Abstract abstract coherence and acyclicity

Philippe Malbos

Institut Camille Jordan Université Claude Bernard Lyon 1

Geometric and Topological Methods in Computer Science - GETCO 2023 -Aalborg July 5, 2023

Joint work with Cameron Calk, Eric Goubault, Georg Struth

Motivations

► I. Confluence proofs in modal Kleene algebras

- ► II. Coherence by rewriting
- ▶ III. Coherent proofs in higher modal Kleene algebras
- ► IV. Work in progress

Joint work with Cameron Calk, Eric Goubault, Georg Struth

Motivations: syzygies, coherence and resolutions

From syzygies to resolutions

Syzygies are relations between generators of a module.

 \blacktriangleright Let *M* be a finitely generated *R*-module, and a set of generators:

 $Y = \{\mathbf{y}_1, \ldots, \mathbf{y}_k\}$

▷ a syzygy of *M* is an element $(\lambda_1, ..., \lambda_k)$ in \mathbb{R}^k connecting generators:

```
\lambda_1 \mathbf{y_1} + \ldots + \lambda_k \mathbf{y_k} = \mathbf{0}
```

The set of all syzygies wrt Y forms a submodule of R^n : the module of 1st syzygies.

For $n \ge 2$, the *n*th syzygy module is the module of all syzygies of the (n-1)th syzygy module.

Theorem. (Hilbert's Syzygy Theorem, 1890)

If *M* is a finitely generated module over the polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$, then the nth syzygy module of *M* is a always a free module.

F.-O. Schreyer, 1980 : computation of syzygies by means of the division algorithm.
 Buchberger's completion algorithm computes Gröbner bases.

▷ The reduction to zero of a S-polynomial in a Gröbner basis gives a syzygy.

Syzygies by rewriting and coherence

Squier's machinery (Squier, 1994)

▷ Let $X = (X_1, X_2)$ be a convergent string rewriting systems.

▷ Family of generating confluences

 (α, β) critical branching of X

Theorem. (Squier, 1994)

Any two parallel zig-zag rewriting sequences (f, g) can be filled by pasting of these generating confluences:

 \triangleright cg(X) is an acyclic extension of the free (2, 1)-category X_2^{\top} .

 \triangleright (X₁, X₂, cg(X)) is a coherent presentation of the monoid X_1^*/X_2 .

► Homotopical completion-reduction procedure to compute coherent presentations (Guiraud-M.-Mimram, 2013).

Coherent presentations: examples

• The Artin monoid B_3^+ of braids on three strands.

$$s = \not \prec | t = | \not \prec = \not \lor = \not \lor$$

▶ Artin presentation of B₃⁺

$$\operatorname{Art}_{2}(\mathsf{B}_{3}^{+}) = \langle s, t \mid tst = sts \rangle$$

• We prove that there is no syzygy between relations induced by tst = sts.

With presentation $Art_2(B_3^+)$ two proofs of the same equality in B_3^+ are equal.

Coherent presentations: examples

▶ The Artin monoid B₄⁺ of braids on four strands.

$$r = \Join | | s = | \Join | t = | | \Join$$

Artin presentation of B₄⁺

 $\operatorname{Art}_2(\mathsf{B}^+_4) = \langle r, s, t \mid rsr = srs, rt = tr, tst = sts \rangle$

► The syzygies of the braid relations on four strands are generated by the Zamolodchikov relation (Deligne, 1997).

▶ The Artin monoid $B^+(W)$ on a Coxeter group W with Garside's presentation, (Gaussent-Guiraud-M., 2015)

Higher order syzygies

▶ Higher order syzygies are relations between relations between relations, and so on.

► Higher order syzygy problem for a 1-category C (or a *p*-category)

Problem.

▷ Given a presentation of C by generators and relations.

 \triangleright We would like to build a (small !) cofibrant approximation of C in the category of ω -categories (or $(\omega, 1)$ -categories).

That is, a free ω-category homotopically equivalent to C.

Squier's machinery extends to higher dimensions.

- ▷ Solution in $(\omega, 1)$ -categories (Guiraud-M., 2012).
- \triangleright Still an open problem in ω -categories.

Polygraphic resolutions

An n-polygraph is a sequence

$$X = (X_0, X_1, \ldots, X_n)$$

constructed by induction

▶ A polygraphic resolution of an ω -category C is an acyclic fibration

 $p: X^* \to C$

where X^* is a free ω -category on an ω -polygraph X.

Algebraic formulation problems on polygraphic resolutions

Problem.

How can polygraphic resolutions be algebraically formulated? With a view to formalization in proof assistants?

Issues.

◀ 1 ► Algebraic formulation of the structure of polygraphs (higher dimensional rewriting):

- ▷ Abstraction of **shapes**: globular, cubical, simplicial...
- ▷ Homotopical properties: acyclicity, contracting homotopies, normalisation strategies...
- ◀ 2 ► Algebraic formulation of the calculation machinery of syzygies by rewriting.
 - ▷ Abstraction of **diagrammatic reasoning**: confluence, termination...
 - ▷ Church-Rosser, Newman, and Squier machineries...
- ◀ 3 ► The formalisation in proof assistants.
 - ▷ Isabelle... see Georg Struth's talk tomorrow morning.

I. Calculating confluence proofs in modal Kleene algebras

Church-Rosser Theorem (diagrammatic formulation)

An abstract rewriting system is a 1-polygraph (X_0, X_1)

 \triangleright It is **confluent** if

▷ It has the Church-Rosser property if

Theorem. (Church-Rosser, 1936)

A 1-polygraph is confluent if and only if it is Church-Rosser.

Theorem. (Newman, 1942)

A terminating 1-polygraph is confluent if and only if it is locally confluent.

Church-Rosser Theorem (algebraic formulation)

▶ A Kleene algebra is a dioid (idempotent semiring) $(K, +, 0, \cdot, 1)$ equipped with a Kleene star operation $(-)^* : K \to K$ satisfying unfold and induction axioms.

▶ The path Kleene algebra on a 1-polygraph X is the structure

 $\mathcal{K}(X) := (\mathcal{P}(X_1^*), \cup, \odot, \emptyset, \mathbb{1}, (-)^*).$

▷ Composition of φ and ψ in $\mathcal{P}(X_1^*)$:

 $\varphi \odot \psi := \{ u \star_0 v \mid u \in \varphi \land v \in \psi \land t_0(u) = s_0(v) \}.$

 \triangleright 1 is the set of all identity arrows of X.

▷ The operation $(-)^*$ is defined by $\phi^* = \bigcup_{i \in \mathbb{N}} \phi^i$, with $\phi^0 = \mathbb{1}$ and $\phi^{i+1} = \phi \odot \phi^i$.

Theorem. (Church-Rosser Theorem à la Struth, 2002)

For all x, y in a Kleene algebra

$$y^*x^* \leqslant x^*y^* \Leftrightarrow (x+y)^* \leqslant x^*y^*.$$

Newman's Theorem (algebraic formulation)

► Algebraic notion of termination (Desharnais-Möller-Struth, 2011).

▷ Modal Kleene algebra tests.

Theorem. (Desharnais-Möller-Struth, 2004)

In a modal Kleene algebra K with complete test algebra, if x + y is Noetherian, then

 $\langle y||x\rangle \leqslant |x^*\rangle \langle y^*| \iff \langle y^*||x^*\rangle \leqslant |x^*\rangle \langle y^*|.$

Objective. To give a coherent formulation of these two algebraic results for higher dimensional rewriting systems.

II. Coherence by rewriting

Polygraphs

• Consider an *n*-polygraph $X = (X_0, X_1, \dots, X_n)$

▶ It induces an ARS on the free (n-1)-category X_{n-1}^* , whose rules are

 $C[s_{n-1}(\alpha) \xrightarrow{C[\alpha]} C[t_{n-1}]$

with $s_{n-1} \xrightarrow{\alpha} t_{n-1}$ an *n*-generator in X_n and *C* a context:

 $C[\Box] = f_n \star_{n-1} (f_{n-1} \star_{n-2} \cdots (f_1 \star_0 \Box \star_0 g_1) \cdots \star_{n-2} g_{n-1}) \star_{n-1} g_n,$

where f_k and g_k are identities k-cells.

▶ We extend the (abstract) rewriting properties on X:

termination / confluence / locally confluence / convergence.

Squier's completion

▶ Let X be a convergent *n*-polygraph.

▶ A family of generating confluences of X is a cellular extension of the (n, n-1)-category X_n^\top that contains exactly one (n+1)-cell

for every critical branching (α, β) of X.

A Squier's completion of X is a (n + 1, n - 1)-polygraph

where S(X) is a chosen family of generating confluences of X

Squier's completion and finite derivation type

Theorem. (Guiraud-M. 2009)

If X is convergent, then the Squier completion S(X) is acyclic.

▶ The proof relies on the following two coherent confluent results:

- ▷ Coherent Newman's lemma.
- ▷ Coherent Church-Rosser theorem.

Coherent confluence

- Let Γ be a cellular extension of X_n^{\top} .
- ► Consider the free (n+1)-category $X_n^{\top}[\Gamma]$ with invertible k-cells only for k = n.
- F is a confluence filler of a branching $\int_{X} \int_{Y}^{g} of X$

if there exist *n*-cells *h*, *k* in X_n^* , and (n + 1)-cells α , β in $X_n^{\top}[\Gamma]$ with shapes:

► Γ is a confluence filler of an *n*-cell *f* in X_n^{\top} if there exist *n*-cells *h*, *k* in X_n^* and an (n + 1)-cell α in $X_n^{\top}[\Gamma]$ of the shape:

Coherent confluence

Theorem. (Coherent Church-Rosser filler lemma)

Let X be an n-polygraph, and Γ a cellular extension of X_n^{\top} . Then

 $\left(\ \Gamma \ \text{is a confluence filler of } X \ \right) \quad \Leftrightarrow \quad \left(\ \Gamma \ \text{is a Church-Rosser filler of } X \ \right)$

Proof.

Theorem. (Coherent Newman filler lemma)

Let X be a terminating n-polygraph, and Γ a cellular extension of X_n^{\top} . Then $\left(\Gamma \text{ is a local confluence filler of } X \right) \Leftrightarrow \left(\Gamma \text{ is a confluence filler of } X \right)$

Proof.

III. Calculating coherent proofs in higher modal Kleene algebras

Higher dioids

▶ The domain algebra of the path Kleene algebra K(X) on a 1-polygraph X forms a bounded distributive lattice.

- ► A 0-dioid is a bounded distributive lattice:
- ▶ A 1-dioid is a dioid $(S, +, 0, \odot, 1)$.
- ▶ For $n \ge 1$, an *n*-dioid is a structure $(S, +, 0, \odot_i, 1_i)_{0 \le i < n}$ such that
 - ▷ $(S, +, 0, \odot_i, 1_i)$ is a dioid for $0 \leq i < n$,
 - \triangleright The lax interchange laws hold, for all $0 \leq i < j < n$,

 $(x \odot_j x') \odot_i (y \odot_j y') \leqslant (x \odot_i y) \odot_j (x' \odot_i y'),$

▷ Higher units are idempotents of lower multiplications, for all $0 \leq i < j < n$,

 $1_j \odot_i 1_j = 1_j.$

Higher modal semirings

An antidomain 0-semiring is a 0-dioid.

▶ For $n \ge 1$, an antidomain *n*-semiring is an *n*-dioid $(S, +, 0, \odot_i, 1_i)_i$ equipped with antidomain maps $(ad_i : S \to S)_{0 \le i < n}$ such that

▷ $(S, +, 0, \odot_i, 1_i, ad_i)$ is an antidomain semiring:

 $ad_i(x)x = 0$, $ad_i(xy) \leq ad_i(x ad^2(y))$, $ad_i^2(x) + ad_i(x) = 1$.

 \triangleright $ad_{i+1} \circ ad_i = ad_i$.

▶ An anticodomain *n*-semiring is an *n*-dioid S such that $(S_i^{op})_{0 \le i < n}$ is a antidomain *n*-semiring. Denote $(ar_i : S \to S)_{0 \le i < n}$ the codomain operators.

A Boolean modal *n*-semiring is an antidomain *n*-semiring that is also an anticodomain *n*-semiring for $n \ge 1$, and a Boolean algebra for n = 0.

▶ Note that, setting $d_i := ad_i^2$ and $r_i := ar_i^2$, we recover a domain and codomain *n*-semirings.

▶ An *n*-Kleene algebra (*n*-KA) is an *n*-dioid K equipped with operations $(-)^{*_i} : K \to K$ such that

▷ $(K, +, 0, \odot_i, 1_i, (-)^{*_i})$ is a KA for $0 \leq i < n$,

▷ For $0 \leq i < j < n$, the operation $(-)^{*_j}$ is a lax morphism wrt *i*-whiskering of *j*-dimensional elements:

 $\varphi \odot_i A^{*j} \leqslant (\varphi \odot_i A)^{*j} \qquad A^{*j} \odot_i \varphi \leqslant (A \odot_i \varphi)^{*j}$

for all $A \in K$, $\phi \in K_j$.

► A modal *n*-Kleene algebra (*n*-MKA) is an *n*-KA that is a modal *n*-semiring (domain and codomain semiring).

▶ A Boolean *n*-MKA is an *n*-KA that is a Boolean modal *n*-semiring.

Globular Kleene algebras

An *n*-MKA *K* is globular (*n*-gMKA) if the globular relations hold for $0 \le i < j < n$:

$$d_i \circ d_j = d_i, \qquad d_i \circ r_j = d_i, \qquad r_i \circ d_j = r_i, \qquad r_i \circ r_j = r_i,$$

$$d_j(A \odot_i B) = d_j(A) \odot_i d_j(B), \qquad r_j(A \odot_i B) = r_j(A) \odot_i r_j(B).$$

An element A in K is a collection of cells, and for i < j:

 $\triangleright d_k(A)$ is the set of k-cells that are k-sources of some cells belonging to A. $\triangleright r_k(A)$ is the set of k-cells that are k-targets of some cells belonging to A.

▶ The right and left *i*-whiskering of $A \in K$ by $\phi \in K_i$ is

 $A \odot_i \varphi$ and $\varphi \odot_i A$

Confluence fillers

• Let K be an *n*-gMKA and $0 \leq j < n$.

▶ Define the forward *j*-diamond operators, for all $A \in K$ and $\varphi \in K_j$,

 $|A\rangle_j(\varphi) := d_j(A \odot_j \varphi).$

- ► Thus, for $A \in K$ and $\varphi, \psi \in K_j$, we have $|A\rangle_j(\varphi) \ge \psi$ iff $d_j(A \odot_j \varphi) \ge \psi$.
 - ▷ In the polygraphic model:

 $\forall u \in \psi, \exists v \in \varphi \text{ and } \exists \alpha \in A \text{ such that } s_i(\alpha) = u \text{ and } t_i(\alpha) = v.$

Confluence fillers

Let 0 ≤ i < j < n, and φ, ψ in K_j. An element A in K is a
local i-confluence filler for (φ, ψ) if

 $|A\rangle_{j}(\psi^{*_{i}}\odot_{i}\phi^{*_{i}}) \geqslant \phi\odot_{i}\psi$

 $|A\rangle_{i}(\psi^{*_{i}} \odot_{i} \phi^{*_{i}}) \geq \phi^{*_{i}} \odot_{i} \psi^{*_{i}}$

 \triangleright *i*-Church-Rosser filler for (ϕ, ψ) if

 $|A\rangle_j(\psi^{*_i} \odot_i \varphi^{*_i}) \ge (\psi + \varphi)^{*_i}$

Completion fillers

► Coherent proofs are obtained using completion by fillers.

▶ Completion of an *i*-confluence filler A of a pair (ϕ, ψ) in K_j :

▷ The *j*-dimensional *i*-whiskering of A

 $(\phi + \psi)^{*_i} \odot_i A \odot_i (\phi + \psi)^{*_i} \in K$

▷ The *i*-whiskered *j*-completion of *A*, denoted by \hat{A}^{*j} , is $\left((\phi + \psi)^{*j} \odot_i A \odot_i (\phi + \psi)^{*j}\right)^{*j} \in K$ **Theorem A.** (Calk-Goubault-M.-Struth, 2023) Let K be an n-gMKA and $0 \le i < j < n$. Let $\varphi, \psi \in K_j$. If A is an i-confluence filler of (φ, ψ) , then

 $|\hat{A}^{*_{j}}\rangle_{j}(\psi^{*_{i}}\odot_{i}\phi^{*_{i}}) \ge (\phi+\psi)^{*_{i}},$

that is, the completion \hat{A}^{*_j} is an i-Church-Rosser filler for (ϕ, ψ) .

Theorem B. (Calk-Goubault-M.-Struth, 2023) Let K be a Boolean n-gMKA, and $0 \le i < j < n$, such that \triangleright (K_i , +, 0, \odot_i , 1_i, \neg_i) is a complete Boolean algebra, \triangleright K_j is *i*-continuous. Let $\psi \in K_j$ be *i*-Noetherian and $\varphi \in K_j$ *i*-well-founded. If A is a local *i*-confluence filler for (φ, ψ), then

 $|\hat{A}^{*_{j}}\rangle_{j}(\psi^{*_{i}}\odot_{i}\phi^{*_{i}}) \geqslant \phi^{*_{i}}\odot_{i}\psi^{*_{i}},$

that is, the completion \hat{A}^{*j} is a confluence filler for (ϕ, ψ) .

Polygraphic model of higher Kleene algebras

▶ Let (X, Γ) be an (n + 1, n - 1)-polygraph.

▶ Define $K(X, \Gamma)$ the full path (n+1)-MKA:

 $K(X) := \mathcal{P}(X_{n-1}^*(X_n)[\Gamma]),$

▷ Composition of A and B in K(X):

$$A \odot_i B := \{ \alpha \star_i \beta \mid \alpha \in A \land \beta \in B \land t_i(\alpha) = s_i(\beta) \}.$$

▶ Unit for \odot_i

$$\mathbb{1}_{i} = \{\iota_{i}^{n+1}(u) \mid u \in X_{n-1}^{*}(X_{n})[\Gamma]_{i}\}.$$

 \triangleright Addition is the set union \cup , and the ordering is the set inclusion.

▷ *i*-domain and *i*-codomain maps:

 $d_i(A) := \{\iota_i^{n+1}(s_i(\alpha)) \mid \alpha \in A\}, \qquad r_i(A) := \{\iota_i^{n+1}(t_i(\alpha)) \mid \alpha \in A\}.$

 $\label{eq:antidomain and i-anticodomain maps:} ad_i(A) := \mathbbm{1}_i \setminus \big\{ \iota_i^{n+1}(s_i(\alpha)) \mid \alpha \in A \big\}, \qquad ar_i(A) := \mathbbm{1}_i \setminus \big\{ \iota_i^{n+1}(t_i(\alpha)) \mid \alpha \in A \big\}.$

▷ The *i*-star is $A^{*_i} = \bigcup_{k \in \mathbb{N}} A^{k_i}$, with $A^{0_i} := \mathbb{1}_i$ and $A^{k_i} := A \odot_i A^{(k-1)_i}$.

Proposition.

```
K(X, \Gamma) is a Boolean (n + 1)-gMKA.
```

Theorem. (Calk-Goubault-M.-Struth, 2023)

Theorems A & B in the polygraphic model give polygraphic coherent Church-Rosser and Newman filler results.

Conclusion: IV. Work in progress

Three lines of research

- ◀ 1 ► Algebraic formulation of normalisation strategies.
 - Normalisation strategies give constructive proofs of acyclicity in polygraphs (Guiraud-M., 2012).
 - In low dimension, Squier's theorem for ARS using normalisation strategies in MKA (Calk-Goubault-M., 2021).
 - \triangleright Higher normalisation strategies in ω -quantales (M.-Struth, work in progress).
- Algebraic formulation of cubical polygraphic resolutions (M.-Massacrier-Struth, work in progress).
 - Cubical description of confluence properties.
 - ▷ Functional definition of cubical categories and normalisation strategies.

◄ 3 ► Polygraphic resolutions for algebraic polygraphs (cartesian, linear, algebraic over an operad...), (Dabrowski-M.-Ren, work in progress).

- ▷ Formalisation of the coherent critical branching lemma (strings, terms, terms modulo).
- ▷ (Algebraically enriched) *n*-gMKA.

References

Syzygies and rewriting.

▷ D. Hilbert, Ueber die Theorie der algebraischen Formen, Math. Ann., 36(4), 473–534.1890.

▷ A. Church, J. B. Rosser, *Some Properties of Conversion*, Trans. Am. Math. Soc., 39(3), 472–482, 1936.

▷ M. Newman. On theories with a combinatorial definition of "equivalence". Ann. of Math., 43(2):223–243, 1942.

C. C. Squier, F. Otto, Y. Kobayashi. A finiteness condition for rewriting systems. Theoret. Comput. Sci., 131(2):271–294, 1994.

Polygraphs and polygraphic resolutions.

▷ A. Burroni, *Higher-dimensional word problems with applications to equational logic*, Theoret. Comput. Sci., 115(1), 43–62, 1993.

▷ F. Métayer, *Resolutions by polygraphs*, Theory Appl. Categ., 11(7), 148–184, 2003.

▷ Y. Lafont, F. Métayer, *Polygraphic resolutions and homology of monoids*, J. Pure Appl. Algebra, 213(6), 947–968, 2009.

▷ Y. Guiraud, P. Malbos, *Higher-dimensional normalisation strategies for acyclicity*, Adv. Math., 231(3–4), 2294–2351, 2012.

References

Rewriting and modal Kleene algebras.

▷ G. Struth, Abstract abstract reduction, J. Log. Algebr. Program., 66(2):239–270, 2006.

▷ J.Desharnais, B.Möller, G.Struth. *Kleene algebra with domain*, ACM Trans. Comput. Log, 7(4):798–833, 2006.

▷ J. Desharnais, B. Möller, G. Struth. *Algebraic notions of termination*, Log. Methods Comput. Sci., 7(1), 2011.

▷ J. Desharnais, G. Struth. Internal axioms for domain semirings, Sci. Comput. Program, 76(3):181–203, 2011.

Abstract coherence and all that...

C. Calk, E. Goubault, P. Malbos, G. Struth, Algebraic coherent confluence and higher globular Kleene algebras, Log. Methods Comput. Sci., 18(4), 9:1–9:43, 2022.

▷ C. Calk, E. Goubault, P. Malbos, Abstract strategies and coherence, RAMICS 2021, Lect. Notes Comput. Sci., Springer, Vol. 13027, pp. 108-125, 2021.

▷ C. Calk, P. Malbos, D. Pous, G. Struth, *Higher catoids, higher quantales and their correspondances*, preprint 2023.

▷ P. Malbos, T. Massacrier, G. Struth, *Abstract cubes and normalisation strategies*, forthcoming.