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Motivations:
syzygies, coherence and resolutions



From syzygies to resolutions

▶ Syzygies are relations between generators of a module.

▶ Let M be a finitely generated R-module, and a set of generators:

Y = { y1, . . . , yk }

▷ a syzygy of M is an element (λ1, ...,λk) in Rk connecting generators:

λ1y1 + . . .+ λkyk = 0

▶ The set of all syzygies wrt Y forms a submodule of Rn: the module of 1st syzygies.

▶ For n ⩾ 2, the nth syzygy module is the module of all syzygies of the (n− 1)th syzygy
module.

Theorem. (Hilbert’s Syzygy Theorem, 1890)
If M is a finitely generated module over the polynomial ring K[x1, . . . , xn], then the
nth syzygy module of M is a always a free module.

▶ F.-O. Schreyer, 1980 : computation of syzygies by means of the division algorithm.
▷ Buchberger’s completion algorithm computes Gröbner bases.
▷ The reduction to zero of a S-polynomial in a Gröbner basis gives a syzygy.



Syzygies by rewriting and coherence

▶ Squier’s machinery (Squier, 1994)
▷ Let X = (X1,X2) be a convergent string rewriting systems.
▷ Family of generating confluences

cg(X) :=
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Theorem. (Squier, 1994)
Any two parallel zig-zag rewriting sequences (f , g) can be filled by pasting of these
generating confluences:
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▷ cg(X) is an acyclic extension of the free (2, 1)-category X⊤
2 .

▷ (X1,X2, cg(X)) is a coherent presentation of the monoid X ∗
1 /X2.

▶ Homotopical completion-reduction procedure to compute coherent presentations
(Guiraud-M.-Mimram, 2013).



Coherent presentations: examples

▶ The Artin monoid B+
3 of braids on three strands.

s = t = =

▶ Artin presentation of B+
3

Art2(B+
3 ) =

〈
s, t

∣∣ tst = sts
〉

▶ We prove that there is no syzygy between relations induced by tst = sts.

With presentation Art2(B+
3 )

two proofs of the same equality in B+
3

are equal.



Coherent presentations: examples

▶ The Artin monoid B+
4 of braids on four strands.

r = s = t =

▶ Artin presentation of B+
4

Art2(B+
4 ) =

〈
r , s, t

∣∣ rsr = srs, rt = tr , tst = sts
〉

= = =

▶ The syzygies of the braid relations on four strands are generated by the Zamolodchikov
relation (Deligne, 1997).

stsrst strsrt srtstr

Zr ,s,t

srstsr rsrtsr

tstrst rstrsr

tsrtst tsrsts trsrts rtstrs rstsrs

▶ The Artin monoid B+(W) on a Coxeter group W with Garside’s presentation,
(Gaussent-Guiraud-M., 2015)



Higher order syzygies

▶ Higher order syzygies are relations between relations between relations, and so on.

▶ Higher order syzygy problem for a 1-category C (or a p-category)

Problem.
▷ Given a presentation of C by generators and relations.
▷ We would like to build a (small !) cofibrant approximation of C in

the category of ω-categories (or (ω, 1)-categories).

▶ That is, a free ω-category homotopically equivalent to C.

▶ Squier’s machinery extends to higher dimensions.

▷ Solution in (ω, 1)-categories (Guiraud-M., 2012).
▷ Still an open problem in ω-categories.



Polygraphic resolutions

▶ An n-polygraph is a sequence

X = (X0,X1, . . . ,Xn)

constructed by induction
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▶ An ω-functor p : C → D is an acyclic fibration if
▷ p0 : C0 → D0 is onto,
▷ p has the lifting property:

∀x ||y ∈ Ci , pi(x)
∀ v−→ pi(y) ∈ Di+1, x

∃ u−→ y ∈ Ci+1
∣∣ pi+1(u) = v

·

∀x
$$

∀y

:: ·∃u��
p→ ·

pi(x)

$$

pi(y)

:: ·∀v��

▶ A polygraphic resolution of an ω-category C is an acyclic fibration

p : X ∗ → C

where X ∗ is a free ω-category on an ω-polygraph X .



Algebraic formulation problems on polygraphic resolutions

Problem.
How can polygraphic resolutions be algebraically formulated?
With a view to formalization in proof assistants?

Issues.

◀ 1 ▶ Algebraic formulation of the structure of polygraphs (higher dimensional rewriting):

▷ Abstraction of shapes: globular, cubical, simplicial...
▷ Homotopical properties: acyclicity, contracting homotopies, normalisation strategies...

◀ 2 ▶ Algebraic formulation of the calculation machinery of syzygies by rewriting.

▷ Abstraction of diagrammatic reasoning: confluence, termination...
▷ Church-Rosser, Newman, and Squier machineries...

◀ 3 ▶ The formalisation in proof assistants.

▷ Isabelle... see Georg Struth’s talk tomorrow morning.



I. Calculating confluence proofs
in modal Kleene algebras



Church-Rosser Theorem (diagrammatic formulation)

▶ An abstract rewriting system is a 1-polygraph (X0,X1)

▷ It is confluent if
·

∀f ∈ X ∗
1

��

∀g ∈ X ∗
1

��
·

∃f ′ ∈ X ∗
1 ��

·

∃g ′ ∈ X ∗
1��

·

▷ It has the Church-Rosser property if
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1 ��

oo
∀h ∈ X⊤

1
// ·

∃k ′ ∈ X ∗
1��

·

Theorem. (Church-Rosser, 1936)
A 1-polygraph is confluent if and only if it is Church-Rosser.

Theorem. (Newman, 1942)
A terminating 1-polygraph is confluent if and only if it is locally confluent.



Church-Rosser Theorem (algebraic formulation)

▶ A Kleene algebra is a dioid (idempotent semiring) (K ,+, 0, ·, 1) equipped with a Kleene
star operation (−)∗ : K → K satisfying unfold and induction axioms.

▶ The path Kleene algebra on a 1-polygraph X is the structure

K(X) := (P(X ∗
1 ),∪,⊙,∅,1, (−)∗).

▷ Composition of φ and ψ in P(X ∗
1 ):

φ⊙ψ := { u ⋆0 v | u ∈ φ ∧ v ∈ ψ ∧ t0(u) = s0(v) }.

▷ 1 is the set of all identity arrows of X .
▷ The operation (−)∗ is defined by φ∗ =

⋃
i∈Nφ

i , with φ0 = 1 and φi+1 = φ⊙φi .

Theorem. (Church-Rosser Theorem à la Struth, 2002)
For all x , y in a Kleene algebra

y∗x∗ ⩽ x∗y∗ ⇔ (x + y)∗ ⩽ x∗y∗.
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Newman’s Theorem (algebraic formulation)

▶ Algebraic notion of termination (Desharnais-Möller-Struth, 2011).

▷ Modal Kleene algebra tests.

Theorem. (Desharnais-Möller-Struth, 2004)
In a modal Kleene algebra K with complete test algebra, if x + y is Noetherian, then

⟨y ||x⟩ ⩽ |x∗⟩⟨y∗| ⇔ ⟨y∗||x∗⟩ ⩽ |x∗⟩⟨y∗|.
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Objective. To give a coherent formulation of these two algebraic results for higher
dimensional rewriting systems.



II. Coherence by rewriting



Polygraphs

▶ Consider an n-polygraph X = (X0,X1, . . . ,Xn)
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▶ It induces an ARS on the free (n− 1)-category X ∗
n−1, whose rules are

C [sn−1(α)
C [α]
// C [tn−1]

with sn−1
α→ tn−1 an n-generator in Xn and C a context:

C [□] = fn ⋆n−1 (fn−1 ⋆n−2 · · · (f1 ⋆0 □ ⋆0 g1) · · · ⋆n−2 gn−1) ⋆n−1 gn,

where fk and gk are identities k-cells.

▶ We extend the (abstract) rewriting properties on X :

termination / confluence / locally confluence / convergence.



Squier’s completion

▶ Let X be a convergent n-polygraph.

▶ A family of generating confluences of X is a cellular extension of the (n, n− 1)-category
X⊤
n that contains exactly one (n+ 1)-cell
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for every critical branching (α,β) of X .

▶ A Squier’s completion of X is a (n+ 1, n− 1)-polygraph
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where S(X) is a chosen family of generating confluences of X



Squier’s completion and finite derivation type

Theorem. (Guiraud-M. 2009)
If X is convergent, then the Squier completion S(X) is acyclic.
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▶ The proof relies on the following two coherent confluent results:

▷ Coherent Newman’s lemma.
▷ Coherent Church-Rosser theorem.



Coherent confluence

▶ Let Γ be a cellular extension of X⊤
n .

▶ Consider the free (n+ 1)-category X⊤
n [Γ ] with invertible k-cells only for k = n.

▶ Γ is a confluence filler of a branching
·
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▶ Γ is a confluence filler of an n-cell f in X⊤
n

if there exist n-cells h, k in X ∗
n and an (n+ 1)-cell α in X⊤

n [Γ ] of the shape:
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Coherent confluence

Theorem. (Coherent Church-Rosser filler lemma)

Let X be an n-polygraph, and Γ a cellular extension of X⊤
n . Then(

Γ is a confluence filler of X
)

⇔
(
Γ is a Church-Rosser filler of X

)
Proof.

· oo ∗⊤
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Theorem. (Coherent Newman filler lemma)

Let X be a terminating n-polygraph, and Γ a cellular extension of X⊤
n . Then(

Γ is a local confluence filler of X
)

⇔
(
Γ is a confluence filler of X

)
Proof.
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III. Calculating coherent proofs
in higher modal Kleene algebras



Higher dioids

▶ The domain algebra of the path Kleene algebra K(X) on a 1-polygraph X forms a bounded
distributive lattice.

▶ A 0-dioid is a bounded distributive lattice:

▶ A 1-dioid is a dioid (S,+, 0,⊙, 1).

▶ For n ⩾ 1, an n-dioid is a structure (S,+, 0,⊙i , 1i)0⩽i<n such that

▷ (S,+, 0,⊙i , 1i) is a dioid for 0 ⩽ i < n,

▷ The lax interchange laws hold, for all 0 ⩽ i < j < n,

(x ⊙j x
′)⊙i (y ⊙j y

′) ⩽ (x ⊙i y)⊙j (x
′ ⊙i y

′),

▷ Higher units are idempotents of lower multiplications, for all 0 ⩽ i < j < n,

1j ⊙i 1j = 1j .



Higher modal semirings

▶ An antidomain 0-semiring is a 0-dioid.

▶ For n ⩾ 1, an antidomain n-semiring is an n-dioid (S ,+, 0,⊙i , 1i)i equipped with
antidomain maps (ad i : S → S)0⩽i<n such that

▷ (S,+, 0,⊙i , 1i , ad i) is an antidomain semiring:

ad i(x)x = 0, ad i(xy) ⩽ ad i(x ad2(y)), ad2
i (x) + ad i(x) = 1.

▷ ad i+1 ◦ ad i = ad i .

▶ An anticodomain n-semiring is an n-dioid S such that (Sop
i )0⩽i<n is a antidomain

n-semiring. Denote (ar i : S → S)0⩽i<n the codomain operators.

▶ A Boolean modal n-semiring is an antidomain n-semiring that is also an anticodomain
n-semiring for n ⩾ 1, and a Boolean algebra for n = 0.

▶ Note that, setting di := ad2
i and ri := ar2

i , we recover a domain and codomain n-semirings.



Modal n-Kleene algebra

▶ An n-Kleene algebra (n-KA) is an n-dioid K equipped with operations (−)∗i : K → K

such that

▷ (K ,+, 0,⊙i , 1i , (−)∗i ) is a KA for 0 ⩽ i < n,

▷ For 0 ⩽ i < j < n, the operation (−)∗j is a lax morphism wrt i-whiskering of
j-dimensional elements:

φ⊙i A
∗j ⩽ (φ⊙i A)

∗j A∗j ⊙i φ ⩽ (A⊙i φ)∗j

for all A ∈ K , φ ∈ Kj .

▶ A modal n-Kleene algebra (n-MKA) is an n-KA that is a modal n-semiring (domain and
codomain semiring).

▶ A Boolean n-MKA is an n-KA that is a Boolean modal n-semiring.



Globular Kleene algebras

▶ An n-MKA K is globular (n-gMKA) if the globular relations hold for 0 ⩽ i < j < n:

di ◦ dj = di , di ◦ rj = di , ri ◦ dj = ri , ri ◦ rj = ri ,

dj(A⊙i B) = dj(A)⊙i dj(B), rj(A⊙i B) = rj(A)⊙i rj(B).

▶ An element A in K is a collection of cells, and for i < j :

di(A)

dj(A)

��

rj(A)

@@
ri(A)A

��

▷ dk(A) is the set of k-cells that are k-sources of some cells belonging to A.
▷ rk(A) is the set of k-cells that are k-targets of some cells belonging to A.

▶ The right and left i-whiskering of A ∈ K by φ ∈ Kj is

A⊙i φ and φ⊙i A



Confluence fillers

▶ Let K be an n-gMKA and 0 ⩽ j < n.

▶ Define the forward j-diamond operators, for all A ∈ K and φ ∈ Kj ,

|A⟩j(φ) := dj(A⊙j φ).

▶ Thus, for A ∈ K and φ,ψ ∈ Kj , we have

|A⟩j(φ) ⩾ ψ iff dj(A⊙j φ) ⩾ ψ.

▷ In the polygraphic model:

∀u ∈ ψ, ∃v ∈ φ and ∃α ∈ A such that sj(α) = u and tj(α) = v .

|A⟩j(φ) ⩾ ψ •

∀u ∈ ψ

!!

∃v ∈ φ

<< •∃α ∈ A
��



Confluence fillers

▶ Let 0 ⩽ i < j < n, and φ,ψ in Kj . An element A in K is a
▷ local i-confluence filler for (φ,ψ) if

|A⟩j(ψ∗i ⊙i φ
∗i ) ⩾φ⊙i ψ

φ

yy

ψ

%%A��

ψ∗i %% φ∗iyy

▷ i-confluence filler for (φ,ψ) if

|A⟩j(ψ∗i ⊙i φ
∗i ) ⩾φ∗i ⊙i ψ

∗i

φ∗i

yy

ψ∗i

%%A��

ψ∗i %% φ∗iyy

▷ i-Church-Rosser filler for (φ,ψ) if

|A⟩j(ψ∗i ⊙i φ
∗i ) ⩾ (ψ+φ)∗i

(φ+ψ)∗i
//

ψ∗i
��

φ∗i
��

A
��

▶ Note that (ψ+φ)∗i ⩾φ∗i ⊙i ψ
∗i ⩾φ⊙i ψ.



Completion fillers

▶ Coherent proofs are obtained using completion by fillers.

▶ Completion of an i-confluence filler A of a pair (φ,ψ) in Kj :

▷ The j-dimensional i-whiskering of A

(φ+ψ)∗i ⊙i A⊙i (φ+ψ)∗i ∈ K

▷ The i-whiskered j-completion of A, denoted by Â∗j , is(
(φ+ψ)∗i ⊙i A⊙i (φ+ψ)∗i

)∗j ∈ K



Coherent Church-Rosser and Newman in globular MKA

Theorem A. (Calk-Goubault-M.-Struth, 2023)
Let K be an n-gMKA and 0 ⩽ i < j < n.
Let φ,ψ ∈ Kj .
If A is an i-confluence filler of (φ,ψ), then

|Â∗j ⟩j(ψ∗i ⊙i φ
∗i ) ⩾ (φ+ψ)∗i ,

that is, the completion Â∗j is an i-Church-Rosser filler for (φ,ψ).

Theorem B. (Calk-Goubault-M.-Struth, 2023)
Let K be a Boolean n-gMKA, and 0 ⩽ i < j < n, such that

▷ (Ki ,+, 0,⊙i , 1i ,¬i) is a complete Boolean algebra,
▷ Kj is i-continuous.

Let ψ ∈ Kj be i-Noetherian and φ ∈ Kj i-well-founded.
If A is a local i-confluence filler for (φ,ψ), then

|Â∗j ⟩j(ψ∗i ⊙i φ
∗i ) ⩾φ∗i ⊙i ψ

∗i ,

that is, the completion Â∗j is a confluence filler for (φ,ψ).



Polygraphic model of higher Kleene algebras

▶ Let (X , Γ) be an (n+ 1, n− 1)-polygraph.

▶ Define K(X , Γ) the full path (n+ 1)-MKA:

K(X) := P
(
X ∗
n−1(Xn)[Γ ]

)
,

▷ Composition of A and B in K(X):

A⊙i B :=
{
α ⋆i β | α ∈ A∧ β ∈ B ∧ ti(α) = si(β)

}
.

▷ Unit for ⊙i

1i =
{
ιn+1
i (u) | u ∈ X ∗

n−1(Xn)[Γ ]i
}
.

▷ Addition is the set union ∪, and the ordering is the set inclusion.

▷ i-domain and i-codomain maps:

di(A) :=
{
ιn+1
i (si(α)) | α ∈ A

}
, ri(A) :=

{
ιn+1
i (ti(α)) | α ∈ A

}
.

▷ i-antidomain and i-anticodomain maps:

ad i(A) := 1i \
{
ιn+1
i (si(α)) | α ∈ A

}
, ar i(A) := 1i \

{
ιn+1
i (ti(α)) | α ∈ A

}
.

▷ The i-star is A∗i =
⋃

k∈N Aki , with A0i := 1i and Aki := A⊙i A
(k−1)i .



Polygraphic model of higher Kleene algebras

Proposition.
K(X , Γ) is a Boolean (n+ 1)-gMKA.

Theorem. (Calk-Goubault-M.-Struth, 2023)
Theorems A & B in the polygraphic model give polygraphic coherent Church-Rosser
and Newman filler results.



Conclusion:
IV. Work in progress



Three lines of research

◀ 1 ▶ Algebraic formulation of normalisation strategies.

▷ Normalisation strategies give constructive proofs of acyclicity in polygraphs
(Guiraud-M., 2012).

▷ In low dimension, Squier’s theorem for ARS using normalisation strategies in MKA
(Calk-Goubault-M., 2021).

▷ Higher normalisation strategies in ω-quantales (M.-Struth, work in progress).

◀ 2 ▶ Algebraic formulation of cubical polygraphic resolutions
(M.-Massacrier-Struth, work in progress).

▷ Cubical description of confluence properties.
▷ Functional definition of cubical categories and normalisation strategies.

◀ 3 ▶ Polygraphic resolutions for algebraic polygraphs (cartesian, linear, algebraic over an
operad...), (Dabrowski-M.-Ren, work in progress).

▷ Formalisation of the coherent critical branching lemma (strings, terms, terms modulo).
▷ (Algebraically enriched) n-gMKA.
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