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Rewriting

» Rewriting arises in a variety of situations in Computer Science:
> theory of programming languages: analysis, verification, optimisation,

> Automated theorem proving.

» ... and in Algebra:
> decision procedures for word problems in universal algebras,
> in Computer Algebra: bases, syzygies, homology groups, Hilbert series, Koszulness,

> Algebraic Coherence.



I. Equivalence Problem



Thue

Axel Thue, Probleme iiber Verdnderungen von Zeichenreihen
nach gegebenen Regeln, Christiana Videnskabs-Selskabs Skrifter,
. Math.-naturv. Klasse, 1914.

A. Thue (1863-1922)

» The notion of rewriting system was introduced by Thue when he considered systems of
transformation rules for combinatorial objects such as strings, trees or graphs:

» He considered a system consisting of pairs of corresponding strings over a fixed alphabet:

A1, A, Az, ... A,
Bi, B>, B3, ... , B,

Thue Problem.
Given two arbitrary strings P and Q, can we get one from the other by replacing some
substring A; or B; by its corresponding string?



Church-Rosser

Alonzo Church, J. Barkley Rosser, Some properties of conversion,
Transactions of the AMS, 1936.

» Theory of reduction relations.

A. Church (1903-1995)
» S a set, — a binary relation on S.
> (x,y) in — is denoted x — y and we say x reduces to y.
> Suppose — recursive : given x,y in S, we can decide whether x — y.
> Suppose that we can decide whether x in S is reducible, i.e., x — y for some y.
» Notations

> —* the reflexive-transitive closure of —,
> <—"* the reflexive-transitive-symmetric closure of —.

Equivalence Problem.
Decide «+—*, i.e., to determine for x and y in S whether x +—* y.



Church-Rosser

» — is terminating, or Noetherian if there is no infinite sequence

X] —> X2 —> X3 —> ... —> ... Xp —> ...

» — is Church-Rosser if x «—* y implies x J. y
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Church-Rosser

Theorem.
Let — be terminating and Church-Rosser. Then the equivalence problem for — is

decidable.

Proof. Let x and y be in S. Let X and y be normal forms of x and y.

)
I
<)

x +—*y iff X +—*y iff Xdey iff

x)

<)

» The equivalence problem for — could be decidable although
> —> is not terminating

0—1—>2—73—...—n—>n+1—n+2— ...

> — is not Church-Rosser: x

7N

y z



Newman

» — is confluent if x 1* y implies x | y

» — is locally confluent if x 1y implies x |. y



Newman

Maxwell H. A. Newman. On theories with a combinatorial
definition of "equivalence", Annals of Math., 1942.

Theorem. (Newman, 1942)
— is Church-Rosser if and only if — is confluent.

M. H. A. Newman
(1897-1984)

Proof.
Church-Rosser implies confluent. Suppose — confluent and proceed by induction.

Suppose x «<—" y. Case n = 0 is immediate. Suppose n > 0.
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Newman

Theorem. (Newman, 1942) (Newman diamond Lemma)
Let — terminating. Then — is confluent if and only if — is locally confluent.
» Principle of Noetherian induction. Suppose — terminating. Let P be a predicate on S.
If for all x in S
[ forall y in S, x — y implies P(y) } implies P(x)
then
for all x in S, P(x).
See Huet, 1980, Cohn, 1974 for a correctness proof.



Newman

Theorem. (Newman, 1942) (Newman diamond Lemma)

Let — terminating. Then — is confluent if and only if — is locally confluent.
Proof. (see Huet, 1980)

> Confluence implies local confluence.

> Suppose — locally confluent and proceed by Noetherian induction.

> Induction hypothesis:
! I

z % y
for all z with zg — z and for all *\/ \/* we have \ /
x’ y’ ¥k
s “ c d bvi
> Suppose */ \* ases x = zg and y = zp are obvious.
% y %
X1 ‘/|0C coh )4
X hyp *2 U * y



Newman

Theorem. (Newman, 1942) (Newman diamond Lemma)
Let — terminating. Then — is confluent if and only if — is locally confluent.

» The requirement of Noetherianity is necessary:

/_\
X1 —— X2 X3 ——— Xa

~_ -



Il. Word Problem and Homology of Monoids



Knuth-Bendix

» String rewriting system defined by a set X and a set of rules R on X*.
> A rewriting step has shape U
—r \uoc - u % v in R.
v
» Word Problem for a monoid M presented by( X |R) :
> two word w and w’ in X*,
> does w = w’ hold in M ?
» Normal form algorithm.

> If M has a finite convergent (confluent and terminating) presentation then its Word
Problem is decidable:
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Knuth-Bendix

Maurice Nivat, Congruences parfaites et quasi-parfaites, Sémi-
naire Dubreuil, 1971-1972.

» One can decide whether a finite string rewriting system is

convergent by checking local confluence.
M. Nivat (1937-)
Theorem.
Let (X | R) be a finite terminating string rewriting system. Then, whether or not R is
locally confluent, is decidable. Hence, it is decidable whether or not R is confluent.

Proof.
The proof involves the notion of critical branching which corresponds to a minimal
overlapping application of two rules on the same string: situations:

RN j

l %

> If R is finite, there are only finitely many critical branchings.
> It thus can be tested whether every such branching is confluent.
> (X |R) is locally confluent if and only if every critical branching is confluent.



Knuth-Bendix

Donald Knuth, Peter Bendix, Simple Word Problems in Universal
Algebras, 1970.

» Completion procedure.

D. Knuth (1938-)

» Knuth-Bendix completion procedure, 1970.
> Input : a rewriting system (X | R) and a Noetherian order < on X*
> by adding new rules, compute a set of rule R suhc that
i) for all u= v in R’ we have v < u,
i) Ris confluent,
iii) R and R are Tietze equivalents.
» Procedure terminates if and only if there is a finite set R such that i), ii), iii) hold.
> else it may run for ever adding infinitely many new rules such that i), ii), iii) hold.

> it may also terminate with failure if one of the input identities cannot be ordered by <.



Jantzen

Question. (Jantzen, 1982)
Does every finitely presented monoid with a decidable word problem admit a finite
convergent presentation?

Example. (Kapur-Narendran, 1985)

By = (s, t]|sts=tst)

> The monoid B;’ is decidable.

> It admits no finite convergent presentation on the two generator s and t

. but with 3 generators (Bauer-Otto, 1984).

> by adjunction of a new generator a standing for the product st :

18O = (s ta| ta =X as, st :ﬁ> a).



Jantzen

Example. Knuth-Bendix completion of the rewriting system

O={stalta % as, st i> a)
;> aa, saa :6> aat>

W% a2aas Laax

sast sasas aata

sta /)Y
k} sas 53[5 Sa%& saaa %

3af3
Y33, aaaa <: aaast

iK‘B(ZBo] :<s,t,a|ta % as, st :B> a, sas

sasaa aaxt

s35” Saaat = aatat
dat

Conséquence.
The word problem for B; is solvable by the normal form algorithm

Question.
Which condition a monoid need to satisfy to admit a presentation by a finite convergent
rewriting system?



Squier

Craig C. Squier, World problems and a homological finiteness
condition for monoids, J. Pure Appl. Algebra, 1987.

Theorem. (Squier, 1987)
If a monoid M admits a finite convergent presentation, then
it is of homological type left-FP3.

In particular, the group H3 (M, Z) is finitely generated.

(1946-1992)

Examples. (Squier, 1987, Stallings, 1963, Abels, 1979)
There are finitely presented monoids with a decidable word problem which do not have
homological type left-FP3.

Consequence.

Rewriting is not universal to decide Word Problem in finitely presented monoids.

Theorem. (Anick, 1987, Kobayashi, 1991, Groves, 1990, Brown, 1992)
If a monoid M admits a finite convergent presentation, then it is of homological type
left-FP .



Ill. Linear Rewriting



Buchberger

Bruno Buchberger, Ein Algorithmus zum Auffinden der Basise-
lemente des Restklassenrings nach einem nulldimensionalen Poly-
nomideal, Ph.D. thesis, Univ. of Innsbruck, 1965.

Original Problem.

> Given F, a finite set of polynomials of K[xy, ..., Xu].
> Find a linearly basis for the algebra K[xi, ..., xn]/(F). B. Buchberger (1942-)

» Fix an admissible ordering. Given f, g, h polynomials in K[xy,...,Xn].
> f reduce into h modulo g:
f—gh,

if Im(g) divide a term X in f and

h=f— e 16(F) —¢ 16(F) — f.

fi i
2y hy 5 .k, — h  withf €F.

» If f —F r, where r is a normal form, then r is the remainder of the division of f with
respect to divisors in F.



Buchberger

Let G ={g1,---, gt} be a subset of polynomials of K[xq, ..., xp) and let | = (G).
» The subset G is a Grébner basis for | if — ¢ is Church-Rosser.

Theorem.
The following are equivalent

i) G is a Grébner basis for /,

ii) — ¢ is confluent,

i) (16(1)) = (16(G) ),

iv) f —¢ 0 for every f in |,

v) for all i # j, S(gi. gj) —¢ 0.

» S-polynomial of f and g:

Y Y
X X
f—

sfg) = k(A g

)g, xY =lem(Im(f),Im(g).
> S-polynomials correspond to critical branchings:
xY
f g
Xy/ \v _

X

ST it(g)




Buchberger

» Buchberger algorithm for computing a Grébner basis.

INPUT:F ={f,..., fs} a basis of /, with f; #£ 0.
OUTPUT: a Grdbner basis G of | with F C G.

Initialisation:
G:=F
G:={{fi.fit | i #f€ G}
while § # () do
choose {f,g} € §
§:=9—{{f.gl}
S(f,g) g r, where r is a normal form
if r # 0 then

g IZSU{{f,r} | for every f € G}
G:=Guir



Grobner-Shirshov

» Grobner-Shirshov bases:
> A. |. Shirshov, Some algorithmic problem for Lie algebras, Sibirsk Mat. Zh., 1962.
> How to find a linear basis of any Lie algebra presented by generators and relations 7
> A critical branching/completion algorithm based on composition (S-polynomial).

» For associative algebras : Bokut, 1976, Bergman, 1978, Mora, 1986.

» For operads, Dotsenko-Khoroshkin, 2010.

» For linear categories without monomial order, Guiraud-Hoffbeck-M., 2014.

» Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of

characteristic zero, 1964.

» Maurice Janet, Sur les systémes d’'équations aux dérivées partielles, 1920.



I1l. Rewriting and Algebraic Coherence



Algebraic Coherence

Theorem. (Squier, 1994)
Let (X | R) be a convergent rewriting system. Then the set of confluences

iy
Nt

Af‘g

indexed by critical branching (f, g), forms a homotopy basis of derivation graph of ( X |R).



Algebraic Coherence

Example.
Art3(S3) = (s, t| tst % sts| ()

S
a e e

Proposition.
For presentation Artz(S3) of B;r two proofs of the same equality are equals.



Algebraic Coherence

Exemple.
Art2(Sa) = (r,s,t | rsr =srs, sts = tst, rt = tr)

S R S P

Al T R

c

Proposition. (Deligne, 1997)
For presentation Art>(S4) of B] two proof of the same equality are equals modulo
Zamolodchikov relation

stsrst ——» strsrt ——» srtstr ——» srstsr —— rsrtsr \

tstrst rstrsr

\ tsrtst ——» tsrsts —— trsrts ——» rtstrs —— rstsrs /



Algebraic Coherence

Theorem. [Gaussent-Guiraud-M., 2013]
For every Coxeter group W with a totally ordered set S of generators, the Artin
monoid BT (W) admits the coherent presentation Art3(W) made of

> Artin’s presentation

Arty (W) = ( S| (ts)™st = (st)mse )

> one 3-cell Z, 5+ for every elements t > s > r of S such that the subgroup Wy, ; .} is
finite.

» In this way, we obtained a constructive proof of the Tits results, 1981.



Algebraic Coherence

Type A3 Type B3
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