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tstst... = ststs. ..

» Forgetting the involutive character of generators, one gets the Artin’s presentation
Art(W) = < S | tstst...= ststs...>

of the Artin group B(W).

Objective.
> Push further Artin’s presentation and study the relations among the braid relations.
(Brieskorn-Saito, 1972, Deligne, 1972, Deligne, 1997, Tits, 1981, Michel, 1999).

> We introduce a rewriting method to compute generators of relations among relations.
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Motivation

» Set W = S, the group of permutations of {1, 2, 3,4}, with S = {r, s, t} where

S R S

» The associated Artin group B(S,) is the group of braids on 4 strands:

Arta(S4) = ( r,s,t | rsr =srs, rt=tr, tst= sts>
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» The relations among the braid relations on 4 strands are generated by the Zamolodchikov

relation (Deligne, 1997). / strsrt = srtstr = srstsr \

stsrst rsrtsr
| |

tstrst Zrsit rstrsr
| |

tsrtst rstsrs

\ tsrsts = trsrts = rtstrs /



Plan

I. Coherent presentations of categories
- Polygraphs as higher-dimensional rewriting systems
- Coherent presentations as cofibrant approximations

Il. Homotopical completion-reduction procedure
- Tietze transformations
- Rewriting properties of 2-polygraphs
- The homotopical completion-procedure

I1l. Applications to Artin monoids
- Garside's coherent presentation
- Artin’s coherent presentation
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S0
o 5
to

» A 2-polygraph is a triple ¥ = (Xg, X1, X2) where
> (g, X1) is a 1-polygraph,
> X5 is a globular extension of the free category Xj.

s1(a)
S0 S1 sos1 (o) tosy ()
Zo — Zi — Zz = x =
to t1 soty (o) tots (o)
\/
(o)

» A rewriting step is a 2-cell of the free 2-category X5 over L with shape

u wuw

w /\ w’

— = e

o o

v WVW/

where u % v is a 2-cell of £5 and w, w’ are 1-cells of 3.
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Polygraphs

» A (3,1)-polygraph is a pair £ = (X5, X3) made of
> a 2-polygraph Z»,
> a globular extension X3 of the free (2, 1)-category ):2T_

Yo Z; Z; X3 : o

fo t t2 \_/

Let C be a category.

» A presentation of C is a 2-polygraph X such that

CZZ{/ZQ

» An extended presentation of C is a (3, 1)-polygraph X such that

C~3i/5,
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Coherent presentations of categories

» A coherent presentation of C is an extended presentation X of C such that the cellular
extension X3 is a homotopy basis.

In other words:
> the quotient (2, 1)-category ZZT/Z3 is aspherical,

> the congruence generated by X3 on the (2, 1)-category Z; contains every pair of
parallel 2-cells.
b 3-cells of Z3 generate a tiling of X, .

Example. The full coherent presentation contains all the 3-cells.

Theorem. [Gaussent-Guiraud-M., 2013]

Let ¥ be an extended presentation of a category C. Consider the Lack’s model
structure for 2-categories.
The following assertions are equivalent:

i) The (3,1)-polygraph X is a coherent presentation of C.

ii) The (2,1)-category Z;/Z3 is a cofibrant 2-category weakly equivalent to C,
that is a cofibrant approximation of C.
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Examples

» Free monoid : no relation, an empty homotopy basis.

» Free commutative monoid of rank 3:
> the full coherent presentation:

Il th
(r,s,t\srgrs,tsgst,trgrtl e )

3-cells

> A homotopy basis can be made with only one 3-cell

Y
(rs t|sr g rs, ts Vé st tr = rt|Zooe)

where the 3-cell Z, s ; is the permutohedron

t % t
str Sr1
Ystr Yrst
tsr Mzr,s,t rst
tYrs rYst



Examples

» Artin’s coherent presentation of the monoid B* (S3

)
el K - (3



Examples

» Artin’s coherent presentation of the monoid B* (S3

)
el K - (3

Art3(S3) = (s, t | tst g sts| Q)



Examples

» Artin’s coherent presentation of the monoid B (S3)

el K - (3

Art3(S3) = (s, t | tst g sts| Q)

» Artin’s coherent presentation of the monoid B* (Sy4)

Art3(Sa) = (r,s, t | rsr L—SS srs, rt g tr, tst g sts | Zr st )

SYreSYyr Srystl
strsrt % srtstr é srstsr

Styrst Yrstsr
stsrst rsrtsr
Ystrst rsY st
tstrst sz‘s,r rstrsr
tsY et rstyrs
tsrtst rstsrs
tsryst rystrs

YrtSY reS

tsrsts ﬁ trsrts =——> rtstrs
rs



Coherent presentations

Problems.
1. How to compute a coherent presentation ?

2. How to transform a coherent presentation ?
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Tietze transformations

Theorem. [Gaussent-Guiraud-M., 2013]
Two (finite) (3,1)-polygraphs = and Y are Tietze equivalent if, and only if,

there exists a (finite) Tietze transformation

T:xT vl

Consequence.

If X is a coherent presentation of a category C and if there exists a Tietze
transformation
T2 — vl

then Y is a coherent presentation of C.
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Rewriting properties of 2-polygraphs

Let X = (Xo, X1, X2) be a 2-polygraph (string rewriting system).
» X terminates if it does not generate any infinite reduction sequence

U1:>U2:> #uné

» A branching of X is a pair (f, g) of 2-cells of £ with a common source
"
u
S

» X is confluent if all of its branchings are confluent:
f% v \,
u u’
g\ y %

» X is convergent if it terminates and it is confluent.
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» The notion of rewriting system comes from combinatorial algebra:
> Decision procedure for the word problem (Thue, 1914).

» Finite convergent presentations.

> If a monoid M admits a finite convergent presentation, then its word problem is
decidable.

> Nivat, 1972, Book, Otto, Diekert, Jantzen, Kapur-Narendran, Squier, ... in eighties.

Theorem. [Squier, 1987]
A monoid having a finite convergent presentation is of homological type FP3.

Theorem. [Anick, 1987, Kobayashi, 1991, Brown, 1992]
A monoid having a finite convergent presentation is of homological type FP .
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Rewriting properties of 2-polygraphs

» A branching

is local if f and g are rewriting steps.

» Local branchings are classified as follows:
> aspherical branchings have shape

> Peiffer branchings have shape

£
%% fvxiu'g = ugx*1 v/

\ A

/
Nt =

> critical branchings are all the other cases
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Consider the 2-polygraph
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> A Peiffer branching:

tsttst
% tststs = YstSts

> It has only one critical branching:

Ysttst ststst ﬁ

YstSt_>, stsst

tstst
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> It has only one critical branching
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Example.
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> It has only one critical branching
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Rewriting properties of 2-polygraphs

Example.
Consider the 2-polygraph

(r,s t]sr g rs, ts g st, tr 2} rt)

> It has only one critical branching

t % t
str sr
’Ysrr N
tsr rst
ty %
” trs =—— rts °
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Rewriting properties of 2-polygraphs

Theorem. [Newman's diammond lemma, 1942]

For terminating 2-polygraphs, local confluence and confluence are equivalent
properties.

» The Knuth-Bendix procedure computes a convergent presentation from a terminating
presentation (Knuth-Bendix, 1970).

Theorem. [Squier, 1994]

For a convergent presentation X of a category C, the (3,1)-polygraph obtained
from X by adjunction of a generating confluence

uf/]l>t
\W/

for every critical branching (f, g) is a coherent presentation of C.
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Homotopical completion procedure

Let X be a terminating 2-polygraph (with a total termination order).
» The homotopical completion of X is the (3,1)-polygraph S(X) obtained from X by
successive application of following Tietze transformations

> for every critical pair
£/
f/ v é v
u
g
compute f’ and g’ reducing to some normal forms.

%V\’H
bif V= W, add a 3-cell A, u \I/Afg V= w
g\w%

%
> if Vv < w, add the 2-cell x and the 3-cell A¢ u \;i/Af,g X
w
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Homotopical completion procedure

» Potential adjunction of additional 2-cells x can create new critical branchings,
> whose confluence must also be examined,
> possibly generating the adjunction of additional 2-cells and 3-cells
> ...

» This defines an increasing sequence of (3,1)-polygraphs
(Z1py =2 csgtCc...cznCcEmtc ...

» The homotopical completion of X is the (3,1)-polygraph
8(z)=Jz"

n>0

Theorem. [Gaussent-Guiraud-M., 2013]

For every terminating presentation ~ of a category C, the homotopical
completion $(X) of L is a coherent convergent presentation of C.
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Example. The Kapur-Narendran's presentation of B (S3), obtained from Artin's

presentation by coherent adjunction of the Coxeter element st
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Homotopical completion procedure

Example. The Kapur-Narendran's presentation of B (S3), obtained from Artin's

presentation by coherent adjunction of the Coxeter element st

S RN — sta\ta%asst:>

The deglex order generated by t > s > a proves the termination of ZgN.
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Example. The Kapur-Narendran's presentation of B (S3), obtained from Artin's
presentation by coherent adjunction of the Coxeter element st
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The deglex order generated by t > s > a proves the termination of ZgN.

S(Z?N):<s,t,a|ta % as, st i} a, sas % aa, saa :6> aat | A, B

Ba/ aa %} aat

sta MA Y sast M,B

&} sas % saa

[y
o



Homotopical completion procedure

Example. The Kapur-Narendran's presentation of B (S3), obtained from Artin's

presentation by coherent adjunction of the Coxeter element st

S RN — sta\ta%asst:>

The deglex order generated by t > s > a proves the termination of ZgN.

S(Z?N):<s,t,a|ta % as, st i} a, sas ;> aa, saa :6> aat | A, B

Ba/ 2a W? aaas
Lw ]
/

5 sasas

&} sas & saa sa% saaa



Homotopical completion procedure

Example. The Kapur-Narendran's presentation of B (S3), obtained from Artin's
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Homotopical completion procedure

Example. The Kapur-Narendran's presentation of B (S3), obtained from Artin's
presentation by coherent adjunction of the Coxeter element st

Z?N:<s,t,a\t3 % as, st :B> a)

The deglex order generated by t > s > a proves the termination of ZgN.

S(Z?N):<s,t,a|ta % as, st i} a, sas ;> aa, saa :6> aat | A, B, C

Ba/ aa %} aat W% aaas %cx
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Homotopical completion procedure

Example. The Kapur-Narendran's presentation of B (S3), obtained from Artin's
presentation by coherent adjunction of the Coxeter element st

Z?N:<s,t,a\t3 % as, st :B> a)

The deglex order generated by t > s > a proves the termination of ZgN.

S(Z?N):<s,t,a|ta % as, st i} a, sas ;> aa, saa :6> aat | A, B, C, D>
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Homotopical completion procedure

Example. The Kapur-Narendran's presentation of B (S3), obtained from Artin's
presentation by coherent adjunction of the Coxeter element st

Z?N:<s,t,a\t3 % as, st :B> a)

The deglex order generated by t > s > a proves the termination of ZgN.

S(Z?N):<s,t,a|ta % as, st i} a, sas % aa, saa :6> aat | A, B, C, D>

Ba/ aa %} aat % aaas %cx

sta MA Y  sast M,B 7}5 sasas lU,C aata
k} sas % saa{ sa% saaa 4
yaa aaaaagﬁaaast
sasaa YD Hlaaoct

)

528> saaat = aatat
dat

However. The extended presentation S(ZgN) obtained is bigger than necessary.
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) with a collapsible part " made of

> 3-spheres induced by some of the generating triple confluences of §(X),

fi fi

f ﬂ x! f v h
N\
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\ UJ,Ag h % N //hl
/ X
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INPUT: A terminating 2-polygraph X.

Step 1. Compute the homotopical completion S(X) (convergent and coherent).
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> 3-spheres induced by some of the generating triple confluences of §(X)
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INPUT: A terminating 2-polygraph X.

Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) with a collapsible part " made of

> 3-spheres induced by some of the generating triple confluences of §(X)
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.

Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) with a collapsible part " made of

> 3-spheres induced by some of the generating triple confluences of §(X)

f "%X' h F "f—i\\>x' h
7 e 57 N 7 Nyl N
/ 7 N\ / N
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Ay e /: N Ao



Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) with a collapsible part " made of
> 3-spheres induced by some of the generating triple confluences of §(X),

> the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,



Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) with a collapsible part " made of
> 3-spheres induced by some of the generating triple confluences of §(X),
> the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

> some collapsible 2-cells or 3-cells already present in the initial presentation X.



Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) with a collapsible part " made of
> 3-spheres induced by some of the generating triple confluences of §(X),
> the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

> some collapsible 2-cells or 3-cells already present in the initial presentation X.

The homotopical completion-reduction of terminating 2-polygraph X is the (3, 1)-polygraph

Theorem. [Gaussent-Guiraud-M., 2013]

For every terminating presentation ~ of a category C, the homotopical
completion-reduction R(X) of X is a coherent convergent presentation of C.
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The homotopical completion-reduction procedure

Example. ZgN :<s,t,a\ ta % as, st :B> a>
KN B Y 5
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The homotopical completion-reduction procedure

Example. IEN = (st,alta = as, st # )

S(ZgN):<s,t,a\ta % as, st :B> a, sas %} aa, saa :6> aat\A,B,C,D>
B Y 5
<s,t,a\ ta % as,st —» a,sas —» aa, saa — aatlA,B,)&:D>

» There are four critical triple branchings, overlapping on
sasta, sasast, sasasas, sasasaa.

> Critical triple branching on sasta proves that C is redundant:

Yta aata % aaas / aata &a
M,Ba /)563
sasta =saf3 a saaa = \\ v A
i“,sa A />> say sas
N\
sasoC sasas \ /
SaY™> saaa /6

1

C =sasx” ~ x1 (Bax1 aax) x2 (saA %1 da*1 aax)



The homotopical completion-reduction procedure

Example. ZgN _ < st alta % as, st :B> -3>

S(ZgN]:<s,t,a\ta % as, st :B> a, sas % aa, saa :6> aat\A,B,C,D)

<s,t,a| ta % as , st :B> a, sas L} aa, saa :5> aatIA,B,XB(>

» There are four critical triple branchings, overlapping on
sasta, sasast, sasasas, sasasaa.

> Critical triple branching on sasast proves that D is redundant:

aaafd
yast aaast ——— aaaa yy aaast ﬁaﬁ
Ctm aaot\ 7 \il 3aaf3
X sasast I aaaa aaast
sasast =sayt> saaat 5:> aatat = \ /7 /H\
at Ya
MﬁaB }Tsaé sasaf3 7 sasaa MD 2axt
g [
sasa
saaat ﬁ aatat
da

AN
D = sasaP ™! x1 ((Ct x1 aaaP) 2 (saB 1 dat x1 aacct x1 aaaf))

\

1Y

sasaa %



The homotopical completion-reduction procedure

Example. ZgN = < s, t,al ta % as, st :B> a>

S(ZgN]:<s,t,a|ta % as, st :B> a, sas %} aa, saa :6> aat\A,B,C,D>
B Y 5
(s tal ta % as,st —» a,sas —» aa,saa —» aat|A, B, & ()

> The 3-cells A and B are collapsible and the rules v and & are redundant.
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The homotopical completion-reduction procedure

Example. ZgN = < s, t,al ta % as, st :B> a>

S(ZgN]:<s,t,a|ta % as, st :B> a, sas ;} aa, saa :6> aat\A,B,C,D>

(sital ta => as,st % ay%MIXDKXBQ

> The 3-cells A and B are collapsible and the rules v and & are redundant.

Ba/ aa % aat

sta sast

»n
4
4
%)
4
=
0
5]
)



The homotopical completion-reduction procedure

Example. ZgN = < s, t,al ta % as, st :B> a>

S(ZgN]:<s,t,a|ta % as, st :B> a, sas ;} aa, saa :6> aat\A,B,C,D>

(s}l ta =5 as ,%%Mmygxm

B . .
> The rule st = a is collapsible and the generator a is redundant.



The homotopical completion-reduction procedure

Example. ZgN = < s, t,al ta % as, st :B> a>

S(ZgN):<s,t,a|ta % as, st :B> a, sas ;} aa, saa :6> aat |A,B,C,D)

(st tst = sts,%%%l%%)&ﬂ)

R(ZEN) = (s, t] tst = sts|0)

= Art3(S3)



Part Ill. Applications to Artin monoids
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Garside's presentation

» Let W be a Coxeter group

W={(S| 2 =1, (ts)™Mst = (st)™Mst )

where (ts)™st stands for the word tsts... with mg; letters.
» Artin’s presentation of the Artin monoid B* (W):

Arta (W) = { S| (ts)™st = (st)™st )

» Garside's presentation of B™ (W)

x
Gara (W) = < WA {1} | ulv =N uv, whenever i v >
where
uv is the product in W,
ulv is the product in the free monoid over W.

» Notations :

> v whenever I{uv) = I(u) +I(v).
>u ™ v whenever I(uv) < I(u) + I(v).
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» The Garside’s coherent presentation of BT (W) is the extended presentation Garz (W)
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Garside's coherent presentation

» The Garside’s coherent presentation of BT (W) is the extended presentation Garz (W)
obtained from Garz (W) by adjunction of one 3-cell

a% UVWNV
U‘V|W m u,v,w
%v

uloty, w ulvw
e
N

for every u, v, W|nW\{1}W|thu vVoow .

Theorem. [Gaussent-Guiraud-M., 2013]

For every Coxeter group W, the Artin monoid B (W) admits Gar3(W) as a
coherent presentation.

Proof. By homotopical completion-reduction of the 2-polygraph Gara (W).
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Garside's coherent presentation

Step 1. We compute the coherent convergent presentation 8(Garz(W))

> The 2-polygraph Garz (W) has one critical branching for every u, v, w in W\ {1} when
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> There are two possibilities.

o‘u,vlw
. /\X/\ U|V|Wﬁ UV‘W
otherwise u V w
/By

uloty,w
ulvw



Garside’s coherent presentation
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Garside’s coherent presentation

Proposition.
For every Coxeter group W, the Artin monoid B™ (W) admits, as a coherent convergent
presentation, the (3, 1)-polygraph S (Garz(W)) where

> the 1-cells are the elements of W \ {1},

Xy,v
> there is a 2-cell ulv == uv for every u, v in W \ {1} with s

Bu,v,w

X
> the 2-cells ulvw =—=> uv|w, for every u, v, w in W \ {1} with 7V W ,

> the nine families of 3-cells A, B, C, D, E, F, G, H, I.



Garside's coherent presentation

Step 2. Homotopical reduction of §(Gara(W)).

> We consider some triple critical branchings of 8(Garz(W))
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Artin’s coherent presentation

Theorem. [Gaussent-Guiraud-M., 2013]

For every Coxeter group W, the Artin monoid B (W) admits the coherent
presentation Artz (W) made of

> Artin's presentation Arta(W) = ( S | (ts)™st = (st)Mst )

> one 3-cell Z, s+ for every elements t > s > r of S such that the subgroup
W(, s ¢ is finite.



Artin’s coherent presentation

» The 3-cells Z, 5+ for Coxeter types A3
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Artin’s coherent presentation

» The 3-cells Z, 5+ for Coxeter types B3
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Artin’s coherent presentation

» The 3-cells Z, 5+ for Coxeter types A1 X A1 X A
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Artin’s coherent presentation

» The 3-cells Z, 5+ for Coxeter type H3
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Artin’s coherent presentation

» The 3-cells Z, 5+ for Coxeter type L(p) X A1, p =3

sYre(rs)P2

vy st{rs)"" () <sr>PtN

t(sr)P mzr,s,t (rs)Pt
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Coherent presentations and actions on categories

Definition. (Deligne, 1997)
An action T of a monoid M on categories is specified by
> a category C = T (e)
> an endofunctor T (u) : C — C, for every element u of M,
> natural isomorphisms Ty, : T(u)T(v) = T(uv) and T, : 1c = T(1)

satisfying the following coherence conditions:



Coherent presentations and actions on categories

Theorem. [Gaussent-Guiraud-M., 2013]

Let M be a monoid and let X be a coherent presentation of M.
There is an equivalence of categories

Act(M) = 2Cat(Z] /Z3, Cat)
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Coherent presentations and actions on categories

Theorem. [Gaussent-Guiraud-M., 2013]

Let M be a monoid and let X be a coherent presentation of M.
There is an equivalence of categories

Act(M) = 2Cat(Z] /Z3, Cat)

» Such equivalence was known for the Garside's presentation of spherical Artin monoids
(Deligne, 1997)

Consequence.
To determine an action of an Artin monoid B (W) on a category C, it suffices to attach
> to any generating 1-cell s € S an endofunctor T(s) : C — C,
> to any generating 2-cell an isomorphism of functors such that these satisfy coherence
Zamolochikov relations.
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» Other applications
> Coherent presentation of Garside monoids [Gaussent-Guiraud-M., 2013].
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Conclusion

» Other applications
> Coherent presentation of Garside monoids [Gaussent-Guiraud-M., 2013].

> Coherent presentation of plactic and Chinese monoids [Guiraud-M.-Mimram, 2013].

XixiXp = xjxpx; for i < j < k
P = (xty...oxy | TPk =0 forisj Sk
Xixpxj = xpxpxj for i < j < k
Ch, = <X1,...,Xn ‘ XjXpXi = XpXiXj = XpXjXi fori<j<k>

» A prototype implementation of homotopical completion-reduction procedure
> http://wwuw.pps.univ-paris-diderot.fr/~smimram/rewr/

Conjecture.
Higher Artin’s coherent presentation of B(W, S) has exactly on k-cell, kK > 0, for every
subset | of S of rank k such that the subgroup W is finite.
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