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Motivations:
syzygies, coherence and resolutions



From syzygies to resolutions

» Syzygies are relations between generators of a module.

» Let M be a finitely generated R-module, and a set of generators:

Y = {y1,- -, ¥k}

> a syzygy of M is an element (A1, ..., Ax) in R¥ connecting generators:
A1yr + ...+ Ay =0

» The set of all syzygies wrt Y forms a submodule of R": the module of 1st syzygies.

» For n > 2, the nth syzygy module is the module of all syzygies of the (n — 1)th syzygy
module.

Theorem. (Hilbert's Syzygy Theorem, 1890)
If M is a finitely generated module over the polynomial ring K[x1, ..., x,], then the
nth syzygy module of M is a always a free module.

» F.-O. Schreyer, 1980 : computation of syzygies by means of the division algorithm.
> Buchberger's completion algorithm computes Grébner bases.
> The reduction to zero of a S-polynomial in a Grobner basis gives a syzygy.



Syzygies by rewriting and coherence

» Squier's machinery (Squier, 1994)
> Let X = (X1, X2) be a convergent string rewriting systems.
> Family of generating confluences

/ v (o, B) critical branching of X
() { & A | AN }
w W

Theorem. (Squier, 1994)
Any two parallel zig-zag rewriting sequences (f,g) can be filled by pasting of these
generating confluences: f

/m\ X

F . €

> cg(X) is an acyclic extension of the free (2, 1)-category X2T.
> (X1, X2,cg(X)) is a coherent presentation of the monoid X{/X>.

» Homotopical completion-reduction procedure to compute coherent presentations
(Guiraud-M.-Mimram, 2013).



Coherent presentations: examples

» The Artin monoid B; of braids on three strands.
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» Artin presentation of B

Art2(B3) = (s, t | tst=sts)

» We prove that there is no syzygy between relations induced by tst = sts.

i |

With presentation Artx (B3 )

v

N

ool

¢

two proofs of the same equality in B
are equal.

/

A
-

o

S5
5%
AT T



Coherent presentations: examples

» The Artin monoid Bf{ of braids on four strands.

r= s =l e =] RS

» Artin presentation of B

Art2(BY) = {(r,s,t | rsr=srs, rt=tr, tst=sts)
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» The syzygies of the braid relations on four strands are generated by the Zamolodchikov
relation (Deligne, 1997).

/ stsrst strsrt srtstr srstsr rsrtsr \
tstrst Zrst rstrsr
\ tsrtst tsrsts trsrts rtstrs rstsrs /

» The Artin monoid BT (W) on a Coxeter group W with Garside's presentation,
(Gaussent-Guiraud-M., 2015)



Higher order syzygies

» Higher order syzygies are relations between relations between relations, and so on.
» Higher order syzygy problem for a 1-category C (or a p-category)

Problem.
> Given a presentation of C by generators and relations.

> We would like to build a (small I) cofibrant approximation of C in
the category of w-categories (or (w, 1)-categories).

» That is, a free w-category homotopically equivalent to C.

» Squier's machinery extends to higher dimensions.

> Solution in (w, 1)-categories (Guiraud-M., 2012).
> Still an open problem in w-categories.



Polygraphic resolutions

» An n-polygraph is a sequence
X = (Xo, X1,...,Xn)

constructed by induction

) S1 52 S3
Xo & X{ € X5 § X3 & (+--
to t1 to t3
So I S1 I S2 I S3 Sn—1
to t ta t3 th—1
X1 X2 X3 (- Xn

» An w-functor p : C — D is an acyclic fibration if
> po : Co — Do is onto,
> p has the lifting property:

v 3
Vxlly € G, pi(x) =5 pi(y) € Diz1, x =5y € Cipq | piv1(u) =v

Vx pi(x)
Vy pily)
» A polygraphic resolution of an w-category C is an acyclic fibration

p: X*—=C

where X* is a free w-category on an w-polygraph X.



Algebraic formulation problems on polygraphic resolutions

Problem.
How can polygraphic resolutions be algebraically formulated?
With a view to formalization in proof assistants?

Issues.
<« 1 » Algebraic formulation of the structure of polygraphs (higher dimensional rewriting):

> Abstraction of shapes: globular, cubical, simplicial...

> Homotopical properties: acyclicity, contracting homotopies, normalisation strategies...

<« 2 » Algebraic formulation of the calculation machinery of syzygies by rewriting.
> Abstraction of diagrammatic reasoning: confluence, termination...
> Church-Rosser, Newman, and Squier machineries...

<« 3 » The formalisation in proof assistants.

> Isabelle... see Georg Struth’s talk tomorrow morning.



I. Calculating confluence proofs
in modal Kleene algebras



Church-Rosser Theorem (diagrammatic formulation)

» An abstract rewriting system is a 1-polygraph (Xp, X1)

erxl*/ \{gEX{‘
N B

EIf'GX*\ /EI' X5
1 v v dgoeX

> It is confluent if

> It has the Church-Rosser property if

Vhe X{

. <—> .
N /
\ %

3n' € X¢ \N (/ Ik’ € X;
Theorem. (Church-Rosser, 1936)
A 1-polygraph is confluent if and only if it is Church-Rosser.

Theorem. (Newman, 1942)
A terminating 1-polygraph is confluent if and only if it is locally confluent.



Church-Rosser Theorem (algebraic formulation)

» A Kleene algebra is a dioid (idempotent semiring) (K, +,0, -, 1) equipped with a Kleene
star operation (—)* : K — K satisfying unfold and induction axioms.
» The path Kleene algebra on a 1-polygraph X is the structure
K(X) == (P(X{),U,0.0,1,(=)").
> Composition of ¢ and 1 in P(X;):
@OV == {uxov|vep Avep At(u) =s(v)}

> 1 is the set of all identity arrows of X.

> The operation (—)* is defined by @* = [J;cy @' with ® =1 and 1 = ® ¢'.
Theorem. (Church-Rosser Theorem & /a Struth, 2002)

For all x,y in a Kleene algebra

YiXTXTyT & (x+y)t <xTyr.

y*/ ’ \\):* . (x+y)*



Newman’s Theorem (algebraic formulation)

» Algebraic notion of termination (Desharnais-Méller-Struth, 2011).

> Modal Kleene algebra tests.

Theorem. (Desharnais-Méller-Struth, 2004)
In a modal Kleene algebra K with complete test algebra, if x + y is Noetherian, then

WX <) e i) < Iyl

N N

Objective. To give a coherent formulation of these two algebraic results for higher
dimensional rewriting systems.



II. Coherence by rewriting



Polygraphs

» Consider an n-polygraph X = (Xo, X1,...,X,)

so S1 52 S3
Xo & Xi € X5 € X3 £ [CERDE:
to ty to t3
S0 I S1 I S2 I S3 Sn—1
to 51 ta t3 th—1
X1 X2 X3 (--4) Xn

» It induces an ARS on the free (n — 1)-category X ;, whose rules are

Cla]
Clsp—1(at) — Cltp1]

with sp_1 — t,_1 an n-generator in X, and C a context:

Cla] = fy*n—1 (facrxn2--- (AxoUxog1) - - *n—28n-1) *n—1 &n,

where f; and gy are identities k-cells.
» We extend the (abstract) rewriting properties on X:

termination / confluence / locally confluence / convergence.



Squier’s completion

» Let X be a convergent n-polygraph.

» A family of generating confluences of X is a cellular extension of the (n, n — 1)-category
XT that contains exactly one (n + 1)-cell

/
N

B/
for every critical branching («, 3) of X.

» A Squier’s completion of X isa (n+ 1, n— 1)-polygraph

Sn

* T
n—1 ¢ Xn

Xu () Xn-1

where 8(X) is a chosen family of generating confluences of X



Squier’s completion and finite derivation type

Theorem. (Guiraud-M. 2009)
If X is convergent, then the Squier completion §(X) is acyclic.

S0 S2 Sn—1 Sn T Sn+1 T
Xiy X $(X)
t

n

Xo &

Yullv € X, EluéiveS(X)—r | sp(F)=uwuand t,(F)=v
ue X,,T
| @ .
v E XrT
» The proof relies on the following two coherent confluent results:

> Coherent Newman's lemma.

> Coherent Church-Rosser theorem.



Coherent confluence

» Let I" be a cellular extension of X, .

» Consider the free (n + 1)-category X, [I'] with invertible k-cells only for k = n.

» T is a confluence filler of a branching f/ \f

if there exist n-cells h, k in X}, and (n+ 1)-cells «, 3 in X,,T [T'] with shapes:

ﬂ\ RS
RSN g

» T is a confluence filler of an n-cell f in X,|
if there exist n-cells h, k in X;f and an (n+ 1)-cell & in X,T[F] of the shape:



Coherent confluence

Theorem. (Coherent Church-Rosser filler lemma)

Let X be an n-polygraph, and T a cellular extension of X, . Then
( I" is a confluence filler of X ) &= ( I is a Church-Rosser filler of X )

Theorem. (Coherent Newman filler lemma)

Proof.

Let X be a terminating n-polygraph, and T a cellular extension of X,| . Then
( I" is a local confluence filler of X ) &= ( I" is a confluence filler of X )

Proof. /ﬂ\
\ /



I11. Calculating coherent proofs
in higher modal Kleene algebras



Higher dioids

» The domain algebra of the path Kleene algebra K(X) on a 1-polygraph X forms a bounded
distributive lattice.

» A 0-dioid is a bounded distributive lattice:
» A 1-dioid is a dioid (S, +,0,®, 1).
» For n > 1, an n-dioid is a structure (S, +,0, ®;, 1;)ogi<n such that
> (S,4,0,®;,1;) is a dioid for 0 < i < n,
> The lax interchange laws hold, for all 0 <7 < j < n,
(xO;x")Oi(yojy) < (x0iy) 0 (x" @iy,

> Higher units are idempotents of lower multiplications, for all 0 < i < j < n,

1j ®i 1J' = lj.



Higher modal semirings

» An antidomain 0-semiring is a 0-dioid.

» For n > 1, an antidomain n-semiring is an n-dioid (S, +,0, ®;, 1;); equipped with
antidomain maps (ad; : S — S)o<j<n such that

> (S,+,0,®;,1;, ad;) is an antidomain semiring:
adi(x)x =0, adi(xy) < adj(xad?(y)), ad?(x)+ ad;(x) = 1.

> adj;1 0ad; = ad;.

» An anticodomain n-semiring is an n-dioid S such that (57 )o<j<n is a antidomain

n-semiring. Denote (ar; : S — S)o<i<n the codomain operators.

» A Boolean modal n-semiring is an antidomain n-semiring that is also an anticodomain

n-semiring for n > 1, and a Boolean algebra for n = 0.

» Note that, setting d; := ad,g and r; := ar,?, we recover a domain and codomain n-semirings.



Modal n-Kleene algebra

» An n-Kleene algebra (n-KA) is an n-dioid K equipped with operations (—)* : K — K
such that

> (K, +,0,0;,1;, (=) ) isa KAfor 0 < i < n,

> For 0 < 7 < j < n, the operation (—)™ is a lax morphism wrt i-whiskering of

j-dimensional elements:
eOIAT S (@O A AT @ < (AQ; @)Y
forall Ac K, ¢ € K;.
» A modal n-Kleene algebra (n-MKA) is an n-KA that is a modal n-semiring (domain and
codomain semiring).

» A Boolean n-MKA is an n-KA that is a Boolean modal n-semiring.



Globular Kleene algebras

» An n-MKA K is globular (n-gMKA) if the globular relations hold for 0 < i < j < n:
diod; =d, dior=d;, riod; =r, rior=r,

di(A®; B) =d;(A) ©; d;(B), ri(A®; B) = rj(A) ©; rj(B).

» An element A in K is a collection of cells, and for i < j:

di(A)
di(A) ﬂA ri(A)
ri(A)

> di (A) is the set of k-cells that are k-sources of some cells belonging to A.
> ri(A) is the set of k-cells that are k-targets of some cells belonging to A.

» The right and left i-whiskering of A€ K by @ € K is
AQ®; @ and P O;A



Confluence fillers

» Let K be an n-gMKA and 0 < j < n.

» Define the forward j-diamond operators, for all A€ K and ¢ € Kj,
[A)j(@) :=di(AQ; @).

» Thus, for A€ K and @, € Kj, we have
(@) 2% i di(AG; @) >V,

> In the polygraphic model:

Vu €, v € ¢ and Jx € A such that sj(x) = v and tj(x) = v.

Yu € P
[A)i (@) = o \Mﬂ(xeA o

dveeo



Confluence fillers

»Llet 0<i<j<n and @, in K;. An element Ain K is a

> local i-confluence filler for (@, V) if

[A); (B O ™) = @ Oi P

> i-confluence filler for (@, ) if

[A); (W™ O @*) = @™ O ™

> i-Church-Rosser filler for (¢, V¥) if

[A); (W ©; @) = (b + @)

» Note that (b + @)% = @ O; V™ = @ O; V.

@ﬂ&

P @

* P
NN
P @

(@ + W)
_

|2
P @



Completion fillers

» Coherent proofs are obtained using completion by fillers.
» Completion of an i-confluence filler A of a pair (@, 1) in Kj:

> The j-dimensional i-whiskering of A

(@ +P)"OAQ (¢ +P) e K

> The j-whiskered j-completion of A, denoted by A%, is

(@ + W) @ AG; (@ +¥)) 7 e K



Coherent Church-Rosser and Newman in globular MKA

Theorem A. (Calk-Goubault-M.-Struth, 2023)
Let K be an n-gMKA and 0 < i < j < n.
Let ¢, € K;.
If A is an i-confluence filler of (@, ), then

[A%);(W* O @) = (@ + )™,

that is, the completion A*i is an i-Church-Rosser filler for (o, V).

Theorem B. (Calk-Goubault-M.-Struth, 2023)

Let K be a Boolean n-gMKA, and 0 < i < j < n, such that
> (K;,+,0,®;,1;,—;) is a complete Boolean algebra,
> K is i-continuous.

Let \p € K; be i-Noetherian and ¢ € K; i-well-founded.

If A is a local i-confluence filler for (@, ), then

|A%); (W @ @*) = @™ @ b™,

that is, the completion A% is a confluence filler for (@, ).



Polygraphic model of higher Kleene algebras

» Let (X,T") be an (n+ 1, n— 1)-polygraph.
» Define K(X,T') the full path (n+ 1)-MKA:
K(X) == P(Xy_1 (X,)[T]),
> Composition of A and B in K(X):
AQiB:={axiB|ax€AN BEBANt(x)=s/(p)}.

> Unit for ©;
L = {"(w) lue X a (Xa) [P}

> Addition is the set union U, and the ordering is the set inclusion.
> i-domain and /-codomain maps:

di(A) = {7 (si(x)) | « € A}, ri(A) == {UTH (o) | o € A

> j-antidomain and i-anticodomain maps:

ad;(A) := ]1,-\{L,f’+1(s,-(oc)) | « € A}, ari(A) = ]1,-\{Ll’-’+1(t,-(oc)) | « € A}

b The i-star is A% = e AN, with A% := 1; and Ak := A®; ALk,



Polygraphic model of higher Kleene algebras

Proposition.
K(X,T) is a Boolean (n+ 1)-gMKA.

Theorem. (Calk-Goubault-M.-Struth, 2023)
Theorems A & B in the polygraphic model give polygraphic coherent Church-Rosser
and Newman filler results.



Conclusion:
IV. Work in progress



Three lines of research

<« 1 » Algebraic formulation of normalisation strategies.

> Normalisation strategies give constructive proofs of acyclicity in polygraphs
(Guiraud-M., 2012).

> In low dimension, Squier's theorem for ARS using normalisation strategies in MKA
(Calk-Goubault-M., 2021).

> Higher normalisation strategies in w-quantales (M.-Struth, work in progress).

<« 2 » Algebraic formulation of cubical polygraphic resolutions
(M.-Massacrier-Struth, work in progress).

> Cubical description of confluence properties.

> Functional definition of cubical categories and normalisation strategies.

<« 3 » Polygraphic resolutions for algebraic polygraphs (cartesian, linear, algebraic over an
operad...), (Dabrowski-M.-Ren, work in progress).

> Formalisation of the coherent critical branching lemma (strings, terms, terms modulo).
> (Algebraically enriched) n-gMKA.
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