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Objective. Compute homological invariants of the algebra A:

> homology, Poincaré-Betti series, ...
> homological properties : Koszul property for homogeneous algebras, ...

Applications.
> Non-commutative algebraic geometry (Artin-Schelter algebras, ... )
> Theoretical physics (Yang-Mills algebras, Calabi-Yau algebras, ...)
> Combinatorial algebras, ...
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» Given an algebra A
> Compute a free resolution for A, that is a sequence

671 60 6,—,71 5n
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where
> the A[X,] are free A-modules,
> the maps &, are morphisms of A-modules satisfying

Im &, = Ker 6,1, forall n>0.

» The homology of A is a sequence of vector spaces (H,,(A, K) )neN defined as follows
> From the above resolution, we compute the sequence of maps
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> We have
IIII(&,, [ |dK) C Ker(én,l XA |dK)

> The nth homology space of A is defined by
Hn(AK) = Ker(8,-1 ®a ldg) /Im (8, ®a Idx)
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» Consider a homogeneous algebras A (eg. quadratic algebras, xy = x2 + zy, ...)
> The algebra A is naturally graded:
A=A DA DA2DAS DAL D - DAL DA 1D~

Ap=K>1, A;=KX)3x,y,x+y, Az>x%x2+y2 ..

> This induces a graduation on the vectors spaces H, (A, K)
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plo oo oce o

Ho(A,K) Hi(AK) H2(AK) H;3(AK) Ha(AK)

» The algebra A is Koszul when the H,(A,K) are "concentrated on the diagonal".

Objective.
Describe the vector spaces H, (A, K) in term of n-fold critical branching.
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» Linear polygraphs
> Higher-dimensional rewriting systems for algebras or operads.
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» A (monic) rule is a 2-cell of the form

/.\ where
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where
> Ais in K—{0} and my, my are non-zero monomials, g is a polynomial,
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» Note that, if o : m = his a rule,
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Example. xyz
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» A rewriting sequence is a finite or an infinite sequence of rewriting steps

A h == o ==

» The linear rewriting system terminates when it has no infinite rewriting sequence.

» A branching is a pair of rewriting sequences with a common source:

> It is confluent if there exist rewriting sequences o’ and 3/ with a common target.

» The linear rewriting system is convergent when it terminates and all of its branchings are
confluent.
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» A linear rewriting system forms a linear 2-polygraph, that is a data (Xo, X1, X2)
where
> (X, X1) is a directed graph,

> X is a linear cellular extension of the free algebra X§,
— that is a family of globular 2-cells

» We will denote a polygraph as a diagram:
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» Several compositions of rewriting 2-cells:
> the sequential composition « x;1 3 of rewriting steps is associative and unitary

\V/‘ \//‘

and compatible with the sequential composition (exchange relations)
oavx U B =up x1 v’

/>
\,
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» The linear structure on 1-cells induces a linear structure on 2-cells

u u’ Au+ pu’
RS Y
SOOI R

Av+ pv’
> compatible with composition maps ¢ and xi:
+B') = axoa’ +xko B + xxo B’ + B Ko B’

(x+B)*o ('
(x+B)*1 (o' +B') = aws o/ +Bx1 B’
(acx) % B =a*; (aB) = aloc*; B), fori=0,1and ain K

» This forms a 2-algebroid.
» Will denote by Z$ the free 2-algebroid generated by the linear 2-polygraph (Zo, X1, Z2)
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Aim.
> Starting with a presentation of an algebra A by a linear 2-polygraph, we would like to
compute a small categorical globular model for A.

Method.
> Complete the presentation in a convergent presentation (Knuth-Bendix completion).

> Extend this presentation into an acyclic higher-dimensional polygraph.

> Apply homotopical reduction in order to obtain a smaller model.
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Polygraphic resolutions

» A polygraphic resolution of an algebra A is a linear higher-dimensional polygraph

X0,51,%2,%3, ..., X, ...
such that ( o T En s " )
> the linear 2-polygraph (Zo, X1, X2) is a presentation of A,

> it is acyclic.
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» Suppose that (X, X1, X2) is a reduced convergent 2-polygraph. Consider the rightmost
reduction strategy p.

> Any critical branching has the following shape:

my
./’"l\“ M, with o in .

> We consider the linear cellular extension X3 of 5 made of one 3-cell

mym Mwb m for every critical branching b.
Pmym
Proposition. The following linear 3-polygraph is acyclic
Zo pi

PR b3
N I N I 52
t t t
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Example.
Alx,y,z | xyz=x3+y>+2%)

» A trivially convergent (no critical branching) of A:

XxXyz % X3+y3+z3.

» The following linear 3-polygraph is acyclic
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Example.
A(x,y,z | x>+yz=0, x> +azy=0) with 2 € K

> The algebra A is presented by the linear 2-polygraph

o B, 1 Y 5.1
yZ = _x2 zy:>7;)<2 yx2 = ax?y 2 — 5)(22
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Computation of resolution in dimension 3 : example

Example.
A(x,y,z | x>+yz=0, x> +azy=0) with 2 € K

> The algebra A is presented by the linear 2-polygraph

B Y 5
yz£“>,x2 zy — —Zx yx? = ax?y P

1
a

S~ ey

» The following linear 3-polygraph is acyclic
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» A 3-fold branching is an overlapping of three rewriting steps:
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Theorem. (G.-H.-M., 2014)
Any convergent linear 2-polygraph (Zg, X1, Z2) extends to an acyclic
linear co-polygraph X

NSNS INOSIN

whose n-cells are indexed by the critical (n — 1)-fold branchings.
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A free modules resolution

Theorem. (G.-H.-M., 2014)
> Let A be an algebra.
> Let X be a polygraphic resolution of A.

The complex of A-modules

08 & o
0+— A ¢ A[So] &% A1) ... ¢ Al5] &5 AlTipq] +— ...

> where A[X,] is the free A-module on X,
> the maps &) are defined by

S1(u®v) = uv, Slfl = s, (F)] — [t (F)].
is exact, that is
Im &, = Ker 6,1, forall n>0.
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Koszul algebras

Definition. (Berger 2001) A N-homogeneous algebra, with N > 1 is Koszul if
HY(AK) =0, fori#ty(n),

where
> n refers to the homological degree and (i) refers to the length grading,
> ¢y is the weight function defined by:

e | if n=2l,
NI VIv 1 ifn=2111.

"l1 2 3 4 5 6 7
N
2 1 2 3 4 5 6 7
3 1 3 6 7 9 10
4 1 5 8 9 12 13

Theorem. (G.-H.-M., 2014)

A N-homogeneous algebra having a polygraphic resolution {p-concentrated is Koszul.
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Example. The algebra
Alx,y,z | xyz=x3+y>+2%)

is Koszul.

Xyz % X3+y3+z3

» The following linear 3-polygraph is acyclic

(o} {x.y, 2} =—— ()’
= ]S TN
t1 t2
{x,y, 2z} {o}
> The homology of A
3 0 0 0 0
2 0 0 K 0
1 0 K3 0 0
0 K 0 0 0
k  Ho(AK) Hi(AK) Hx(AK) HsAK)



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)

> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1
> The algebra A is presented by the linear 2-polygraph
B, 1 Y 5.1
yz =5 2 7= % e = axly 22 = Xz

1, 14

G
>

"

e
N

Yz



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)

> A Koszul algebra that has no quadratic convergent presentation:

A(x,y z | x2+yz:0, x2+azy:0)

> The algebra A is presented by the linear 2-polygraph

B

X
¥z = _x2 zy — —
L 2 1>
% a”" % Pl
lv 5
74 —_ zyz -
yzy AL 2 Y- B
X —x%y Zx — 2x?
7x2yz
xyz
yzyz yBz——=> byx?z
yzx

— yzx®

with a #£ 0,1
1 Y 5. 1
= x? 2 = ax®y =2 = gxzz
1
% B ;X4 % % - L
2 2
2 2 yzx \ Pyz
Zyx\\,\ i \ i /
2 / s> 2,71
zy azx®y = ady y Sz Svz



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1

> The algebra A is presented by the linear 2-polygraph

yz%_XZ zy — —

2 2
2 / \ 1 /
ed - Xy e - X azxzy ady yd *yxzz l’Yz
a
a
— x%yz
xyz ™ —x2a
byz
I —D1
Az 5
yzyz ——y pz—— byx’z 4



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1

> The algebra A is presented by the linear 2-polygraph

yz%_XZ zy — —

1 1
% - ‘5/ - B/ - &B %' —x %
1 2 2
\A ' ﬂav i Nwé £ X zy I X -
2 / \ 1 /
&y Xy & - X azx®y = aby o ;yx2z le
a
— x%yz
2
oyz A —x*x ayz_s —xPyz ——xPa
byz / \
A I —D1
yZyz ——=ypz—= byx*z 4 yzyz = x4
B /H—yé }’Z\ —yzx? 4
yzZ& ~ o



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1

> The algebra A is presented by the linear 2-polygraph

yz%_XZ zy — —

1 1
% - %f;x% B/ *;X‘% %' fx“%
711/ zyz -5 2 2 yzx? \ x2yz
\Al a > - G e b
2 / \ 1 /
&y Xy & - X azx®y = aby o ;yx2z le
a
— x%yz
2
xyz ’ﬂ‘ X« xyz 7x2yz X«
byz
H o / \
y2yz ——=ypz—=) byx’z 4 = Yavz = x*
B /H—yé VZX —yzx? 4
yzo ~ o



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z|x2+yz:0,x2+azy:0) with a £ 0,1

> The algebra A is presented by the linear 2-polygraph

yz%_XZ zy — —

—x%yz
xyz M —x2u
byz
I —D1
yzyz y ﬁz:> byxzz 4 % yzyz




Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z|x2+yz:0,x2+azy:0) with a £ 0,1

> The algebra A is presented by the linear 2-polygraph

yz%_)g zy:[3>_§x2

N
y? = ax’y

— x%yz
xyz —x2
Y b/@\z x“ o ayz —Pyz
I —D1
yzyz ypz——> byx2 z 4 :: yzyz
—yd ﬂ\
yza B /H ~ a2



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1

> The algebra A is presented by the linear 2-polygraph

X
¥z = _x2
1 2
% e ﬁ/z
yzy zyz




Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1

> The algebra A is presented by the linear 2-polygraph

B, 1 Y 3
yz%_XZ Zy:>—3x2 2 2 2x “ 2z

1 2
% -
yzy Z
S e

yz yx2

1
B —=x?z
a
z
X —zx?



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1

» From the polygraphic resolution

{o} {x,y, 2} E&—— {«, B} § {o} ¢

S

{x.y. 2z} {o, B}



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1

» From the polygraphic resolution

{o} {x,y,2}" :{tx B¢ {o} ¢
by (a m\

> we deduce that the algebra A is Koszul,



Example

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no quadratic convergent presentation:

A(x,y,z\x2+yz:0,x2+azy:0) with a £ 0,1

» From the polygraphic resolution

{e} {x,y, 2} E&—— {«, B} § {0} ¢
by (a m\

> we deduce that the algebra A is Koszul,
> the homology of A

4 0 0
3 0 0 0 0
2 0 0 K2 0
1 0 K3 0 0
0 K 0 0 0
k  Ho(AK) H;(AK) Hy(AK) Hs(AK)






Example

Example.
Alx,y | X =y*=xy),

> Consider the presentation by the 2-polygraph

xy%xz, )’2:B>x2

> There are two critical pairs

d x ¥ vﬂ
%xzy/x“i <P

> We obtain a convergent 2-polygraph by adding the rule

v
w2 = X3



Example

» The following 3-cells form an homotopy basis:

nyz @ X4 y2 x2 MD




Example

» The following 3-cells form an homotopy basis:

nyzﬁ 4 y2x? MD
A

» There are seven critical triples on the following 1-cells:

Py, xy?xP xyd Py, APy, vyt

i



Example

» The following 3-cells form an homotopy basis:

nyz T 4 y2x? MD
A

» There are seven critical triples on the following 1-cells:
3

Py, xy?xP xyd Py, APy, vyt

> Only the 4-cell on 3th or 7th 1-cells could relate the 3-cells C, D and E without
whisker in term of A and B.
> It is not enough to eliminate the 3-cells C, D and E, hence A is not Koszul.



Example

» The following 3-cells form an homotopy basis:

ox
m 2.2
XY

» Note that

4 0 0 K
3 0 0 0 K
2 0 0 K2 0
1 0 K2 0 0
0 K 0 0 0
k Ho(AK) H;(AK) Ho(AK) Hs(AK)



