Algebraic Confluences

Part II. Two-dimensional Homotopy and Rewriting

Philippe Malbos

Motivation

Fact. The homological finiteness condition left- ${\rm FP_3}$ is not sufficient for a finitely presented decidable monoid to admit a finite convergent presentation.

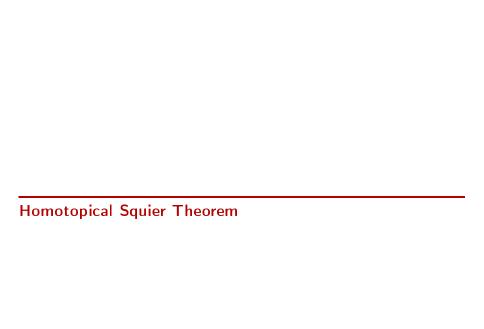
Motivation

Fact. The homological finiteness condition left- ${\rm FP_3}$ is not sufficient for a finitely presented decidable monoid to admit a finite convergent presentation.

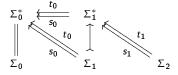
Example. (Squier, 1994) The monoid

$$\mathbf{S}_1 = \langle a, b, t, x, y \mid at^n b \Rightarrow 1, xa \Rightarrow atx, xt \Rightarrow tx, xb \Rightarrow bx, xy \Rightarrow 1 \rangle.$$

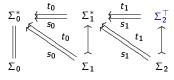
- has a decidable word problem,
- is of homological type left- FP_3 ,
- does not have a finite convergent presentation,
- does not have finite derivation type.



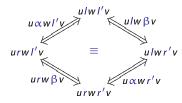
Σ a 2-polygraph.



Σ a 2-polygraph.



- Σ_2^{\top} free category enriched in groupoid on Σ :
 - 0-cells : Σ_0 ,
 - 1-cells strings in $\Sigma_1^\ast,$
 - 2-cells : reductions and their inverses \Leftrightarrow ,
 - plus Peiffer elements:



$$I \stackrel{\alpha}{\Rightarrow} r, I' \stackrel{\beta}{\Rightarrow} r'$$

Definition. A homotopy relation on Σ_2^{\top} is an equivalence relation \equiv on parallel 2-cells stable under context and composition:

- $f \equiv g$ implies $ufv \equiv ugv$,
- $f \equiv g$ implies $k \star_1 f \star_1 h \equiv k \star_1 g \star_1 h$.

Definition. A homotopy relation on Σ_2^{\top} is an equivalence relation \equiv on parallel 2-cells stable under context and composition:

- $f \equiv g$ implies $ufv \equiv ugv$,
- $f \equiv g$ implies $k \star_1 f \star_1 h \equiv k \star_1 g \star_1 h$.

Definition. A homotopy basis is a cellular extension Σ_3 made of 3-cells

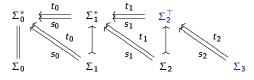
on spheres of Σ_2^{\top} such that the homotopy relation generated by Σ_3 contains every pair of parallel 2-cells in Σ_2^{\top} .

Definition. A homotopy relation on Σ_2^{\top} is an equivalence relation \equiv on parallel 2-cells stable under context and composition:

- $f \equiv g$ implies $ufv \equiv ugv$,
- $f \equiv g$ implies $k \star_1 f \star_1 h \equiv k \star_1 g \star_1 h$.

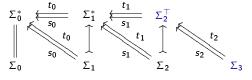
Definition. A homotopy basis is a cellular extension Σ_3 made of 3-cells

on spheres of Σ_2^{\top} such that the homotopy relation generated by Σ_3 contains every pair of parallel 2-cells in Σ_2^{\top} .



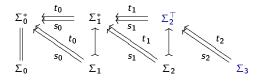
Definition. Σ has finite derivation type (FDT) if

- i) Σ is finite,
- ii) Σ_2^\top has a finite homotopy basis $\Sigma_3.$



Definition. Σ has finite derivation type (FDT) if

- i) Σ is finite,
- ii) Σ_2^{\top} has a finite homotopy basis Σ_3 .



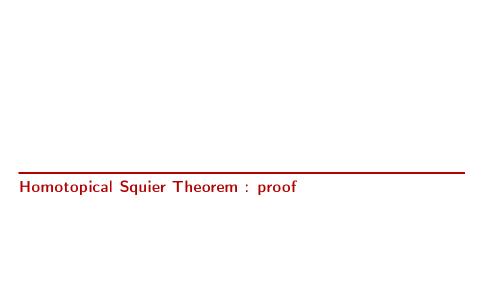
Theorem. (Squier, 1994)

- i) Property FDT is Tietze invariant for finite rewriting systems.
- ii) A monoid having a finite convergent rewriting system has FDT.

Example. (Squier, 1994) The monoid

$$\mathbf{S}_1 = \langle a, b, t, x, y \mid at^n b \Rightarrow 1, xa \Rightarrow atx, xt \Rightarrow tx, xb \Rightarrow bx, xy \Rightarrow 1 \rangle$$
.

- has a decidable word problem.
- is of homological type left-FP3,
- does not have a finite convergent presentation,
- does not have finite derivation type.



Branchings

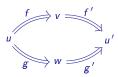
- \bullet Let Σ be a 2-polygraph.
- A branching of Σ is a pair (f,g) of 2-cells of Σ_2^* with a common source:

- A branching (f, g) is **local** when f and g are rewriting steps.
- Local branchings are
- aspherical

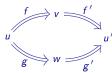
- Peiffer

- or overlapping

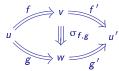
• A branching $(f,g): u \Rightarrow (v,w)$ is **confluent** when there exist 2-cells $f': v \Rightarrow u'$ and $g': w \Rightarrow u'$ in Σ_2^* such that



• A branching $(f,g): u \Rightarrow (v,w)$ is **confluent** when there exist 2-cells $f': v \Rightarrow u'$ and $g': w \Rightarrow u'$ in Σ_2^* such that



ullet A family of generating confluences of Σ is a cellular extension of Σ_2^{\top} that contains exactly one 3-cell

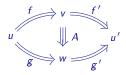


for every critical branching (f, g) of Σ .

- If Σ is confluent, it always admit a family of generating confluences.
- Such a family is not necessarily unique.

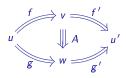
Let Σ be a convergent 2-polygraph. Let Γ be a family of generating confluences of Σ . Lemma 1.

For every local branching $(f,g): u \Rightarrow (v,w)$ of Σ , there exist 2-cells f' and g' in Σ_2^* and a 3-cell A in Γ^\top , as in the following diagram:



Let Σ be a convergent 2-polygraph. Let Γ be a family of generating confluences of Σ . Lemma 1.

For every local branching $(f,g): u \Rightarrow (v,w)$ of Σ , there exist 2-cells f' and g' in Σ_2^* and a 3-cell A in Γ^{\top} , as in the following diagram:



Proof.

For aspherical or Peiffer branching, choose f' and g' such that $f \star_1 f' = g \star_1 g'$ and A is identity.

An overlapping branching (f,g) that is not critical is of the form (f,g)=(uhv,ukv) with (h,k) critical.

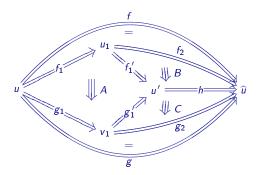
Consider

Set $A = u\sigma_{h,k}v$, f' = uh'v and g' = kuk'v.

Lemma 2.

For every parallel 2-cells f and g of Σ_2^* whose common target is a normal form, there exists a 3-cell from f to g in Γ .

Proof. By Noetherian induction on the common source of f and g.



Proposition. Let Σ be a convergent 2-polygraph. Every family Γ of generating confluences of Σ is a homotopy basis of Σ^{\top} .

Proof. Consider a 2-cell $f: u \Rightarrow v$ in Σ_2^* . Using the confluence, choose 2-cells

$$\sigma_u : u \Rightarrow \widehat{u}$$
 and $\sigma_v : v \Rightarrow \widehat{v} = \widehat{u}$ in Σ_2^* .

By construction, the 2-cells $f \star_1 \sigma_v$ and σ_u are parallel and their common target \widehat{u} is a normal form. By Lemma 2, there exists a 3-cell $\sigma_f : f \star_1 \sigma_v \Rightarrow \sigma_u$ in Γ^\top or, equivalently, a 3-cell $\sigma_f : f \Rightarrow \sigma_u \star_1 \sigma_v^-$ in Γ^\top :

Moreover, the (3,1)-category Γ^{\top} contains a 3-cell $\sigma_{f-}: f^- \Rightarrow \sigma_v \star_1 \sigma_u^-$, given as the composite:

$$v \stackrel{\sigma_{u}}{\Longrightarrow} u \stackrel{\widehat{u}}{\Longrightarrow} \sigma_{v}^{-} \xrightarrow{\sigma_{v}} \widehat{u} \stackrel{\sigma_{u}^{-}}{\Longrightarrow} u$$

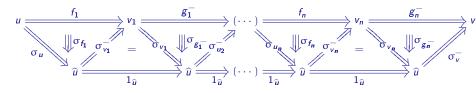
Proposition. Let Σ be a convergent 2-polygraph. Every family Γ of generating confluences of Σ is a homotopy basis of Σ^{\top} .

Proof.

Consider a 2-cell $f: u \Rightarrow v$ in Σ_2^{\top} . It can be decomposed into a "zig-zag"

$$u \xrightarrow{f_1} v_1 \xrightarrow{g_1^-} v_2 \xrightarrow{f_2} (\cdots) \xrightarrow{g_{n-1}^-} u_n \xrightarrow{f_n} v_n \xrightarrow{g_n^-} v$$

where each f_i and g_i is a 2-cell of Σ_2^* . We define σ_f as the following composite 3-cell of Γ^{\top} , with source f and target $\sigma_u \star_1 \sigma_v^{\top}$:



We proceed similarly for any 2-cell $g: u \Rightarrow v$ of Σ_2^{\top} , to get a 3-cell σ_g from g to $\sigma_u \star_1 \sigma_v^{-}$ in Γ^{\top} . Thus, the composite $\sigma_f \star_2 \sigma_g^{-}$ is a 3-cell of Γ^{\top} from f to g.

References

References

- C.C. Squier, F. Otto, and Y. Kobayashi, A finiteness condition for rewriting systems, Theoretical Computer Science, 1994.
- Y. Lafont, A New Finiteness Condition for Monoids Presented by Complete Rewriting Systems (after Craig Squier), Journal of Pure and Applied Algebra, 1995.
- Y. Guiraud, P. Malbos, Higher Dimensional Categories with Finite Derivation Type, Theory and Applications of Categories, 2009.
- S. Gaussent, Y. Guiraud, and P. Malbos, Coherent presentations and actions on categories, 2012.