Musée des confluences

Philippe Malbos Institut Camille Jordan Université Claude Bernard Lyon 1

journée de l'équipe Algèbre, Géométrie, Logique 22 janvier 2015 Sainte Foy lès Lyon

Musée des confluences

- I. Equivalence Problem
- II. Word Problem and Homology of Monoids
- III. Linear Rewriting
- IV. Rewriting and Algebraic Coherence

Rewriting

- ▶ Rewriting arises in a variety of situations in Computer Science:
 - b theory of programming languages: analysis, verification, optimisation,
 - ▶ Automated theorem proving.
- ... and in Algebra:
 - $\,{\color{red}\triangleright}\,$ decision procedures for word problems in universal algebras,
 - ▶ in Computer Algebra: bases, syzygies, homology groups, Hilbert series, Koszulness,
 - ▶ Algebraic Coherence.

Thue

Axel Thue, Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln, Christiana Videnskabs-Selskabs Skrifter, I. Math.-naturv. Klasse, 1914.

A. Thue (1863-1922)

- ▶ The notion of rewriting system was introduced by Thue when he considered systems of transformation rules for combinatorial objects such as strings, trees or graphs:
- ▶ He considered a system consisting of pairs of corresponding strings over a fixed alphabet:

$$A_1, A_2, A_3, \ldots, A_n$$

 $B_1, B_2, B_3, \ldots, B_n$

Thue Problem.

Given two arbitrary strings P and Q, can we get one from the other by replacing some substring A_i or B_i by its corresponding string?

Church-Rosser

Alonzo Church, J. Barkley Rosser, *Some properties of conversion*, Transactions of the AMS, 1936.

▶ Theory of reduction relations.

A. Church (1903-1995)

- \triangleright S a set, \longrightarrow a binary relation on S.
 - $\triangleright (x, y)$ in \longrightarrow is denoted $x \longrightarrow y$ and we say x reduces to y.
 - \triangleright Suppose \longrightarrow recursive : given x, y in S, we can decide whether $x \longrightarrow y$.
 - ightharpoonup Suppose that we can decide whether x in S is reducible, i.e., $x \longrightarrow y$ for some y.
- ▶ Notations
 - ightharpoonup + the reflexive-transitive closure of ---,
 - ightharpoonup the reflexive-transitive-symmetric closure of ---.

Equivalence Problem.

Decide \longleftrightarrow^* , i.e., to determine for x and y in S whether $x \longleftrightarrow^* y$.

Church-Rosser

▶ — is terminating, or *Noetherian* if there is no infinite sequence

$$x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow \ldots \longrightarrow \ldots x_n \longrightarrow \ldots$$

ightharpoonup is Church-Rosser if $x \longleftrightarrow^* y$ implies $x \downarrow_* y$

Church-Rosser

Theorem.

Let \longrightarrow be terminating and Church-Rosser. Then the equivalence problem for \longrightarrow is decidable.

Proof. Let x and y be in S. Let \hat{x} and \hat{y} be normal forms of x and y.

 $x \longleftrightarrow^* y$ iff $\widehat{x} \longleftrightarrow^* \widehat{y}$ iff $\widehat{x} \downarrow_* \widehat{y}$ iff $\widehat{x} = \widehat{y}$.

- lacktriangleright The equivalence problem for \longrightarrow could be decidable although
 - $\, \triangleright \, \longrightarrow \, \text{is not terminating} \,$

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \ldots \longrightarrow n \longrightarrow n+1 \longrightarrow n+2 \longrightarrow \ldots$$

ightharpoonup — is not Church-Rosser:

 \longrightarrow is confluent if $x \uparrow^* y$ implies $x \downarrow_* y$

ightharpoonup is locally confluent if $x \uparrow y$ implies $x \downarrow_* y$

Maxwell H. A. Newman. On theories with a combinatorial definition of "equivalence", Annals of Math., 1942.

Theorem. (Newman, 1942)

 \longrightarrow is Church-Rosser if and only if \longrightarrow is confluent.

M. H. A. Newman (1897-1984)

Proof.

Church-Rosser implies confluent. Suppose \longrightarrow confluent and proceed by induction.

Suppose $x \longleftrightarrow^n y$. Case n = 0 is immediate. Suppose n > 0.

Theorem. (Newman, 1942) (Newman diamond Lemma)

Let \longrightarrow terminating. Then \longrightarrow is confluent if and only if \longrightarrow is locally confluent.

ightharpoonup Principle of Noetherian induction. Suppose \longrightarrow terminating. Let ${f P}$ be a predicate on ${\cal S}$.

If for all x in S

[for all
$$y$$
 in S , $x \longrightarrow y$ implies $P(y)$] implies $P(x)$

then

for all
$$x$$
 in S , $P(x)$.

See Huet, 1980, Cohn, 1974 for a correctness proof.

Theorem. (Newman, 1942) (Newman diamond Lemma)

Let \longrightarrow terminating. Then \longrightarrow is confluent if and only if \longrightarrow is locally confluent.

Proof. (see Huet, 1980)

- ▶ Confluence implies local confluence.
- ightharpoonup Suppose \longrightarrow locally confluent and proceed by Noetherian induction.
- ▶ Induction hypothesis:

Theorem. (Newman, 1942) (Newman diamond Lemma)

Let \longrightarrow terminating. Then \longrightarrow is confluent if and only if \longrightarrow is locally confluent.

▶ The requirement of Noetherianity is necessary:

II. Word Problem and Homology of Monoids

Knuth-Bendix

- **String rewriting system** defined by a set X and a set of rules R on X^* .
 - A rewriting step has shape u

- ▶ Word Problem for a monoid M presented by $\langle X | R \rangle$:
 - \triangleright two word w and w' in X^* ,
 - \triangleright does w = w' hold in M?
- ► Normal form algorithm
- ▷ If M has a finite convergent (confluent and terminating) presentation then its Word Problem is decidable:

Knuth-Bendix

Maurice Nivat, Congruences parfaites et quasi-parfaites, Séminaire Dubreuil, 1971-1972.

▶ One can decide whether a finite string rewriting system is convergent by checking local confluence.

M. Nivat (1937-)

Theorem.

Let $\langle X | R \rangle$ be a finite terminating string rewriting system. Then, whether or not R is locally confluent, is decidable. Hence, it is decidable whether or not R is confluent.

Proof.

The proof involves the notion of critical branching which corresponds to a minimal overlapping application of two rules on the same string: situations:

- ▶ If *R* is finite, there are only finitely many critical branchings.
- ▶ It thus can be tested whether every such branching is confluent.
- $\triangleright \langle X | R \rangle$ is locally confluent if and only if every critical branching is confluent.

Knuth-Bendix

Donald Knuth, Peter Bendix, Simple Word Problems in Universal Algebras, 1970.

► Completion procedure.

D. Knuth (1938-)

- ► Knuth-Bendix completion procedure, 1970.
 - \triangleright Input : a rewriting system $\langle X | R \rangle$ and a Noetherian order < on X^*
 - ightharpoonup by adding new rules, compute a set of rule \widetilde{R} suhc that
 - i) for all $u \Rightarrow v$ in \widetilde{R} , we have v < u,
 - ii) \tilde{R} is confluent,
 - iii) \widetilde{R} and R are Tietze equivalents.
- ▶ Procedure terminates if and only if there is a finite set R such that i), ii), iii) hold.
 - ▶ else it may run for ever adding infinitely many new rules such that i), ii), iii) hold.
 - ▶ it may also terminate with **failure** if one of the input identities cannot be ordered by <.

Jantzen

Question. (Jantzen, 1982)

Does every finitely presented monoid with a decidable word problem admit a finite convergent presentation?

Example. (Kapur-Narendran, 1985)

$$\mathsf{B}_3^+ = \langle \ \mathsf{s}, \mathsf{t} \mid \mathsf{sts} = \mathsf{tst} \ \rangle$$

- \triangleright The monoid B_3^+ is decidable.
- \triangleright It admits no finite convergent presentation on the two generator s and t
- ... but with 3 generators (Bauer-Otto, 1984).
 - by adjunction of a new generator a standing for the product st:

$$\Sigma^{BO} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle.$$

Jantzen

Example. Knuth-Bendix completion of the rewriting system

Conséquence.

The word problem for B_3^+ is solvable by the normal form algorithm

Question.

Which condition a monoid need to satisfy to admit a presentation by a finite convergent rewriting system?

Squier

Craig C. Squier, World problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra, 1987.

Theorem. (Squier, 1987)

If a monoid M admits a finite convergent presentation, then it is of homological type left-FP $_{\!3}.$

In particular, the group $H_3(\mathbf{M}, \mathbb{Z})$ is finitely generated.

C. C. Squier (1946-1992)

Examples. (Squier, 1987, Stallings, 1963, Abels, 1979)

There are finitely presented monoids with a decidable word problem which do not have homological type left- FP_3 .

Consequence.

Rewriting is not universal to decide Word Problem in finitely presented monoids.

Theorem. (Anick, 1987, Kobayashi, 1991, Groves, 1990, Brown, 1992)

If a monoid M admits a finite convergent presentation, then it is of homological type left- ${\rm FP}_{\infty}.$

III. Linear Rewriting

Buchberger

Bruno Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Univ. of Innsbruck, 1965.

Original Problem.

- \triangleright Given **F**, a finite set of polynomials of $\mathbb{K}[\mathbf{x}_1,\ldots,\mathbf{x}_n]$.
- ightharpoonup Find a linearly basis for the algebra $\mathbb{K}[x_1,\ldots,x_n]/\langle F \rangle$.

- B. Buchberger (1942-)
- ▶ Fix an admissible ordering. Given f, g, h polynomials in $\mathbb{K}[x_1, \dots, x_n]$.
 - ▶ f reduce into h modulo g:

$$f \longrightarrow_{g} h$$
,

if $lm(\mathbf{g})$ divide a term \mathbf{X} in \mathbf{f} and

$$\mathbf{h} = \mathbf{f} - \frac{\mathbf{X}}{\mathrm{lt}(\mathbf{g})}\mathbf{g}.$$
 $\mathrm{lt}(\mathbf{f}) \longrightarrow_{\mathbf{f}} \mathrm{lt}(\mathbf{f}) - \mathbf{f}.$

ightharpoonup f reduce into h modulo F, f \longrightarrow F h, if

$$\mathbf{f} \ \xrightarrow{f_{i_1}} \ \mathbf{h_1} \ \xrightarrow{f_{i_2}} \ \mathbf{h_2} \ \xrightarrow{f_{i_3}} \ \ldots \ \mathbf{h_{i_{k-1}}} \ \xrightarrow{f_{i_k}} \ \mathbf{h}, \qquad \text{with } \mathbf{f_{i_i}} \in \mathbf{F}.$$

▶ If $f \longrightarrow_F r$, where r is a normal form, then r is the remainder of the division of f with respect to divisors in F.

Buchberger

Let $G = \{g_1, \dots, g_t\}$ be a subset of polynomials of $\mathbb{K}[x_1, \dots, x_n]$ and let $I = \langle G \rangle$.

▶ The subset G is a **Gröbner basis** for I if \longrightarrow_G is Church-Rosser.

Theorem.

The following are equivalent

- i) G is a Gröbner basis for I,
- ii) \longrightarrow_G is confluent,
- iii) $\langle \operatorname{lt}(I) \rangle = \langle \operatorname{lt}(G) \rangle$,
- iv) $f \longrightarrow_C^* 0$ for every f in I,
- **v)** for all $i \neq j$, $S(g_i, g_j) \longrightarrow_G^* 0$.
- \triangleright S-polynomial of f and g:

$$S(f,g) = \frac{x^{\gamma}}{|\mathbf{t}(f)|} f - \frac{x^{\gamma}}{|\mathbf{t}(g)|} g, \qquad x^{\gamma} = \operatorname{lcm}(\operatorname{Im}(f), \operatorname{Im}(g).$$

▶ S-polynomials correspond to critical branchings:

Buchberger

▶ Buchberger algorithm for computing a Gröbner basis.

INPUT:
$$F = \{f_1, \dots, f_s\}$$
 a basis of I , with $f_i \neq 0$.

OUTPUT: a Gröbner basis G of I with $F \subset G$.

Initialisation:

$$G := F$$

 $9 := \{ \{f_i, f_j\} \mid f_i \neq f_j \in G \}$

while
$$9 \neq \emptyset$$
 do

choose
$$\{f, g\} \in \mathcal{G}$$

 $\mathcal{G} := \mathcal{G} - \{\{f, g\}\}\$

$$9 := 9 - \{\{t, g\}\}$$

$$S(f,g) \xrightarrow{G} r$$
, where r is a normal form

if
$$r \neq 0$$
 then

$$\mathcal{G} := \mathcal{G} \cup \{ \{f, r\} \mid \text{ for every } f \in G \}$$

$$G := G \cup \{r\}$$

Gröbner-Shirshov

- ► Gröbner-Shirshov bases:
 - A. I. Shirshov, Some algorithmic problem for Lie algebras, Sibirsk Mat. Zh., 1962.
 - ▶ How to find a linear basis of any Lie algebra presented by generators and relations ?
 - ▶ A critical branching/completion algorithm based on **composition** (*S*-polynomial).
- ► For associative algebras : Bokut, 1976, Bergman, 1978, Mora, 1986.
- ► For operads, Dotsenko-Khoroshkin, 2010.
- ► For linear categories without monomial order, Guiraud-Hoffbeck-M., 2014.
- ▶ Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, 1964.
- ▶ Maurice Janet, Sur les systèmes d'équations aux dérivées partielles, 1920.

Theorem. (Squier, 1994)

Let $\langle X | R \rangle$ be a convergent rewriting system. Then the set of confluences

indexed by critical branching (f,g), forms a homotopy basis of derivation graph of $\langle X | R \rangle$.

Example.

$$Art_3(\mathbf{S}_3) = \langle s, t \mid tst \implies sts \mid \emptyset \rangle$$

$$s = X \mid t = | X \rangle$$

Proposition.

For presentation $\text{Art}_2(\textbf{S}_3)$ of \textbf{B}_3^+ two proofs of the same equality are equals.

Exemple.

$$Art_{2}(S_{4}) = \langle r, s, t \mid rsr = srs, sts = tst, rt = tr \rangle$$

$$r = \times | | | s = | \times | t = | | \times$$

Proposition. (Deligne, 1997)

For presentation $Art_2(S_4)$ of B_4^+ two proof of the same equality are equals modulo Zamolodchikov relation

Theorem. [Gaussent-Guiraud-M., 2013]

For every Coxeter group W with a totally ordered set S of generators, the Artin monoid $B^+(W)$ admits the coherent presentation ${\sf Art}_3(W)$ made of

▶ Artin's presentation

$$\operatorname{Art}_2(\mathbf{W}) = \langle S \mid \langle ts \rangle^{m_{\mathbf{st}}} = \langle st \rangle^{m_{\mathbf{st}}} \rangle$$

ightharpoonup one 3-cell $Z_{r,s,t}$ for every elements t>s>r of S such that the subgroup $\mathbf{W}_{\{r,s,t\}}$ is finite.

▶ In this way, we obtained a constructive proof of the Tits results, 1981.

