k — 1)-spheredf = (s(f), t(f)). The source
and target maps are extended tk-gpherey = (f, g) by s(y) = f andt(y) = g.

A pair (f, g) of k-cells of € is i-composablavhent;(f) = si(g) holds; when. = k — 1, one simply
sayscomposableThei-composite of f, g) is denoted byf x; g, i.e., in the diagrammatic direction. The
compositions satisfy thexchange relatiogiven, for everyj # k and every possible celfsf’, g, g’, by:

(f x5 ) % (g %5 9") = (f %1 ) %5 (' i g”).

If fis ak-cell, we denote by its identity (k + 1)-cell and, by abuse, all the higher-dimensional identity
cells it generates. Whely is composed with cells of dimensid+ 1 or higher, we abusively denote it
by f to make expressions easier to read. A cetlégeneratevhen it is an identity cell. Fok < n, a
k-categoryC can be seen as anrcategory, with only degenerate cells above dimenkion



1.2. Standard cells and spheres

1.1.2. Graphical representations. Low-dimensional cellsare writtem: p — ¢q,f:u=v,A:f=g¢g
and pictured as usual (and so areategories, omitting the degenerate cells):

For readability, we also depidtcells as "rewriting rules" og-cells:

/J\ EN /M\
N N

v v

For 2-cells, circuit-like diagrams are alternative representations, wheells are parts of the plane,
1-cells are lines and-cells are points, inflated for emphasis:

u u u

1.2. Standard cells and spheres
1.2.1. Suspension functors.For every natural numbet, thesuspension functor
Sy : Cat,, — Catyqq

lifts all the cells by one dimension, adding a forndadource and a formdl-target for all of them; thus,
in the (n + 1)-category one gets, one has exactly the same compositions as in the origindlore
formally, given ann-categoryC, the (n + 1)-categorys,,C has the following cells:

(Sn€lo = {—+} and  (SnClip1 = C Il {— +}.

Every cell ha®-source— and0-target+. The(k+ 1)-source andk + 1)-target of a non-degenerate cell
are itsk-source and-target inC. The (k 4+ T)-composable pairs are thecomposable ones df, plus
pairs where at least one of the cells is an identity-ajr +.

1.2.2. Standardn-cells andn-spheres. By induction onn, we define then-categories,, and 8,
respectively called thstandardn-cell and thestandardn-sphere We consider them as thecategorical
equivalents of the standard topologieaball andn-sphere, used to build the-categorical equivalents
of (relative) CW-complexes.

The standar@-cell &, is defined as any chosen single-element set and the stafidaltere as any
chosen set with two elements. Themif> 1, then-categorie€,, ands,, are defined as the suspensions
of &7 and8,,_:

&n = Sn1(€n) and 8n = Sn1(8n1).
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For coherence, we defire ; as the empty set. Thus, the standardell £,, andn-spheres,, have
two non-degenerate-cells e, and e]f for everyk in {0,...,n— 1}, plus a non-degenerate-cell e,
in £,,. Using the cellular representations, the standard €gll€, £, and &3 are respectively pictured
as follows (fors _1, S, 81 and8,, one removes the top-dimensional cell):

€ €
//’ -~ ~ \‘\
/ Ny e \‘j
e €3
— + — + — = + L+
%
€o € € € €2 € € € e, €,
AN ,/7‘ \\ ,/ﬁ
\\\\\ \\\\\\\\\\\\\\\\\\
+ +
€ €

If Cis ann-category then, for everi in {0,...,n}, the k-cells andk-spheres of® are in bijective
correspondence with the-functors froméy to € and from8y to €, respectively. When the context is
clear, we use the same notation fdt-aell or k-sphere and its correspondingfunctor.

As a consequence, lfis a set, thd-indexed families ok-cells (respk-spheres) of are in bijective
correspondence with the-functors fromlI - £ (resp.I - 8y) to €. We recall that, for a seéX and ann-
categoryD, the copowekX - D is the coproducth-category] [, .x D, whose set ok-cells is the product
X X ®k-

1.2.3. Inclusion and collapsingn-functors. For everyn, theinclusionn-functor]J,, and thecollapsing
n-functorP,,
Jn @ 8n — Enta and Pn:8&n — &n

are respectively defined as the canonical inclusia$i,ahto €,,1 and as thew-functor sending botla;;
ande;! to ey, leaving the other cells unchanged.

1.3. Adjoining and collapsing cells

1.3.1. Definition. Let € be ann-category, lek be in{0,...,n—1},letIbeasetandldt:1-8, — C
be ann-functor. Theadjoining ofT" to € and thecollapsing ofl" in € are then-categories respectively
denoted bye[I'l andC/T" and defined by the following pushouts@at.,:

1.]{ © J I-P{ © J
[ &1 ——C[T [-&—C/T

Whenk = n, one define€[l'] by seeingC as an(n + 1)-category with degenerate. + 1)-cells only.

Then-categoryC[l'] has the same cells &up to dimensiork; its (k + 1)-cells are all the formal
composites made of th& + 1)-cells of C, plus one extrak + 1)-cell fromT'(i,e, ) toT'(i, e{) for every
iin I; above dimensiok + 1, its cells are the ones ¢f, plus the identities of each extra cell.

Then-categoryC/I" has the same cells &up to dimensiork — 1; its k-cells are the equivalence
classes ok-cells of €, for the congruence relation generatedIly, e, ) ~ I'(i, el‘f), for everyiin I,
above dimensiork, its cells are the formal composites of the one€pbut with sources and targets
considered modulo the previous congruence.



1.4. Polygraphs and presentations ofi-categories

1.3.2. Extensions ofi-functors. Let C andD ben-categories and ldt: I - § — € be ann-functor.
Then, by universal property d[I'], one extends an-functorF : ¢ — D to a uniquen-functorF :
C[I'l — D by fixing, for everyy in T, a(k + 1)-cell F(y) in D such that the following two equalities
hold:

s(F(v)) = F(s(y)) ~and  t(F(y)) = F(t(y)).

1.3.3. Occurrences. Here we see the group of integers as am-category: it has one cell in each
dimension up tovr — 1 andZ as set omh-cells; all the compositions af-cells are given by the addition.
Let € be ann-category and lef : I - 8¢ — C be ann-functor. We denote by-||- the n-functor
from C[I'] to Z defined by:
1 iffer
Il = {

0 otherwise.

For every cellf, one callg|f||,- thenumber of occurrences of cellsioin f.

1.3.4. Then-category presented by ann + 1)-category. Let C be an(n + 1)-category. Iff is an
(n + 1)-cell of €, thenof is ann-sphere ofc. Thus, the se€,,,; of (n + 1)-cells of € yields an
(n + 1)-functor fromC,, ;1 - 8, to the underlyingh-category ofC: then-category presented yis the
n-category denoted b§ one gets by collapsing tha + 1)-cells of € in its underlyingn-category.

1.4. Polygraphs and presentations ofi-categories

Polygraphqor computadpare presentations by "generators" and "relations" of some highemndioral
categories [23, 8], see also [24, 25]. We defirnpolygraphs by induction on the natural numier

The categoryPoly of 0-polygraphs and morphisms between them is the one of sets and maps. A
0-polygraph isfinite when it is finite as a set. A-cell of a0-polygraph is one of its elements. Tfree
0-category functois the identity functoiPol, — Catp.

Now, let us fix a non-zero natural numberand let us assume that we have defined the category
Pol,, 7 of (n — 1)-polygraphs and morphisms between them, fifiite— 1)-polygraphsk-cells of an
(n — 1)-polygraph and the freén — 1)-category functoPol,,_; — Cat,_1, sending ann — 1)-
polygraphZ to the(n — 1)-categoryZ*.

1.4.1. n-polygraphs. An n-polygraphis a pairz = (X,,_1, X,,) made of ann — 1)-polygraphZ,, ;
and a familyZ, of (n — 1)-spheres of thén — 1)-category~’ ;.

An n-cell of £ is an element o,, and, ifk < n, ak-cell of £ is ak-cell of the (n — 1)-
polygraphX,,_;. The set ok-cells ofZ is abusively denoted hyy, thus identifying it to thé-polygraph
underlyingZ. An n-polygraph idfinite when it has a finite number of cells in every dimension. $ize
of ak-cell f in *, denoted byif||, is the natural numbejf||y , giving the number ok-cells of L that f
is made of. Fof -cells, we also usg| instead of|-||.

The original paper [8] contains an equivalent description-glolygraphs, where they are defined as
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diagrams
Lo I () Tn In
e - o
/So o I /51 s Sn—2,tn—2 I n—1,th—1
> >3 e pa
0 50,to ! 51,4 () Sn-2,th2 nl

of sets and maps such that, for dnin {0, ..., n — 1}, the following two conditions hold:

. to 19 te .
e The diagramX s 3¢ (+-)¢ 1y is ak-category.
S0 B Sk—1
. to t t—1 tr )
e The diagramZ$ I3s ()8 i Y1 isa(k+ 1)-graph.
So 1 Sk—1 Sk

1.4.2. Morphisms ofn-polygraphs. Let X and= be twon-polygraphs. Amorphism ofn-polygraphs
fromX to=Zis a pairF = (F,,_1, Fn) whereF,, 7 is a morphism ofn—1)-polygraphs front,, ;to=,,
and wherdr,, is a map fromx,, to =,, such that the following two diagrams commute:

F F

n — n —

In ?on In 7 Zmn
Sn]j © JSH] tnlJ{ © J(tn1
* [mE> * =
Zn—] = ? =1 Zn—l = ? =1
n— —1

Alternatively, if 2, : 1- 8,1 —= X} _;and=,:]- 8,1 — LJ_, are seen agn — 1)-functors, therF,
is a map froml to ] such that the following diagram commutesGat,, ;:

- 8pg —5 5

Fn.‘lsn]JV © JVF:]

J - 8n ? S
We denote byPol,, the category of polygraphs and morphisms between them.

1.4.3. The freen-category functor. Let X be ann-polygraph. Then-category freely generated 11y
is then-categoryX* defined as follows:

T = [T

This construction extends to arfunctor(-)* : Pol, — Cat,, called thefreen-category functor

10



2. Contexts, modules and derivations ofi-categories

1.4.4. Then-category presented by ann + 1)-polygraph. Let X be a(n + 1)-polygraph. Then-
category presented by is then-category denoted by and defined as follows:

f - Z;/Zn_._‘[ .

Two n-polygraphs ardietze-equivalenvhen the(n — 1)-categories they present are isomorphic i§
ann-category, @resentation o€ is an(n-+1)-polygraphZ such that is isomorphic to the-categoryz
presented by.. One says that an-categoryC is finitely generatedvhen it admits a presentation by an
(n + 1)-polygraphXZ whose underlyingh-polygraphXZ,, is finite. One says that is finitely presented
when it admits a finite presentation.

1.4.5. Example: a presentation of the-category of permutations. The2-categoryPerm of permu-
tations has oné-cell, onel-cell for each natural number and, for each pair, n) of natural number, its
set of2-cells fromm to n is the groupS;, of permutations ifm = n and the empty set otherwise. The
0-composition ofl-cells is the addition of natural numbers. Theomposition of twa2-cellso € S,y
andt € S,, is the permutatio xo T defined by:
. o(i) if 1 <i<n,
oo T(i) = . .
T(i—n) otherwise.

Finally the 1-composition of2-cells is the composition of permutations. The&ategoryPerm is pre-
sented by thé-polygraph with oné-cell, onel-cell, one2-cell, pictured by><, and the following two

3-cells:
S| ama =

2. CONTEXTS, MODULES AND DERIVATIONS OFN-CATEGORIES

2.1. The category of contexts of am-category

Throughout this sectiom is a fixed natural number arttlis a fixedn-category.

2.1.1. Contexts of am-category. A context of© is a pair(x, C) made of arin — 1)-spherex of € and
ann-cell C in C[x] such that|C||, = 1. We often denote by [x], or simply byC, such a context.

Letx andy be (n — 1)-spheres o€ and letf be ann-cell in C[x] such tha®f = y holds. We denote
by C[f] the image of a contex@[y] of € by the functorCly] — C[x] that extends ld with y — f.

2.1.2. The category of contexts.The category of contexts d is the category denoted I§C, whose
objects are then-cells of € and whose morphisms fromto g are the context€[0f] of € such that
Clf] = g holds. IfC: f — g andD : g — h are morphisms o€C thenD o C : f — his D[C]. The
identity context on am-cell f of € is the contexdf. WhenZX is ann-polygraph, one write€X instead
of CL*.

11



2. Contexts, modules and derivations ofi-categories

2.1.3. Proposition. Every context o€ has a decomposition

frxno1 (fno1*n—2 - (fix0X*0 91) - *n—2 In—1) *n—1 In,

wherex is an(n — 1)-sphere and, for evergin {1,...,n}, fx and gy are n-cells of . Moreover, one
can choose these cells so tHatand gy are (the identities ofk-cells.

Proof. The set ofm-cellsf of C[x] such that|f||, = 1 is a quotient of the following inductively defined
setX: then-cellx isin X; if Cisin X andf is ann-cell of € such that;(f) = s;(C) (resp.ti(C) = si(f))
holds for soma, thenf x; C (resp.C «; f) isin X.

Using the associativity and exchange relations satisfied by the compositiénsree can order these
successive compositions to reach the required shape, or to reachntbesisape with,, and gy, being
identities ofk-cells. O

2.1.4. Whiskers. A whisker ofC is a context with a decomposition

fr1%n—2- (fixoX*0g1) - *n—2 gn_1

such that, for everk in{1,...,n — 1}, f,, andgy arek-cells. We denote bW the subcategory aC
with the same objects and with whiskers as morphisms. Whsrann-polygraph, we writdV X instead
of WX*.

2.1.5. Proposition. LetX be ann-polygraph. Everyn-cell f in Z* with sizek > 1 has a decomposition

f = Cilyal #n—1 - *n1 Cxlvad.
whereyq, ...,y aren-cellsinZ andCy, ..., Cy are whiskers ot *.

Proof. We proceed by induction on the size of thecell f. If it has sizel, then it contains exactly one
n-celly of X, possibly composed with other ones of lower dimension. Using the relatitisiesaby
compositions in am-category, one can writtasC[y], with C a context of*. Moreover, this context
must be a whisker, sindehas sizel.

Now, let us assume that we have proved that evepell with size at mosk, for a fixed non-zero
natural numbek, admits a decomposition as in Proposition 2.1.5. Then let us consideicah f with
sizek + 1. Sincel|f|| > 2 and by construction af* = X7 _,[Z], one gets thaf can be writterg x; h,
where (g, h) is a pair ofi-composablei-cells of £*, for somet in {0,...,n — 1}, with ||g]| and|[h/]
at leastl. One can assume that= n — 1 since, otherwise, one considers the following alternative
decomposition of, thanks to the exchange relation betweeandx,, 1:

f = (g*is(h) *n_1 (t(g) *xi h).

Since||f|| = ||gl| + ||hll, one must havélg| < k and|h|| < k. We use the induction hypothesis to
decomposeg andh as in 2.1.5, wherg¢denoteg|g||:

g = Cilyilsn1--%n1Gly;l  and  h = Cyprlyjeal *n1---*n1 Cilvad.

We compose the right members and use the associativity ofto conclude. O
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2.2. Contexts in low dimensions

2.2. Contexts in low dimensions

2.2.1. Contexts of al-category as factorizations. From Proposition 2.1/3, we know that the contexts
of a 1-categoryC have the following shape:

U XX X0V,

wherex is a0-sphere and, v are1-cells of €. The morphisms il€C fromw :p — qtow’ : p’ — ¢’
are the pairgu: p’ — p,v:q — q’) of 1-cells of € such thatt xo w xo v = w’ holds inC:

When¢ is freely generated by &polygraph, thel-cellsu andv are uniquely defined by the context.
Moreover, the contexts fromv to w’ are in bijective correspondence with the occurrences of the word
in the wordw’. The categoryCC has been introduced by Quillen under the nazagegory of factor-
izations ofC [21]. It has been used by Leech to introduce cohomological propefiesngruences on
monoids [17] and by Baues and Wirsching for the cohomology of small caesg[4].

2.2.2. Contexts o2-categories. Let € be a2-category. From Proposition 2.1.3, a contextdias the
following shape:

hxq (g1 %0 X *0 g2) x1 k

wherex is al-sphere and, g2, h, k are2-cells. Morphisms irCC from a2-cell f to a2-cell " are the
contextsh x1 (g7 %o X %o g2) %1 k of € such that

hq (g1 *0fx0g2) <1k = f’

holds inC. This last relation is graphically represented as follows:

.
/ \,

______

However, the exchange relation between the two compositigaadx; implies that this decomposition
is not unique. Two decompositions

hxi(grxox*0g2)x1k and  h'x;(g]*ox' *09g3) *1 k'

13



2. Contexts, modules and derivations ofi-categories

represent the same context if and onlykif= x’ and there exis2-cells 14, 1, m;, m; such that the
following four relations are defined and statisfiedin

-----

2.3. Modules overn-categories

2.3.1. Definition. Let C be ann-category. AC-moduleis a functor from the category of contex@<
to the categorAb of abelian groups. Hence,amoduleM is specified by an abelian growd(f), for
everyn-cell f in €, and a morphisnM (C) : M(f) — M(g) of groups, for every context : f — ¢
of €. When no confusion may occur, one writégn] instead oM (C)(m) and, wherC has shap& x; x
(resp.x % h), one writesh x; m (resp.m %; h) instead oM (C)(m).

2.3.2. Proposition. Let ¢ be ann-category. AC-moduleM is entirely and uniquely defined by its
values on the following contexts ©f

fxix and x *i T
foreveryiin{0,...,n— 1} and every non-degenerate+ 1)-cell f in C.
Moreover, wheri is ann-polygraph, then a&*-moduleM is entirely and uniquely defined by its
values on the following contexts bf:
Cle] %1 x and x *i Clo]
for everyiin{0,...,n— 1}, every generatingi + 1)-cell ¢ in ;1 and every whiske€[d ] of ¥

it+1-
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2.3. Modules ovem-categories

Proof. Let h, h/ be twon-cells of € and letC[x] : h — h’ be a morphism o£C. We use Proposi-
tion[2.1.3 to decomposg[x] as follows:

Clx] = frukn1---*1 (fixoX %0 g1) *1 -+ *n—1 On,

in such a way that, for everk in {1,...,n}, fi and gy arek-cells. Thus, in the categor@C, the
contextC[x] decomposes into

Clx] = Cnlxnlo--0Cqlx1],

wherex; = x and, for everyi in {1,...,n}, one hasCi[xi] = f{ *xi_1 x{ *i_1 gi andxi 1 = 0Ci[xq].
Moreover, eaclt;[x;] splits into:

Cilxil = (yi*i—191) o (fi*xi—1x4),

wherey; = 0(fy *i_1 xi). Thus, sinceM is a functor, it is entirely defined by its values on the contexts
with shapef x; x orx x; f, withiin {0,...,n — 1} andf a non-degeneratg + 1)-cell (indeed, whert
is degenerate asiecell, one has x; f = x andM(x) is always an identity). This proves the first part of
the result.

Now, let us continue, assuming th@is freely generated by am-polygraphZ. Let us consider the
n-contextf x; x, wheref is an(i + 1)-cell of sizek > 1. We decompose it as in Proposition 2/1.5:

f = C1 [(p]] )itk Ck[‘Pk]»

whereoq, ..., @ are generatingi + 1)-cells andCy, ..., Cy arei-contexts. Thus, a conteXtx; x
decomposes int6X as follows:

fxix = (Ciloq] xix1) oo (Cylow *ixi),

wherexy = x andx; = 0(Cj;1[@;41] *i xj41). Proceeding similarly with contexts of the shape; f,
one gets the result. O

2.3.3. Example: the trivial module. Let C be ann-category. Therivial C-modulesends each-cell
of € to Z and each context df to the identity ofZ.

2.3.4. Example of modules oveR-categories. LetV be a concrete category. We view it a&-aategory
with one0-cell, objects ag-cells and morphisms ascells. Thed-compaosition in given by the cartesian
product and thé-composition by the composition of morphisms.

Let us fix an internal abelian groug in V, a 2-categoryC and2-functorsX : ¢ — V andY :
G — V, whereC is € where one has exchanged the source and target of 2wesll. Then, using
Proposition 2.3.2, the following assignments yiel@-enoduleMx y G:

e Every2-cell f: u = v is sent to the abelian group of morphisms:

Mxy\ﬂg(f) = V(X(u) X Y(V), G)

15



2. Contexts, modules and derivations ofi-categories

o If wandw’ arel-cells of G andC = w % x xo W’ is a context fromf : u = vtow xo f xo W',
thenMx v c(C) sends a morphism : X(u) x Y(v) — G inV to:

X(w) x X(u) x X(w') x Y(w) x Y(v) x Y(W) — G
x',x%,x",y",9,y") — alx,y).

e If g:u' = uandh:v = v’ are2-cells of @ andC = g %1 x x1 h is a context fronf : u = v to
g *1 %1 h, thenMx v g(C) sends a morphism : X(u) x Y(v) = GinVtoao (X xY), thatis:

Xu)xYH)— G
(%, y) = a( X(g)(x), Y(h)(y) ).

WhenX or Y is trivial, i.e., sends all the cells df to the terminal object o¥, one denotes the corre-
spondingC-module byM, y g or Mx . . In particular,M, , 7 is the trivial C-module.

By construction, &-moduleMx v ¢ is uniquely and entirely defined by the valuéat) andY(u),
for every1-cellu, and by the morphismx(f) andY(f) for every2-cell f. As a consequence, whéns
freely generated by Z-polygraphXZ, the C-moduleMx v g is uniquely and entirely determined by:

e The objectsX(a) andY(a) of V, for every generating-cell a in Z;.

e The morphism&(y) : X(u) — X(v) andY(y) : Y(v) — Y(u) of V, for every generating-cell
@:u=vinX,.

In the sequel, we consider this kind 8fmodule withV being the categorget of sets and maps or
the categonOrd of partially ordered sets and monotone maps. For this last situation, we tiestadin
internal abelian group i@rd is a partially ordered set equipped with a structure of abelian group whose
addition is monotone in both arguments.

2.4. Derivations ofn-categories

2.4.1. Definition. Let C be ann-category and leM be aC-module. Aderivation ofC into M is a map
sending everyi-cell f of € to an elementl(f) of M(f) such that the following relation holds, for every
i-composable paiff, g) of n-cells of C:

d(fxig) = fxid(g)+d(f) xi g.
Given a derivationd on G, we define its values on contexts by
n
d(C) = > fuxn 1 (fntsn 2 (d(f) kg (Frxoxxo 1) - xn1fon,
i=—mn

for any contexiC[x] = fyy %1+ (f1 *xox*of_1) - - - *n_71 f_ Of C. This gives a mappind(C) taking
ann-cell f of € with boundaryx to an elementl(C)[f] of the abelian groupM(C[f]). In this way a
derivation fromC into M satisfies:

d(C[f]) = d(C)[f] 4 Cld(f)].
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3. Higher-dimensional categories with finite derivation type

2.4.2. Proposition. LetC be ann-category, letM be aC-module and letl be a derivation of? into M.
Then, for every degenerate-cell f of ¢, we haved(f) = 0. Moreover, wher is the n-category
freely generated by an-polygraphXZ, thend is entirely and uniquely determined by its values on the
generating cells oF.

Proof. Let f be a degenerate-cell of €. We have:
d(f) = d(fxn_1f) = fHng d(f) +d(f) xn1 f = 2-d(f).

Sinced(f) is an element of the abelian groiy(f), then we havel(f) = 0.

As a consequence of its definition, a derivation is compatible with the assdgjatnit and exchange
relations. This implies that the valuesdbn ann-cell f of Z* can be uniquely computed from its values
on the generating-cellsf is made of. Ol

2.4.3. Example: occurrences.If € is ann-category and” : I -8, 1 — C is ann-functor, we have
defined then-functor|[-||,- counting the number of occurrencesrotells ofI" in ann-cell of C[I']. This
construction is a derivation d@ into the trivial -module, sending eaatr-cell of € to 0 and eachm-cell
oflto1.

2.4.4. Example: derivations of free2-categories. Let us consider &-polygraphXZ, a concrete cate-
goryV and a module of the shapéx v ¢, as defined in 2.3.4. Then, by constructiortof a derivationd
of Z* into Mx v,g is entirely and uniquely determined by a familyo) ,cx, made of a morphism

de : X(u) xY(v) —» G

of V for each2-cell ¢ : u = v of X.

3. HIGHER-DIMENSIONAL CATEGORIES WITH FINITE DERIVATION TYPE

3.1. Track n-categories

3.1.1. Definitions. In ann-categoryC, ak-cell f is invertible when there exists &-cell g from t(f)
to s(f) in C such that bothix,_1 g = s(f) andg*_1 f = t(f) hold. In that casey is unique and denoted
by f~!. The following relations are satisfied:

1, . B
(1,0 " =1, and (fxig)' = f ]*19 ] If1<k. 1
g 'xx_1f" otherwise.

Moreover, ifF : € — D is ann-functor, one has:

A track n-categoryis ann-category whosei-cells are invertiblei.e., an(n — 1)-category enriched in
groupoid. We denote byck,, the category of track-categories and-functors between them.
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3. Higher-dimensional categories with finite derivation type

3.1.2. Example. Let € be ann-category. Given twa-cellsf fromu tov andg fromvtowin C, we
denote byl 4 the followingn-sphere of:

Lfg = (frn-19, Tu).

If v = (f, g) is ann-sphere of¢, we denote byy ! then-sphere(g, f) of €. Then we define the track
(n + 1)-categoryC(y) by

Cly)=¢C [% Yﬁ]] / {Iv,v*" Iv*‘,v}‘

This construction is extended to a $aetf n-spheres, yielding a tradky + 1)-categoryC(T").

3.1.3. The free trackn-category functor. Given arm-polygraphZ, thetrackn-category freely gener-
ated byZ is then-category denoted by " and defined by:

1= I (Za),

This construction extends to a functe} " : Pol,, — Tck,, called thefree trackn-category functor

3.2. Homotopy bases

3.2.1. Homotopy relation. Let € be ann-category. Ahomotopy relatioron € is a track(n + 1)-
categoryJ with € as underlyingh-category. Given am-sphere(f, g) in G, one denotes by ~5 g the
fact that there exists a@m + 1)-cell fromf to g in 7. If ' is a set ofn-spheres o€, one simply writes
instead of~¢ () and calls it thenomotopy relation o generated by'.

One had ~+ g if and only if t(f) = 7t(g) holds, wheret is the canonical projection frof to the
n-categoryJ presented by, i.e., /T.1. As a consequence, the relatisn- is a congruence relation
on the paralleh-cells of €, i.e,, it is an equivalence relation compatible with every compositio@.of

3.2.2. Homotopy basis. A setT" of n-spheres of© is a homotopy basis o€ when, for everyn-
sphere(f, g) of C, one hasf ~r g. In other words," is a homotopy basis if and only if, for every
n-spherey of €, there exists arin + 1)-cell ¥ such thatoy = vy holds,i.e., such that the following
diagram commutes i€at,, (1:

Sp——— ¢
ol o |

n+1 %e(r

3.2.3. Proposition. Let C be ann-category and lel” be a homotopy basis @f. If ¢ admits a finite
homotopy basis, then there exists a finite subsEttbét is a homotopy basis ¢f

Proof. Let '’ be a finite homotopy basis &. Lety be ann-sphere of¢ in I'’. Sincel is a homotopy
basis ofC, there exists atn+1)-cell ¢, in C(T") with boundaryy. This defines afm+1)-functorF from
C(I'") to C(T") which is the identity on cells of and which sends eachin '’ to ¢... For eachp.,, we
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3.3. Polygraphs with finite derivation type

fix a representative i8[", '] and denote by, }- the set of cells of’ occurring in this representative.
Let us denote by, the following subset oF

rO = U {(p’Y}r )

yer’

consisting of all the cells df contained in the cellg.,. The subsely is finite sincel’"” and eacH - }-
are. Now let us see that it is an homotopy basi€.oEet us fix ann-sphere(f, g) of C. By hypothesis,
there exists aifin + 1)-cell A in G(T"’) with boundary(f, g). By application off, one gets arin + 1)-
cell F(A) in C(T") with boundary(f, g). Moreover, then + 1)-cell F(A) is a composite of cells of the
shapep-,: hence, it lives irc(Ip). As a consequence, one gétsr, g, which concludes the proof. [

3.3. Polygraphs with finite derivation type

3.3.1. Definitions. One says that an-polygraphX hasfinite derivation typavhen it is finite and when
the trackn-categoryZ " it generates admits a finite homotopy basis.&nategory haginite derivation
typewhen it admits a presentation by am+ 1)-polygraph with finite derivation type.

3.3.2. Lemma. Let L and X’ ben-polygraphs. We denote by: £* , — L and byn’ : £'5_; — %'

the canonicaln — 1)-functors. Then everjn — 1)-functorF fromZ to T’ can be lifted to am-functor
F: LT — 2’7 such that the following diagram commutedat,, :

Proof. For everyk-cell win £*, with k in {0,...,n — 2}, we takeF(u) = F(u). Sincer andn’ are
identities on cells up to dimension— 2, we have the relatioh o t(u) = 7t/ o F( ).

Now, let us consider afn — T)-cellw in £. One arbitrarily chooses am — 1)-cell of ", hence
of £/, that is sent off o 7n(u) by 7/, and one f|xe§( ) to that(n — 1)-cell. One extends to every
(n — 1)-cell of * thanks to the universal property bf.

Then, letf be ann-cell fromu tovin X. Thenm(u) = 7t(v) holds by definjtion oft. Applying F on
both members and using the property satisfied Jyne getst’ o Fu) =7’ o F(v). By definition of 7t/
and of£’", this means that there exists arcell from F( ) to F( )in £'T. One takes one suak-cell
for F(f) Finally, one extendg to everyn-cell of £ 7. O

3.3.3. Lemma. LetX andX’ ben-polygraphs and leE : £ — £’T be ann-functor. Given a sef of
n-spheres of ', we definé(T") as the following set ofi-spheres of’":

F(r) = {(F(g),F(g")) | (g, 9"V €T }.
Then, for everyr-sphere(f, f') of LT such thatf ~ f’ holds, we havé(f) ~rr) F(f').

Proof. We use the functoriality ofF. O
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3. Higher-dimensional categories with finite derivation type

3.3.4. Proposition. LetZ andX’ be Tietze-equivalent finite-polygraphs. Thei has finite derivation
type if and only iz’ has.

Proof. Let us assume that andX’ aren-polygraphs which present the saifre— 1)-category, say.
Let us assume that has finite derivation type, so that we can fix a finite homotopy daeis~ " . Using
Lemmd 3.3.2 twice on ther — 1)-functor Ide, we get twon-functorsF: £ — £/’ andG: £/’ — £T
such that the following diagrams commuteGat,, ;:

T ——0e I ——¢e
FJ © Jme GT © ]de
Z/:_] T e Z/;_] T) e

In particular, bothrt and7t’ are the identity ork-cells, for everyk < n — 1, hence so aré andG.

Let us consider atm — 1)-cella in Z’. Thennt/ o FG(a) = wo G(a) = ©/(a). Thus, there exists an
n-cell denoted byf, from a to FG(a) in £'T. From these cells, we defirfg for every(n — 1)-cellu
in Z’*, hence ot/ ", using the following relations:

o for every degeneraten — 1)-cell u, f,, is defined ast,

e for everyi-composable paifu,v) of (n — 1)-cells, .., is defined as,, *; f,.
We have that, for everyn — 1)-cell u, then-cell f,, goes fromu to FG(u): to check this, we argue
thatFG is ann-functor which is the identity on degeneraie— 1)-cells.

Now, let us consider an-cell g fromutovin £''. We denote byf 4 the followingn-cell fromu
towin X'’ with a cellular representation giving the intuition for the case 2:

1Cg = 0 *n—1 1Cv *n—1 FG(9)71 *n—1 f£1

Let us prove that, for any composable p@ajrh) of n-cells inZ’", we have:
fg*n,]h = g*n-1 fh *n—1 9_1 *n—1 fg-

For that, we assume thathas sourca. and targetv, while h has sourcev and targetw. Then we
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3.3. Polygraphs with finite derivation type

compute:

g *n—1 Th*n-1 g_] *n—1 f
= g*n-1 <h*n 1 T xne 1FG( ) *n—1 f )

*n—1 g_] *n—1 <9 *n— 1f *n— 1FG( ) *n— lf )
= 0 *n—1 R fw *n—1 FG(h) *n—1 FG( ) *n—1 f_
= (9 *n—1 h) *n—1 fW *n—1 FG(Q *n—1 h) *n—1 fu1
= fg*n71 h-
Now, let us consider an-cell g and a whiskelC[x] in £ such thatx = 9(g;,_1). We note that, by

i
definition off, it has the samén — 1)-source andn — 1)-target agy, so thatC[f ] is defined. Let us
prove that the following relation holds:

ferg = Clfgl.

From the decomposition of contexts, it is sufficient to prove that the followgtagion holds
fuxigriv = Ukifgxiv

for everyn-cell g, every possiblé-cellsu andv, with k < n — 1, and evenyji < k such thatw x; g *; v
is defined. Let us assume thahas sourcev and targetv’ and compute, from the left-hand side of this
relation:

! *n—1 f

1

fu*ig*-lv = (u *i g *qi V) *n—1 fu*iw’*iv *n—1 FG(LL *ig*iV )

= (Wi g*i V) An_1 (Wi Ty *i V) *n_1 (Wxi FG(g) ™

Wkhi WiV
Hi V) *n_ (WA fv_\) *iV)

= uxifgxiv.

Now, we denote by’ the set ofn-spheregfg, 154)), for everyn-cell g in Z’. Then, it follows from the
previous relations that, for evernycell g in £'T, one has:

fg ~r 1 s(g)-

Let us consider an-sphere(g, g’) in £'". Then(G(g), G(g’)) is ann-sphere int". Sincer is a ho-
motopy basis foE ", we haveG(g) ~r G(g’), so that, by Lemma 3.3.3, one gétS(g) ~r) FG(g').

Finally, let us denotd” the set ofn-spheres oft’ " defined byl'” = I’ U F(I') and let us prove
thatT” is a finite homotopy basis &’ . Since bothx/ andr are finite, so id"”. Let us consider an
n-sphere(g, g’) in £'", with sourcew and targetv’, and let us prove that ~r~ g’ holds. We start by
using the definition of 4 to get:

g = fgxn_1f ) *xn_1FG(g)H*n_1fy .

Using the definition off 4/, one gets a similar formula fay’. We have seen thdt, ~r w, fq/ ~p» w
andFG(g) ~r» FG(g’) hold. Thus one gets ~r~ ¢'. m
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4. Critical branchings and finite derivation type

3.3.5. Remark. Proposition 3.3.4 shows that the property of having finite derivation typevésiant
by Tietze-equivalence for finite polygraphs. We will illustrate in Example @&t this is not the case
for infinite ones.

4. CRITICAL BRANCHINGS AND FINITE DERIVATION TYPE

4.1. Rewriting properties of polygraphs
We fix an(n + 1)-polygraphZ and ann-cell f in X*.

4.1.1. Reductions and normal forms. One says that reducesnto somen-cell g when there exists a
non-degeneratén + 1)-cell A from f to g in Z*. A reduction sequends a family (fy )y of n-cells such
that eachfy reduces intdfy, . One says thaf is a normal form (forZ,,;;) when every(n + 1)-cell
with sourcef is degeneraté,e., it does not reduce into any-cell. A normal form forf is a normal
form g such thatf reduces intgy. The polygrapht is normalizing atf whenf admits a normal form. It
is normalizingwhen it is at everyn-cell of *.

4.1.2. Termination. One says thak terminates af when there exists no infinite reduction sequence
starting atf. One says thal terminateswvhen it does at everyt-cell of Z*. If £ terminates af, then

it is normalizing atf, i.e., everyn-cell has at least one normal form. Moreover, in case of termination,
one can prove properties usiNgetherian inductionFor that, one proves the property on normal forms;

then one fixes am-cell f, one assumes that the result holds for ewesuch thatf reduces intagg and

one proves that, under those hypothesesnticell f satisfies the property.

4.1.3. Confluence. A branching ofX is a pair(A, B) of (n 4+ 1)-cells of £* with same source; this
n-cell is called thesourceof the branchingA, B). A branching(A, B) islocalwhen||A|| = ||B|| = 1. A
confluence ok is a pair(A, B) of (n + 1)-cells of £* with same target. A branchirn@\, B) is confluent
when there exists a confluenc&’, B’) such that both,,(A) = s,,(A’) andt,.(B) = s(B’) hold, as in

the following diagram:
7N
NN

Such a paifA’,B’) is called aconfluence fofA, B). Branchings and confluences are only considered
up to symmetry, so thdiA, B) and(B, A) are considered equal. The polygraplis (locally) confluent

at f when every (local) branching with souréés confluent. It iglocally) confluentwhen it is at every
n-cell.

If X is confluent then every-cell of £* has at most one normal form. Thus, normalization and
confluence imply that tha-cell f has exactly one normal form, writtefa In a terminating polygraph,
local confluence and confluence are equivalent: this was proved gasieeof word rewriting systems (a
subcase of-polygraphs) by Newman [20] and, since then, the result is called Netsriesmma.
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4.2. Using derivations for proving termination of a3-polygraph

4.1.4. Convergence.The polygraplt is convergent af when it terminates and it is confluentfatit is
convergentvhen itis at everyw-cell. If £ is convergent af, thenf has exactly one normal form. Thanks
to Newman’s lemma, one gets convergence from termination and local cocgluéX is convergent, we
havef ~y ., gifandonlyifthe equality?: g holds. As a consequence, a finite and convergestl )-
polygraph provides a decision procedure to the equivalenaecls in then-category it presents.

4.1.5. Critical branchings in polygraphs. Given a branchind = (A, B) of £ with sourcef and a
whiskerC[of] of £*, the pairC[b] = (C[A], C[B]) is a branching o, with sourceC[f]. Furthermore,
if b is local, thenC[b] is also local. We define by the order relation on branchings bfgiven by
b < b’ when there exists a whiskérsuch thaiC[b] = b’ holds.

A branching isminimalwhen it is minimal for the order relatiog. A branching istrivial when it
can be written either dA, A), fora(n + 1)-cell A, or as(A %; sn(B), sn(A) %i B), for (n + 1)-cellsA
andB and ai in{0,...,n — 1}. A branching iscritical when it is minimal and not trivial.

In order to prove thak is locally confluent, it is sufficient to prove that all its critical branchings
are confluent. Indeed, trivial branchings are always confluesheamon-minimal branching is confluent
if and only if the corresponding minimal branching is (to prove that the lattestexwe proceed by
induction on the size of the source of the local branching, which is-aall in the freen-categoryZy,).

4.2. Using derivations for proving termination of a3-polygraph

A method to prove termination of&polygraph has been introduced|in [10], see also/[11, 12]; in special
cases, it can also provide complexity bounds [6]. It turns out that theaietbes interpretations that are
a special case of derivations, as described here. Here we onlggivatline of the proof.

4.2.1. Theorem. LetX be a3-polygraph such that there exist:

e Two2-functorsX : £% — Ord andY : (£%)°® — Ord such that, for everyi-cell a in X, the
setsX(a) andY(a) are non-empty and, for evedycell « in X3, the inequalitiesX(sx) > X(tx)
andY(s«) > Y(tx) hold.

e An abelian groupG in Ord whose addition is strictly monotone in both arguments and such that
every decreasing sequence of non-negative elemeftssostationary.

e A derivationd of L into the moduléM x v g such that, for everg-cell f in £5, we haved(f) > 0
and, for evenga-cell « in 3, the strict inequalityd(s«) > d(ta) holds.

Then the3-polygraphX terminates.

Proof. Let us assume tha : f = g is a3-cell of Z* with size1. Then there exists &cell x: ¢ = 1
of X and a contex€ of X such thatA = C[«] holds,i.e., such thaf = C[¢] andg = C[ip] hold. Thus,
one gets:

d(f) = d(C)lel + Cld(e@)]  and  d(g) = d(C)] + Cld(W)].

We use the factl(¢) > d(1) holds by hypothesis to gé&t[d(¢)] > C[d(1y)]. Moreover, sinc&X andY
are2-functors intoOrd and sincel sends everg-cell to a monotone map, one get&C)[¢] > d(C)[p].
Finally, one uses the hypothesis on the strict monotony of additidd to getd(f) > d(g). Then
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4. Critical branchings and finite derivation type

one deduces that, for every non-degenesatell A : f = ¢, one hasd(f) > d(g). Thus, every
infinite reduction sequence ), would produce an infinite, strictly decreasing sequefitféy)y) of
non-negative elements @, the existence of which is prohibited by hypothesis. Ol

4.2.2. Special casesThe sequel contains several examples where derivations are usexéctgmi-
nation. Other examples can be found in/[11] or [6]. Often, we take thialt@vfunctor for at least one

of the 2-functorsX andY andZ for G. One can check that those situations match the hypotheses of
Theorem 4.2.1.

4.3. Branchings and homotopy bases

In the case of convergent word rewriting systems, convergen-polygraphs with exactly oné-
cell, the critical branchings generate a homotopy basis [22]. In this seet®meneralise this result
to any polygraph. In particular, we recover Squier's theorem asl@oye4.3.7, stating that a finite
and convergenz-polygraph has finite derivation type. However, this result fails to gaiserto higher-
dimensional polygraphs, as stated in Thearem 4.3.9. Indeed, forevery, there exists at least a finite
and convergenti-polygraph with an infinite number of critical branchings. The detailed fpcaa be
found in 5.5.

4.3.1. Notation. WhenZX is a locally confluentn + 1)-polygraph, we assume that, for every critical
branchingb = (A,B), a confluencg§ A’,B’) has been chosen. We denote Bythe set of all the
(n+ 1)-spheregA x,, A’, B x, B’) of Z, for each critical branching = (A, B).

4.3.2. Lemma. LetX be alocally confluenin + 1)-polygraph. Then every local branchiibg= (A, B)
admits a confluenceA’, B’) such thatA x, A’ ~r, B x, B’ holds.

Proof. First, let us examine the case whérés a trivial branching. IfA = B, then(t,(A), t.(B)) isa
confluence that satisfies the required property. Otherwise, let umadbat there exigtin + 1)-cellsA;
andB; in X*and ani in {0,...,n— 2} such thatA = A x; sn(B7) andB = s, (A1) x; By hold: then
(tn(A1) *i B1, A7 xi tn(B7)) is a confluence that satisfies the required property.

Now, let us assume thatis not trivial. Letb; = (A1, B1) be a minimal branching such thiat < b,
with a whiskerC such thatb = C[b4] holds. Sincg A, B) is not trivial, thenb; cannot be trivial, so
that it is critical. Then we consider its fixed conflueri@€, B’). Then(C[A’], C[B']) is a confluence for
(A, B). Furthermore, one has:

A s CIA'] = C[A1] %y CIA] = C[A7 %, Al

Similarly, one get$ «,, C[B’] = C[B; », B]. SinceC is a whisker and since, by definition &f one
hasA; xn A’ =, By +, B/, one gets thatC[A’], C[B]) satisfies the required property. O

4.3.3. Lemma. LetX be a convergenin + 1)-polygraph and lefA, B) be a branching o such that
botht, (A) andt,(B) are normal forms. Then one hag(A) = t,(B) andA ~r, B.
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4.3. Branchings and homotopy bases

Proof. SinceX is terminating, we can prove the result by induction on the source of thetiran

First, if this sourcef is a normal form, then by definition of normal form, bothand B must be
identities. Hence,,(A) andt,,(B) are equal, and so afeandB. ThusA ~r; B holds.

Now, we fix ann-cell f, which is not a normal form. We assume that the result holds for every
branching(A, B) such that the targets ¢f andB are normal forms and such that there exists a non-
trivial (n 4+ 1)-cell from f to their source. LefA, B) be a branching with sourceand such that the
targets ofA andB are normal forms. Sinc&is not a normal formA andB cannot be identities, hence
one can decompose them indo= A x, A, andB = By %, B, with A; andB; being(n + 1)-cells of
sizel.

The pair(A1,B1) is a local branching. Thus, using Lemma 4.3.2, one gets a confl(éri¢c8/ ) for
(A1,B1) such thatA; xn, A} =~ B1xn B] holds. Let us denote by the common target ok} andB},
by e its normal form and byA; ann-cell fromgtoe.

Then we consider the branchitig,, A} x, A3), whose source is denoted hy The targets of\,
andAj x, Az are normal forms and; is a non-trivial(n + 1)-cell from f to h: thus, the induction
hypothesis can be applied to this branching, yielding thahas target and thatA,; ~r, Aj xn A3
holds.

We proceed similarly to prove th®, satisfies the same properties, so that one getsAteid B
have the same target and thfat~r, B holds. The constructions we have done are summarized in the
following diagram:

4.3.4. Proposition. Let X be a convergentn + 1)-polygraph. Ther’s is a homotopy basis fot .
Proof. Let (A1, A;) be an(n + 1)-sphere inz ", with targetn-cell f. SinceX is convergent, we can

choose arin 4 1)-cell B from f to its normal form. TheriA; x,, B, A, %, B) satisfies the hypotheses of
Lemma 4.3.3, yielding\; xn B &~ Az xn B, henceA; =, A,. ]

4.3.5. Proposition. A finite convergent polygraph with a finite set of critical branchings hagefi
derivation type.

Proof. If X has a finite set of critical branchings, then thelseis finite. O
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4. Critical branchings and finite derivation type

4.3.6. Corollary. A terminating polygraph with no critical branching has finite derivation type.

4.3.7. Corollary ([22]). A finite convergen?-polygraph has finite derivation type.

Proof. If X is a finite convergenl-polygraph with oné-cell, i.e., a word rewriting system, then its set

of critical branchings is finite. Indeed, it is equal to the number of possidelaps between the words
corresponding to the sourcesbtells: there are finitely mang~cells and finitely many letters in each
word. If £ has more than on@-cell, then the number of possible overlaps is bounded by the number of
overlaps inX’, built from X by identification of all its0-cells. O

From this result Squier has proved that, if a monoid admits a presentation hiyeacthnvergent word
rewriting system, then it has finite derivation type [22]. Now we prove thiatriésult is false fom-
categories when > 2.

4.3.8. Proposition. For every natural numben > 3, there exists a finite convergentpolygraph
without finite derivation type.

Proof. We consider thé-polygraphZ with one0-cell, onel-cell, three2-cells @, ), \U and the fol-
lowing four 3-cells:

¢1=(e. =l (U=[ =]

The 3-polygraphX is finite and convergent. However, the first and secéyulls create an infinite
number of critical branchings whose confluence diagrams cannotdseried by a finite homotopy
basis. These facts are proved in/5.5.

Then we apply suspension functors brio get amm-polygraph, for anyn > 3. It has exactly the
same cells and compositions in dimensians3, n—2, n—1 andn asX has in dimensiong, 1, 2 and3;
on top of that, it has two cells in each dimension umte 4 and no other possible compaositions, except
with degenerate cells. Thus, we conclude thatth@lygraph we have built is finite and convergent, yet
it still fails to have finite derivation type. Ol

4.3.9. Theorem. For every natural numben > 2, there exists an-category which does not have finite
derivation type and admits a presentation by a finite convergent 1)-polygraph.

Proof. For anyn > 2, Proposition 4.3/8 implies that there exists a finite convergent1)-polygraphZ

without finite derivation type. By Proposition 3.3.4, no finite + 1)-polygraph presenting tha-
categoryX can have finite derivation type. Thusdoes not have finite derivation type. O

4.3.10. Example. We end this section with an example proving that the property of finite denivijee
is not Tietze-invariant fomfinite polygraphs. Let® be the2-category presented by tl3epolygraphx
with one0-cell, onel-cell, three2-cellstz1, @, ¢ and the following twas-cells:

o= and $§f

26



4.3. Branchings and homotopy bases

The polygraph® terminates and does not have critical branching. By Corallary 4.3.6 it felkat:
has finite derivation type and, thus, so d@es

Now let us consider another presentation of 2keategoryC, namely the3-polygraph= defined the
same way a& except for thes-cells:

g=1  and $_ﬁ>f

The 3-polygraph= still terminates, but it has the following non-confluent critical branching:
—4
E
X
We define, by induction on the natural numbker 1, the2-cell [:zjk as follows:

2, =@ and 2, = A%Fk .

Then, we complete thg-polygraph= into an infinite convergent polygragh, = = II {fy, k > 1},
wherefg is f andpy is the following3-cell:

T

The 3-polygraph=., has one confluent critical branching for every natural nunkber

[« ]
A
s AN

B

7

By Proposition 4.3.4, the s€t= {«f | k € N} is a homotopy basis of thicategory=_ .
Let us prove that th&-polygraph=., does not have finite derivation type. On the contrary, let
us assume that,, has finite derivation type. Then, following Proposition 3.2.3, there existsii® fi
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5. The case oB-polygraphs

subsef, of I" which is a homotopy base &f!,. Thus, there exists a natural numbeuch that, for every
k > 1, thed-cell xp is not inTy. However, sincdy is a homotopy base we still have:

s (aPr) ~r, t(ap).

Hence, there exists4cell @ in =] () such thas® = s (xf1) andt® =t (xfB;) hold. Let us prove
that this is not possible, thanks to the derivatibaf =, into the trivial module given by:

0 ifk<1

dlo) =0 and  d{fi) = {1 k> 141

Then, for everyk < 1, we haved(s(apy)) = d(t(xfx)) = 0. As a consequence, for evefycell WV
in = (Ty), we haved(sW) = d(t¥). In particular, wher¥ = @, we getd(s(«f1)) = d(t(«py)).
This is not possible since, by definition éf we haved(s(xf1)) = 1 andd(t(«xf1)) = 0. This proves
that=., does not have finite derivation type.

5. THE CASE OF3-POLYGRAPHS

5.1. Classification of critical branchings

5.1.1. Types of critical branchings. Let ~ be a3-polygraph and letA, B) be a critical branching of.
Let us denote by andf the3-cells of Z that generatéd andB. Then(A, B) falls in one of three cases.

The first possibility is that there exists a cont€xbf Z3 such thatse = C[sp] holds. Then, the
source of the branchingA, B) is:

In that case(A, B) is aninclusioncritical branching.
If the branching(A, B) is not an inclusion one, the second possibility is that there éxistisu, v
and2-cellsf, g, h such thaso ands3 decompose in one of the following ways.

e One hasx = fx; (Wxp h) andsp = (hxoVv) %7 g, SO that the source ¢fA, B) is:
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5.1. Classification of critical branchings

e Onehasa = fx; (Wxgh*gv)andsp = hxy g:

If (A, B) matches one of these cases, then it is callesjalar critical branching.
Finally, when the branchin@A, B) is not an inclusion or regular one, there existellsu, v and
2-cellsf, g, h suchsa ands3 decompose in one of the following ways.

e One hasax = f %7 (hxou) andsp = (hxg V) x1 g, SO that there exists Z&cell k such that the
source of(A, B) is:

In that case, one can wrifé\, B) = (C[k], D[k]) for appropriate context€ andD of Z*. The
family (C[k], D[k])x, wherek ranges over th@-cells with appropriate boundary and such that
(C[k], D[k]) is a minimal branching, is calledraght-indexedcritical branching.

e One hasax = f %7 (uxg h) andsp = (v xp h) x1 g, SO that there exists Z&cell k such that the
source of(A, B) is:

In that case, one can wrifé\, B) = (C[k], D[k]) for appropriate context€ andD of Z*. The
family (C[k], D[k])x, wherek ranges over th@-cells with appropriate boundary and such that
(C[k], D[k]) is a minimal branching, is calledlaft-indexeccritical branching.

e Oneis not in the right-indexed or left-indexed cases and one has

s = o (U %o My %o Wy %0 h2 %0 -+ - %0 Un—1 %0 P %0 Un)

and

(Vo *0 1 %0 V1 %0 Mo %0 -+ - %0 Vn—1 %0 hn %o V) %1 g,

sp
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5. The case oB-polygraphs

so that there exigt-cellsky, . . ., k,, such that the source A, B) is as follows, where we writg
instead ofn — 1 for size reasons:

In that case, one can writeA, B) = (Clko,...,knl, Dlko,...,kn]) for appropriate3-cells C
andD in someXZ*[xy, ..., xnl. The family(Clko, ..., knl, D[Ko, ..., knl)x, ... k., Where thek;'s
range over th@-cells with appropriate boundary and such th@atky, ..., knl, Dlko, ..., knl) is
a minimal branching, is calledraulti-indexedcritical branching.

In all those indexed cases, the branchig B) is said to be arinstanceof the corresponding right-
indexed or left-indexed or multi-indexed one. It imarmalinstance when the indexirtjcell k (resp.
2-cellskyg, ..., kn) is a normal form (resp. are normal forms).

5.1.2. Definitions. A 3-polygraph isnon-indexedvhen each of its critical branchings is an inclusion
one or aregular one. It Bght-indexed(resp.left-indexed when each of its critical branchings is either
an inclusion one, a regular one or an instance of a right-indexed (sfsmdexed) one. A-polygraph
is finitely indexedvhen each of its indexed critical branchings has a finite number of norstahices.

5.1.3. Proposition. A3-polygraph with afinite set gf-cells has a finite number of inclusion and regular
critical branchings.

Proof. LetX be a3-polygraph withz3 = {«;, ..., ] finite. As a consequence, foraiy < {1,...,p},

the set of morphisms frosw; to sx; in WX is finite. ThusZ has a finite number of inclusion branchings.
Now, let us fixi,j € {1,...,p} and let us assume that there exist two whiskérand D of XL*

such that the paifClwil, D[og]) is a regular branching, with sourde Then there exist d-cell h and

whiskersC’ andD’ of Z* that satisfyC[sa;] = C’[h] = D’[h] = D[sa;]. Since the set®VX(s«y, f),

WZ(saj, ), WZ(h, C[sxi]) andWZ(h, C[soy]) are finite, there exist finitely many regular branchings of

this form, with1, j fixed. SinceX; is finite, the3-polygraphX has finitely many regular branchingsl’]

5.1.4. Theorem. A finite, convergent, non-indexéepolygraph has finite derivation type.

Proof. We use Proposition 5.1.3 and, then, we apply Proposition|4.3.5. Ol
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5.2. Mac Lane’s coherence theorem revisited

5.2. Mac Lane’s coherence theorem revisited

5.2.1. Monoidal categories. A monoidal categorys a data(C, ®, e, a,l,r) made of a categor¢, a
bifunctor® : € x € — €, an object of C and three natural isomorphisms

Uxyz @ (X®UY)®2z = x®(Y®z), ly : e®@x — x, Ty I X®e — X,
such that the following two diagrams commutein
(x®(y®2))9t —— x@((YD2)S)
/ X oeov)
(x@y)ez)et © x® (y®(281)) / \

\ / (x®e)®y XQy

(x®@yY)®(za1t)

Mac Lane’s coherence theorem [18] states that, in a such monoidaboatadj the diagrams whose
arrows are built from®, e, 1 andr commute. Thereafter, we give a proof of this fact by building a

homotopy basis of &-polygraph.

5.2.2. The3-polygraph of monoids. We denote by the 3-polygraph with oné-cell, onel-cell, two
2-cells'y’ ande and the following threé-cells:

Yo Yl el

We denote by the set made of the followingrcellsxx andocp, where we commit the abuse of denoting
a3-cell of Z* with sizel like its generating-cell:

T >
aux HH
W\ & /W “ﬂ/ p \v

5.2.3. Theorem. The sef” of 4-cells forms a homotopy basis of the trackategoryX .

*

Proof. Let us prove thak terminates. We consider tlg-moduleMx . 7 and the derivationl of X%
into Mx . 7 generated by the following values:

X(]) = N\{0}, X(¥)(i,j) =i+j, Xe) =1,
d(¥)(i,j) =1, d(e) =o.

31



5. The case oB-polygraphs

We check that th@-functorX satisfies the (in)equalities

x<w> (i, k) = i+j+k = x(U) (L,3,k)
X(Q)(i)—i—X(‘)ﬁ), X(Q)(i)—i—x(Dm

and that the derivatiod satisfies the strict inequalities

d(ﬁ) (i,j,k) = 2i4+] > i+ = d(U) (1,3,K)
d(Q)(i):1>ozd<‘>m, d<v>(i):i>02d<‘>(i).

We apply Theorem 4.2.1 to get termination.
The 3-polygraphX has five critical branchings. All of them are regular ones and cortfluEmeir
confluence diagrams are given by the boundaries of theltealls of " and of the following three ones:

Since L terminates and has all its critical branchings confluent, it is convergeatcamsequence of
Newman’s lemma. Thus we know that the &&tx, xp, Ap, Ax, pax} of 4-cells is a (finite) homotopy
basis of£ ". To get the result, we check thak, pax andAp are superfluous in this homotopy basis,,
that their boundaries are also the oneg-gglls of Z T (I").

ForAw, we consider thé-cell (@ @ | | ) x; cx which is inZ " (T"). We partially fill its boundary with
other4-cells of ZT (T") and equalities, yielding &-sphere o " denoted byy:

LS

o Il If x

o 3 B
pzw o3 v A
: 7 .
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5.2. Mac Lane’s coherence theorem revisited

As a consequence of this construction, we hayve=r ty. Then we build the following diagram, proving
thats(Ax) ~r t(Ax) also holds:

For thed-cell px, one proceeds in a similar way, starting with theell (| | ® 9) *1 0.

Finally, let us consider the case of theell Ap. First, we consider thé-cell @ x1 p x1 p. Thanks to
the exchange relation betweepandx*,, we decompose this-cell in two ways. This yields a (trivial)
3-sphere that we partially fill, usingrcells of £ (T"), as follows, producing anothérspheres of £ (T'):

As a consequence, we has@~r td, hencesd , (@ x1 A) ~r td 2 (@ x1 A). The following diagram
yieldss(Ap) ~r t(Ap), thus concluding the proof:
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5. The case oB-polygraphs

5.2.4. Corollary (Mac Lane’s coherence theorem [18]).In a monoidal categoryC, ®, e, a,1,v), all
the diagrams whose arrows are built frop e, a, 1 andr are commutative.

Proof. We seeCat; as a (largeB-category with oné-cell, categories a%-cells, functors ag-cells
and natural transformations ascells. The0-composition is the cartesian product of categories,lthe
composition is the composition of functors and laeomposition is the "vertical" composition of natural
transformations.

Then monoidal categories are exactly faéunctors fromX " /T" to Cat;. The correspondence be-
tween a monoidal categof{, ®, e, a, 1, r) and such &-functor M is given by:

M(]) =€ M(W¥) =8, M@ =e M =a MQA =1 Mp =r

As a consequence, a diagrdmin C whose arrows are built from, e, a, l andr is the image byM of
a3-spherey of Z'. Sincerl is a homotopy basis & ", we havesy ~r ty. SinceM is a3-functor from
> " /T to Caty, we haveM(sy) = M(ty), which means that the diagraih= M(y) commutes. [

5.2.5. Remark. The definition of monoidal category we have given is minimal, in the sense ttiat b
coherence diagrams are required in order to get Mac Lane’s cateetle@orem. Otherwise, this would
mean that eithexo or «p is superfluous in the homotopy basisf £ . Let us prove that this is not the
case. Letd; be the derivation oL " into the trivial module given by:

di(x) = 0, di(A) =1, di(p) = 0.

Then we havel; (saa) = dq(tax) = 0. As a consequence, for evetycell A in L' (xx), we have
di(sA) = d;(tA). Thus, if{xa} was a homotopy basis a@f' , we would havel; (F) = d;(G) for every
3-sphere(F, G) of £T. In particular,d;(sxp) = d;(tap) would be true. This is impossible since we
haved;(sap) =1 andd;(txp) = 0.

In order to prove th&fxp} is not a homotopy basis either, we proceed similarly with the derivaitjon
of £ into the trivial module given by:

We check thatl>(sap) = dy(tap) = 0 holds. Thus, ifxp} was a homotopy basis &', the equality
do(sxax) = da(tocx) would be satisfied. However, we hage(socx) = 3 andd,(tax) = 2.

5.3. Right-indexed and left-indexed-polygraphs

5.3.1. Proposition. Let ~ be a terminating right-indexed (resp. left-index&dpolygraph. Therk is
confluent if and only if every inclusion critical branching, every regugtical branching and every
instance of every right-indexed (resp. left-indexed) critical brancisrapnfluent.

Proof. If X is confluent then, by definition, all of its branchings are confluent: itiqdar, its inclusion

and regular critical branchings and the normal instances of its right-@adexleft-indexed ones.
Conversely, let us assume tHats a terminating right-indexeg-polygraph (the left-indexed case is

similar) such that all of its inclusion and regular critical branchings andf&élleonormal instances of its
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5.3. Right-indexed and left-indexed-polygraphs

right-indexed critical branchings are confluent. It is sufficient to prit\at every non-normal instance of
its right-indexed critical branchings is confluent.

Let us consider a right-indexed critical branchif®[k], B[k])x, which has the following shape, by
definition:

Let f be a2-cell such that{ A[f], B[f]) is a non-normal instance oA [k], B[k])x. SinceX terminatesf
admits a normal form, say. We denote by a3-cell fromf to g. Sinceg is a normal form, the branching
(Algl, Blg]) is a normal instance dfA k], B[k])x so that, by hypothesis, it is confluent: let us denote by
(G, H) a confluence for this branching, with targetWith all those ingredients, one builds the following
confluence diagram for the critical branchif(f], B[f]), thus concluding the proof:

O]

5.3.2. Homotopy bases of indexesgtpolygraphs. Let X be alocally confluent and right-indexed (resp.
left-indexed)3-polygraph. We assume that a confluence has been chosen for eldioin and regular
critical branching and each normal instance of each right-indexepl. (efs-indexed) critical branching.
We denote by'sy the collection of the-spheres ot* corresponding to these confluence diagrams.

5.3.3. Proposition. Let X be a convergent right-indexed (resp. left-indexg&golygraph. Thery is a
homotopy basis of ".

Proof. The proof follows the same scheme as the results of 4.3, where it wadpiw@tethe family of
3-spheres associated to the confluence diagrams of all the critical brgaetas a homotopy basis.
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5. The case oB-polygraphs

First, we prove that every local branching @%, B) of £ admits a confluencéA’, B’) such that
A %2 A’ =, B %, B/ holds. The proof is the same as|in 4.3 whenn B) is a trivial or when it is
generated by an inclusion or a regular critical branching.

There remains to check the cases of local branchings of the §Ha@d€], B[f]), where(A[k], B[k])x
is a right-indexed (resp. left-indexed) critical branching and witere a context. For that, we proceed
by Noetherian induction on the indexiecell f, thanks to the termination &.

Whenf is a normal form, thetA[f], B[f]) is a normal instance of the branchitg[k], B[k])x. To
build I's we have fixed a confluence for this branching, 64y, B’). Then we have:

CIA[fl %2 A" ~pr. C[B[f]] x2 B'.

Let us assume thdtis a2-cell which is not a normal form and such th@[f], B[f]) is an instance of
the branching A [k], B[k])x. Moreover, we assume that, for eva&sgell g such thatf reduces intg and
(Algl, Blg]) is an instance ofA[k], B[k])y, there exists a confluen¢d’, B’) for (A[g], B[g]) such that
Algl %2 A’ =, Blg]l 2 B’ holds.

Sincef in not a normal form, we can choos@-&ell g such thatf reduces intay, through a3-cell F.
Sincef andg have the same boundary, we have an insté@Adg], B[g]) of the branching A [k], B[k])x.
We apply the induction hypothesis ¢ato get a confluenceA’, B'), with target denoted bit, such that
Algl 2 A" ~r, B[g] x2 B’ holds. Moreover, the branching€[A[f]], C[sA[F]]) and(C[B[f]], C[sB[F])
are trivial branchings, yielding:

CIA[f]] x2 CItA[F] ~r ClsA[F]] 2 C[A[g]]

and
C[B[f]] %2 C[tB[F]] ~p, CI[sB[FI] > C[Blgll.

With these constructions, we build the following diagram, where we haveressthat the considered
branching was right-indexed — the case of a left-indexed critical bragd similar:

CItA[F]

C[tB[F]
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5.4. The3-polygraph of permutations

One composes thiecells of LT (T's) of that diagram, to get thaC[tA[F]] x, C[A’], C[tB[F]] x, C[B’])
is a confluence that satisfies the required equivalence that concled@stipart of the proof:

CIA[f]] x2 C[tA[F]] %2 C[A'] =r, CIBIf]] %2 C[tB[F]] x2 C[B'].

The remainder of the proof is exactly the same as in 4.3. O
5.3.4. Theorem. A finite, convergent and finitely index&gbolygraph has finite derivation type.

5.4. The3-polygraph of permutations

Here we see an example of3gpolygraph that is finite, convergent, right-indexed and, thus, with an
infinite number of critical branchings, yet with finite derivation type thankiinite indexation. Another
proof for termination and the ideas we use here for proving conflueartée found in [15].

5.4.1. Definition. The 3-polygraphZ has oned-cell, onel-cell, one2-cell ><, and the following two

3-cells:
B3| D440

5.4.2. Termination. We consider the following@35-moduleMx .. 7 and derivatiord of Z3 into Mx . 7:
X(1) =N, X()@i) = G+1,1),

d (<) (i,j) = i.

The 2-functor X and the derivationd satisfy the conditions of Theorem 4.2.1. Indeed, the following
required (in)equalities hold:

X<§§> L) = (i+1,j+1) > (i,j) = X(\ D 1,9),

x(i}{) (15,K) = (k+2,j+1,1) = x(}{j) (i3,%),
d<§§> (i,j) = i4j+1 >0 = d<‘ D (i9),

d(i}%) (1,j,k) = 2i+j+1 > 2i+j = d(%{j) (1,3, k).
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5. The case oB-polygraphs

5.4.3. Normal forms. First, we note that, if is a2-cell of Z* such thatd(f)(0, ..., 0) = 0 holds, therf
is a normal form. Otherwise, there exists a cont&xdnd a2-cell g such thatt = C[g] holds andg is
the source of one of the twacells of L. As a consequence, there exists a farily . . . , i,,) of natural
numbers, withmh = 2 orn = 3, such that the following inequalities hold:

Now, let us definéNg as the set o2-cells given by the following inductive construction:

We check that the relation

X (S%) (i1, ind) = (101, ).

is satisfied. We proceed by structural induction, using the definition arfdicgoriality of X, to get
X (=) (1,3) = G+1,1)
and
X <H<>ﬁ> (i ingn ) = (X (S%) x 1dy) (i1, ind + 1, ing1)
= (G+n+1,1,...,in01).

Then, we prove that the-cells of Ny are normal forms, still by structural induction. For the base case,
we have, by definition odl:
d (<) (0,0) = 0.

For the inductive case, we have, using the fact thista derivation:

d<%> (0,...,0) = d (%) (0,...,0) +d (5<) (0,0) = 0.

Finally, let us denote biN the set oR2-cells of * given by the following inductive graphical scheme:

We prove that th@-cells of N are normal forms, by structural induction. We halfe) = 0,

d(| D) i, i+ 1) = d(]) )+ d (@) (i in) = 0

and, using the values &fon N,

d<w> (il)w-»im)j»k]w--)kn)

= (5%) (i, imyd) + 4 (@) (i1, Kty k) = 0,
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5.4. The3-polygraph of permutations

Conversely, let us prove that every normal fornkdé in N. We proceed by induction on the p&in, n)
of natural numbers, whena is the size of th&-cells andn is the size of their source.

The 2-cells of Z* with size0 are thel,,, wheren denotes thd-cell with sizen. All of them are
normal forms. Moreover, they belong M. 14 is x and, for every natural number, 1,11 = 11 x0 1x.
Moreover, the only-cell of Z* whose source has sigdas 1o = *, which is a normal form and belongs
to N.

Then, let us fix two non-zero natural numbetsandn. We assume that, every normal fogof X
and such thaf||g|,[sg|) < (m,n) holds is inN, where we compare pairs of natural numbers with the
product order.

Let us consider a normal forifnof X, with sizem and whose source has sizeSince|/f|| = m > 1
and sincex< is the only2-cell of Zperm there exists d-cell g such thatt decomposes into:

Sincef is a normal form, then so dogs Moreover,g has sizen — 1 and its source has size We apply

the induction hypothesis tg: this 2-cell is in N. Its source isnv > 1, so thatg # x*; there remains two
possibilities, by definition oN:

In the first case, th2-cell h is a normal form, has siza — 1 and its source has size— 1. By induction
hypothesis, we know thét is in N. There are two subcases for the decompositiofi of

The first decomposition is a proof théts in N, sinceh is in N and>< is in No. The second decom-
position tells us thaf = | xo f’, wheref’ is a normal form (otherwisé would not), has sizen and its
source has size — 1; we apply the induction hypothesis to get tfiats in N; then we get thaf is in N.

Let us examine the second case: 2heell h is a normal form, has size at mast— 2 and its source
has sizen — 1; hence, by induction hypothesis,is in N. There are three subpossibilities:

The first subcase is, in fact, impossible sirfosould contain the source of &cell, which contradicts
the assumption thdtis a normal form. The second case gives thigtin N. In the third case, we have a
decomposition of into (f’ xo 1) %1 (17 %o f”) wheref’ is in Ny andf” is a normal form (otherwisé
would not), has size at most — 1 and has sourca — 1: thus, we apply the induction hypothesis to get
thatf” and, hencef are inN.
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5. The case oB-polygraphs

5.4.4. Confluence. The3-polygraphZ has three regular and one right-indexed critical branchings, with
the following sources:

From Theorem 5.3/1, we know that, to get confluenck,adf is sufficient to prove that the three regular
critical branchings are confluent and that each normal instance ofghieimdexed one is. First, we
check that the three regular critical branchings are confluent:

[0 4
N
N
7 Y

XX ><

=
x

Y i
AL A

From the inductive characterization of the ®bf normal forms we have given, we deduce that there
are two normal instances of the right-indexed critical branchingkfer | andk = ><. We check that
both are confluent. Fdt = | , we have:

% .

BB(1) | ><

\ | .
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And, fork = ><, we have:

BB(<)

5.4.5. Theorem. The3-polygraphZ has finite derivation type.
Proof. The 3-polygraphZ is finite, convergent and finitely indexed. Thus Theorem 5.3.3 tells usthat

has finite derivation type. More precisely, the fieells xx, «f, B, BB (|) andpp (< ) form a
homotopy basis of the trackcategoryx '. O

5.5. The main counterexample

We prove here that, without finite indexation, finiteness and convergdane are not sufficient enough
to ensure that a-polygraph has finite derivation type.

Let us consider thé-polygraphZ with one0-cell, onel-cell, three2-cells @, ~ and'U and the
following four 3-cells:

x B Y 5
1=l =l (U= U=l
We define by induction on the natural numfethe 2-cell #k as follows:

5.5.1. Termination. To prove that th&-polygraphXZ terminates, we proceed in two steps. First, we
consider the derivatioﬂ}\lm, into the trivial moduleM, , 7. It satisfies the equalities

Isedl~ =1 = lltal~  and  fIsBll = 0 = [[tBll~
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5. The case oB-polygraphs

and the strict inequalities
syl =1>0=tyl, and [s8] =1 >0 =|tsll.

As a consequence, one gets that, if BapolygraphX’ = (Z;,{«, B}) terminates, then so does tBe
polygraphZ. Indeed, otherwise, there would exist an infinite reduction sequéRng¢gcn in £ and, thus,
an infinite decreasing sequenén || - Jnen of natural numbers; moreover, this last sequence would be
strictly decreasing at each stephat is generated by eithgror 6. Thus, after some natural numher
this sequence could be generatedobyand 3 only. This would yield an infinite reduction sequence
(fn)n>p In Z’, which is impossible by hypothesis. Let us note that one could have usetktive-
tion ||-||_, with the same results.

To prove that’ terminates, we consider the derivatidémto theZ3-moduleMx vz given by:

X(]) =N, X (M) = (0,0), X()@{1) =i+1,
Y(]) =N, Y (W) = (0,0), Y(@)({1) =1i+1,
d(M) 1) =1, d(Y)4,j) =1, d(e)(i,j) =o0.

Sinced is a derivation, one gets:

d(a) :d(ﬂ) —d(ﬂ)
=d (M) () + Nx1(d(®) % [) —d()*1 (18) — Myxi ([ x0d(8)) .
Thus, for every natural numbets&ndj, one gets:
d(x)(1,j) :d(m) i+1,5)+ d(#) (0,1) — d(m) (i,j+1)—d (#) (0,3)

=i+1)+0—-1-0
=1.
Similarly, one getsl(B)(i,j) = 1 for every natural numbersandj, yielding, thanks to Theorem 4.2.1,

the termination o’ and, thus, of-.

5.5.2. Normal forms. Let f be a2-cell of Z*, that cannot be reduced by thecellsy andd and which
satisfies:
d(f)(o,...,0) = 0.

Thenf is a normal form. Indeed, otherwise, there exists a corfestich thatf = Clg], with either
g = s org = sf3. As a consequence, there exist two natural numbarglj such that the following
inequalities hold:

d(f)(0,...,0) > d(g)(i,j) > 1.

Now, we defineN as the set o2-cells given by the following inductive construction scheme:

@ = @+ o (0 @“‘ o © (@ @
or (d) @k . or (e) #k.

42



5.5. The main counterexample

We use the special graphical representati@ws@ andsggy for 2-cells of N which have, respectively,
degenerate source and target, degenerate source, degeneedte targ

We start by checking that thacells of N are normal forms. For that, one proceeds by structural
induction, using the construction scheme, in order to prove two properties.

The first one is that eactrcell of N is irreducible by the-cellsy andb: this is an observation that

the given construction scheme does not allow Zwell of N to contain eithem or UU

The second property is that, for2acell f of N, one hasd(f)(0,...,0) = 0. For the base case,
i.e., whenf is built using construction rule (a), one hag«) = 0 sinced is a derivation. Then, for the
induction, there are four cases, depending on the construction ruaaibaildf:

(b) d(@k ') (0,...,0)

= (M) (0,K) + d (L) (0,k) + k-d($)(0,0) + d(@) + d (@) (0,...,0)
0.

© d(/@me @)0,...0

d(M) (0,%) + k-d(9)(0,0) + d (€M) (0,...,0) + d (@) (0,...,0)
0.

(d) d(@k .) (0,...,0)

=d (W) (0,k) + k-d(9)(0,0) + d (&) (0,...,0) + a (@) (©,...,0)
~o0.

() d(¢k-) (0,...,0)
~k-d(9)(0,0) + d (@) ©,...,0)

=0.

Now, let us prove that everd-cell of £* that is a normal form is contained in the $¢t We proceed
by induction on the triplém, n, p) of natural numbers, whena is the size of the-cells,n the size of
their sourcep the size of their target.

The only2-cells of £* with size0 are thel,,, wheren denotes thé-cell with sizen. All of them are
normal forms and belong t8. Indeed, each,, can be formed, from, by n subsequent applications of
the construction rule (e) witkh = 0.

The2-cells of £* with size1 are thel,, xo ¢ xo 14, Whereg is one of ), U andé. Such a2-cell is
always a normal form and belongsito Indeed, we have seen thiafis in N. Then we get thap *o 14
isin N, by case analysis based gn
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5. The case oB-polygraphs

e If ¢ is /™, construction rule (c) witl- =1q, @ = x andk = 0.
e If ¢ =, construction rule (d) Witm =1q, gy = *andk = 0.

e If ¢ = ¢, construction rule (e) Wit‘ =Tgqandk =1.

Finally, T,, o @ xo 14 is in N, built using construction rule (e), appligdtiimes in sequence witk = 0

and starting fron. @ *0 14
Now, let us fix a non-zero natural numberand two natural numbers andp. We assume that we

have proved the result for each normal fogrwith size at mosin — 1 or with sizem and such that the
inequality(|sgl, [tg]) < (n,p) holds.

Let us consider a normal forfsuch that|f|| = m, [sf| = n and|tf| = p hold. Sincef has size at
leastl, there exists &-cell g such thatt decomposes in one of the three following ways:

One denotes by the generating-cell corresponding to each of those decompositigng:\_) and¢,
respectively. Sincé is a normal form, so doeg and g has sizem — 1. we apply the induction hy-
pothesis to it, so that we know thatis in N. Thus,g decomposes into one of the five following ways,
corresponding to the five construction ruleg\of

@ = O = o (i @“ @ o (i) (@ @
or (iv) @ . or (v) #k.
We study all the possible decompositiong odepending on the one gfand ong. In case (i)j.e., when

g = *, we havep = U, since this is the only possibility to have degenerate. We have already seen
that\_ is in N. In case (ii), one has the following possibilities, dependingpon

o - i - e O

The following 2-cells must be normal forms, sin€es, and they have size at mast— 2:

We apply the induction hypothesis to each one, concluding that they alld&l®h Thusf isin N, built

by construction rule (b). Case (iii) is similar to case (ii), with fxeell @k replaced b@k
In case (iv), the reasoning depends@n

e Wheng = ), one has the following possibilities, depending whereonnects tay:

A - @horUn & ®
T R ]
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5.5. The main counterexample

The first and third case cannot occur. Indeed, one proves, bgtwtaliinduction, that a normal
form with source of size at leastand with degenerate target has the following shape:

(o - (oy \@F

As a consequence, such a decompositiofi wbuld contain eithem or m preventing it
from being a normal form.

For the second case, one applies the induction hypothesis ﬂ}dhﬂaw: indeed, it is a
2-cell with size at mostn — 1 that must be a normal form, otherwig&vould not. Thusf is built
from 2-cells of N following construction rule (d) and, as such, isNin

The fourth decomposition contains eitféﬂ or m respectively wheik > 1 andk = 0. Thus
it is not possible thaf decomposes this way, since it is a normal form.

For the fifth decomposition, one applies the induction hypothew, which is a2-cell
that must be a normal form, with size at mast- 1.

Wheng = U, one has the following possible decompositions:of

CEENVETTY KA. N KACTE )
The first case shows thdtis in N: indeed, it is built with construction rule (d), applied with

@ =+ k=0 and- = @k . which isg and, as such, belongs .

In the second case, we apply the induction hypothesiw: it is a normal form of size at
mostm — 1. Thusf is built with construction rule (d).

J U |-
In the third case, one applies the induction hypothesu: it is a normal form of size at
mostm — 1. We conclude that is built with construction rule (d).

When¢ = ¢, the possible decompositions bére:
or @k“. or @kw

The first case cannot occur: otherwiseyould contain{) and, thus, it would not be a normal
form.

In the second case, we apply the induction hypothesw: this is a normal form with size at
mostm — 1. This proves thaf is in N, built following construction rule (d).
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5. The case oB-polygraphs

In the third casef is in N, built following construction rule (d).

In the fourth case, we apply the induction hypothesiw: this is a normal form with size at
mostm — 1. Thusf is in N, built with construction rule (d).

The final case (v) also depends on the valueg:of

e Whene = ), we have the following possible decompositiongof

In the first case, one must hake= 0: otherwise f would contaiﬂ which is not a normal form.
Thus the2-cell h is a normal form of sizen — 1: we apply the induction hypothesis to get that
isin N. Then, by structural induction dm, one shows that it has one of the following two shapes:

® - alg@ o ar@®

The first decomposition is impossible since, otherwisepuld contair(U and, thus, it would
not be a normal form. The second decomposition givesftigin N, built from case (c).

In the second case, tRecell w is a normal form. Moreover, ik > 1, it has size at most

m — 1, and, ifk = 0, it has sizem, while its source and target have sizes- 1 andp — 1,
respectively. Thus, in either situation, we can apply the induction hypsttesonclude that this
2-cellisinN. As a consequencé|s in N, built with construction rule (e).

e Wheng = U, we have the following possible decompositiong of

. = U#k. or ¢kw

In the first casef is in N, built from h in two subsequent steps, with construction rules (e), then (d).

JU |-
In the second case, one can apply the induction hypothe“. Indeed, it is a normal

form, with either size at most. — 1, whenk > 1, or with sizem and source and target of sizes
n — 1 andp — 1, respectively. Thus thig-cell is in N, and so doe$, which is built following
construction rule (e).

e Wheno = @, we have the following possible decompositiong of
7 el
w - o Y.

In the first casef is built fromh by application of construction rule (e) and, as such, islin
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5.5. The main counterexample

In the second case, one applies the induction hypothew, which is a normal form, with

either size at mostv—1, whenk > 1, or with sizem and source and target of sizes-1 andp—1,
respectively. As a consequence, thisell is in N, proving thatf is built following construction
rule (e) and, thus, it is ifN.

To conclude, we have proved that the normal form&bare exactly the-cells of N. In particular, we
denote byN, the set of normal forms with degenerate source and target. From thdiiedscheme
definingN, we deduce that the following two construction rules charactéfigze

K
Q:*or@Q.

5.5.3. Confluence. Let us examine the critical branchings Bf The 3-polygraphZ has four regular
critical branchings, whose sources are:

It also has one right-indexed critical branching, generated bg-ttedls « and 3, with source:
ThusX is a terminating and right-indexedpolygraph. By application of Theorem 5.3.1, we get conflu-
ence ofX by proving that its four regular critical branchings and all normal instarf its right-indexed

critical branchings are confluent.
For the regular ones, we have the following confluence diagrams:

//\ //\
AU,
\\f/ \L
(o )==9 1=

m/?\dp m/@\

From the characterization of normal formsigfthe normal instances of the right-indexed critical branch-
ing «p (ﬁ) are the instances corresponding to the followiigells where, in the latter@ andn
respectively range ovéXy andN:

==, @=-N @@=y =04
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5. The case oB-polygraphs

Now we check that, for each one of theseells, the corresponding critical branching (€9) is con-
fluent. Let us note that, for the first three cases, there are sevasblsconfluence diagrams, because
they also contain regular critical branchingsiof

Forgd = \)' we choose the following one:

eIt
o 4
a8 ((<)
A /
SWEW
Foré = M |:
(s
N \/
N\ .
()= (e
Foréd = U |:

)= )=
ol \

s

48



5.5. The main counterexample

Finally, foré = @ ¢":

0.4

>
Sy

B

3

5.5.4. Homotopy basis. The3-polygraphX is convergent and right-indexed. Thus, Theorem 5.3.3 tells
us that the following}-cells form a homotopy basis af':

Y8, &y, ay, BS, ap (%) caB (1), «B (1),
plus, for every@ in Ny andn in N, the4-cell

B (@ 9").

In fact, the4-cells o3 <%> «B (™ |) andaxp (\_J |) are superfluous. Indeed, tBespheres forming

their boundaries are also the boundarie$-oélls of LT (ay, $5), as diagrammatically proved thereafter.

For o3 <%> :
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Forof () ): m
iy
&) 6 d

mm
RS
il

N A
(=0
=

d e

And, forap (\_J |) :

I

U —r——
\Qyzu/

We denote by, the family made of thd-cellsy9, 6y, vy and 5. Then, for every natural number,
one defines:

Mt = Tn 11 {aB (@ ") , @ € No} .
Thus, the following set of-cells is a homotopy basis af.

r = Urn.

neN
For every natural numbet, we denote by,, the4-cell «f3 (#”) of 41, hence of".
5.5.5. Lemma. Letn be a natural number. There is docell of £ (Ty) with the same boundary ds,,

i.e.
sén ’79[*0 tén.

Proof. Let us assume, on the contrary, that there exigtsall ® in £ (Iy) such that botls® = s&,,
andt® = t&,, hold. We consider the derivatiahof T into the trivial module that takes the following
values on the generatirdgcells:
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Then, we check that, for antcell W of ZT (), we haved(s¥) = d(tV). Sinced is a derivation, it is
sufficient to check this equality on the generatingells ofly:

e d(syd) =d(y) =0 and d(tyd) = d(d) = 0.
e d(sby)=4d(d) =0 and d(tdy) = d(y) = 0.
o d(say)=d(x)+d(B)+d(y) =0 and d(tecy) = d(y) = 0.
e d(sp8) =d(B)+d(x)+d(8) =0 and d(tpd) = d(§) = 0.
Thus, sinceD is in £ (Iy), one must have (s®) = d(t®). However, one has:
d(s®) = d(x) = 1 and d(td) = d(B) = —1.

This proves that such4cell ® cannot exist irZ " (I7). O

5.5.6. Lemma. Letn be a natural number. There is decell of LT (T',) with the same boundary ds,.,
i.e.
sén %Al"n tén.

Proof. On the contrary, let us assume tidats a4-cell of £ (Iy) such that both® = s, andt® =
té&,, hold. As a direct consequence, we have:

o ot 63

Hence, the normal form of, @ is G““. Now, let us prove thad cannot contain any occurrence of a

generatingt-cell a3 (Q ¢k> or its inverse, withk < n. If that was the case, there would existells

Y., ¥, in ZT (), acontextC of 2T, ane in{—1,1}, a2-cell @ and ak in {0, ...,n — 1} such that the
4-cell ® decomposes this way:

D = W, 43C [ocﬁ (Q ¢kﬂ Wy,

As a consequence, we would have:

0 = (c[o8 (94%)7) == (01208 (4] = ({43

SinceX is convergent, this implies thap® and the rightmos?2-cell have the same normal form. One
denotes byD the context ofZ3; such thatD[x] is the normal form of(s,C)[x]. Then, the following

equality holds:
Gn+1 _ @ l.
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Let us prove that this is not possible. For that, we define the derivdtaii} into the moduleéMx . g
given thereatfter:

e The abelian groufs is freely generated by the sitof natural numbers. The natural number
seen as a generator Gf is denoted by,,.

e The2-functorX : 5 — Setis generated by the values:

Then, on the one hand, we have:

d <G““> = Q.

And, on the other hand, we use the fact thas$ a derivation to compute:

d ‘ :d<°>+d(6k“>+d(o)=d(f)+ak+1,

wheref denotesD [@]. Thus, we havei,,,; = ax4q + d(f), with k < n and somef in £5. This is
impossible becausg is freely generated andl sends any-cell of I} to an element oG written using
the ay’s with positive coefficients.

We conclude that thé-cell @ is built from the4-cells of Iy and their inverses only.e. @ is a4-cell
of T (T). However, this would contradict Lemma 5.5.5. O

5.5.7. Theorem. The3-polygraphX does not have finite derivation type.

Proof. On the contrary, let us assume tllatloes have finite derivation type. Then, by application of
Proposition 3.2.3, there exists a finite subfanfifyof I' which is a homotopy basis &' .

Sincel" is finite, there exists some natural numimesuch that™’ is contained in,. In particular,
the4-cell &,, is notinT"’. However, sincé’ is a homotopy basis and sinEéis contained i, we have:

SE,TL T tE»n-

We have seen in 5.5.6 that this is not possible, thus contradicting the fadnatan extract a finite
homotopy basis fromi. As a consequence, tBepolygraphZ does not have finite derivation type. [

52



REFERENCES

5.5.8. A variant of the counterexample. In the previous3-polygraph, one can think that the problem
comes from the complicated normal forms, especially from the fact thataméred normal forms@®
of Ny everywhere in a gived-cell. Here we give another example, similar to the first one but with
more simple normal forms. It is a bit more contrived, which led us to prefeother one for the main
exposition.

Let = be the3-polygraph with the following generating cells:

e Two 0-cells, denoted by, andn and, in the diagrammatic representations, respectively pictured
by a white background and by a gray one.

e Two 1-cells ¢ —* 4, and nim. By abuse, both are pictured by a wire, leaving the back-
grounds discriminate them.

e Four2-cells@m), @, ¢, and® .

. Tw03-cellsa %/ 6 and! 63/ ,

Following the same reasoning steps as in the previous example, one praviretfinite3-polygraph=
is convergent. But it lacks finite indexation and finite derivation type. eéddéhe following family of
4-cells, indexed by the natural numbeyrform a minimal homotopy basis & :

!
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