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Motivation

• Computation of homological and homotopical invariants:

- Homological and homotopical finiteness conditions for convergence (Squier, ’87, ’94),
- Higher-dimensional categories with finite derivation type (G.-M., ’09).

• Classification of normalisation strategies:

- Higher-dimensional normalisation strategies for acyclicity (G.-M., ’12).

• Coherence theorems for algebraic and categorical structures:

- Monoidal categories (MacLane, ’63, G.-M., ’12),
- A homotopical completion procedure (G.-M.-M., ’13),
- Coherent presentations of Artin groups (Deligne, ’72, Tits ’81,

Gaussent-G.-M., ’13, arXiv :1203.5358v2).
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and satisfy the Yang-Baxter relation

=

Coherence Problem.
- Given two braids equal modulo Yang-Baxter.
- In general, there are several proofs of their equality.



Motivation

• The positive braids on 3 strands are generated by

and

and satisfy the Yang-Baxter relation

=

Coherence Problem.
- Given two braids equal modulo Yang-Baxter.

- In general, there are several proofs of their equality.



Motivation

• The positive braids on 3 strands are generated by

and

and satisfy the Yang-Baxter relation

=

Coherence Problem.
- Given two braids equal modulo Yang-Baxter.
- In general, there are several proofs of their equality.



Motivation

• The positive braids on 3 strands are generated by

and

and satisfy the Yang-Baxter relation

=

Coherence Problem.
- Given two braids equal modulo Yang-Baxter.
- In general, there are several proofs of their equality.



Motivation

• The positive braids on 3 strands are generated by

and

and satisfy the Yang-Baxter relation

=

Coherence Problem.
- Given two braids equal modulo Yang-Baxter.
- In general, there are several proofs of their equality.



Motivation

Coherence Problem.
- How to compare proofs of equalities of two braids ?



Motivation

?

Coherence Problem.
- How to compare proofs of equalities of two braids ?



Motivation

Method.

1. Consider Artin’s presentation of the monoid B+
3 of positive braids on 3 strands

ΣArtin = 〈 s, t | tst ρ⇒ sts 〉

where s = and t =

2. Compute a coherent convergent presentation by adding

new generators, new relations and coherence generators.

3. Coherently reduce this presentation by Tietze transformations.
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3 of positive braids on 3 strands

ΣArtin = 〈 s, t | tst ρ⇒ sts 〉

where s = and t =

2. Compute a coherent convergent presentation by adding

new generators, new relations and coherence generators.

3. Coherently reduce this presentation by Tietze transformations.

Proposition.
For the presentation ΣArtin of B+

3 any two proofs of the same equality are equal.
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The 2-category of reductions

• Let 〈 Σ1 | Σ2 〉 be a string rewriting system.

• The rewriting sequences form the 2-category of reductions Σ∗2.
- the sequential composition f1 ?1 f2 of rewriting steps is associative and unitary

u1
f1 %9 u2

f2 %9 u3

- the parallel composition of rewriting steps

u

f
��
v

?0

u ′

g
��
v ′

is associative, unitary and compatible with the sequential composition

vu ′ u ′g

�)
uu ′

fv ';

ug #7

vv ′

uv ′ fv ′

5I fv ?1 u ′g = ug ?1 fv ′
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The 2-category of equalities

• The equalities u⇔ v form a 2-category Σ>2 similar to Σ∗2 but with all 2-cells invertible.

• An extended presentation consists of a presentation 〈 Σ1 | Σ2 〉, together with a set Σ3

of coherence generators with shape

A���u
q� �-
Ym 1E v

• A coherent presentation is an extended presentation 〈 Σ1 | Σ2 | Σ3 〉 such that the
congruence generated by Σ3 , that is

- the equivalence relation ≡ on parallel 2-cells in Σ>2 ,

- closed by context: f ≡ g implies ufv ≡ ugv ,

- closed by composition: f ≡ g implies k ?1 f ?1 h ≡ k ?1 g ?1 h.

contains every pair of parallel 2-cells.
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Coherent presentations

Problems.

1. How to compute a coherent presentation ?

2. How to transform a coherent presentation ?



Computing coherent presentations

• A family of generating confluences of 〈 Σ1 | Σ2 〉 is a set of coherence generators of shape

v f ′

�'
Af ,g���

u

f &:

g $8

t

w g ′

7K

where (f , g) is a critical pair.

• If 〈 Σ1 | Σ2 〉 is confluent, it always admits at least one family of generating confluences.

Theorem. (Squier, 1994) Let Σ be a convergent presentation of a monoid M.
The extended presentation defined by a chosen family of generating confluences is

a coherent and convergent presentation of M.
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• add a relation: for an equality f , add a rule χf and add a coherence generator Af
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Tietze transformations of coherent presentations

• add a 3-cell: for two congruent equalities f ≡ g ,

add a coherence generator f
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Theorem.
If Σ is a coherent presentation of a monoid M, then for any Tietze transformation

T, the presentation T(Σ) is a coherent presentation of M.
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The homotopical completion procedure

• Let Σ be a terminating presentation (with a total termination order).

- For every critical pair

v

u

f $8

g %9 w

the homotopical completion procedure computes f ′ and g ′ reducing to some normal forms.
- if v̂ = ŵ , the 3-cell Af ,g is added by Tietze transformation

v f ′

�+
Af ,g���

u

f %9

g %9

v̂ = ŵ

w
g ′

3G

- if v̂ < ŵ , the 2-cell χ and the 3-cell Af ,g are added by Tietze transformation

v f ′ %9

Af ,g���

v̂

u

f %9

g $8 w
g ′
%9 ŵ

χ

EY
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The homotopical completion procedure

Theorem. Let Σ be a terminating presentation of a monoid M.
The homotopical completed presentation HC(Σ) is a coherent and convergent

presentation of M.

Example. The Kapur-Narendran presentation of B+
3 :

ΣKN =
〈
s, t, a | ta α⇒ as, st

β⇒ a | ∅〉

HC(ΣKN) =
〈
s, t, a | ta α⇒ as, st

β⇒ a, sas
γ⇒ aa, saa δ⇒ aat | A, B, C , D

〉
aa

sta

βa ';

sα #7 sas

aat

sast

γt ';

saβ #7 saa

aaas

sasas

γas )=

saγ !5 saaa

aaaa

sasaa

γaa (<

saδ
!5 saaat

However. The extended presentation HC(ΣKN) obtained is bigger than necessary.
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The homotopical completion-reduction procedure: step 1

• Let Σ be a convergent and coherent presentation.

- The critical triples are confluent.
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• The homotopical reduction in dimension 3, denoted by HC,

- builds such a 4-cell, for each critical triple branching,

- uses these 4-cells to reduce the coherent presentation.

Theorem. Let Σ be a terminating presentation of a monoid M.
The extended presentation HC(Σ) is a reduced coherent and convergent

presentation of M.



The homotopical completion-reduction procedure: step 1

• Let Σ be a convergent and coherent presentation.

- The critical triples are confluent.

v

u w

x

• The homotopical reduction in dimension 3, denoted by HC,

- builds such a 4-cell, for each critical triple branching,

- uses these 4-cells to reduce the coherent presentation.

Theorem. Let Σ be a terminating presentation of a monoid M.
The extended presentation HC(Σ) is a reduced coherent and convergent

presentation of M.



The homotopical completion-reduction procedure: step 1

• Let Σ be a convergent and coherent presentation.

- The critical triples are confluent.

v

u

f *>

g %9

h  4

w

x

• The homotopical reduction in dimension 3, denoted by HC,

- builds such a 4-cell, for each critical triple branching,

- uses these 4-cells to reduce the coherent presentation.

Theorem. Let Σ be a terminating presentation of a monoid M.
The extended presentation HC(Σ) is a reduced coherent and convergent

presentation of M.



The homotopical completion-reduction procedure: step 1

• Let Σ be a convergent and coherent presentation.

- The critical triples are confluent.

v
f1

 4

Af ,g���

x ′

u

f
+?

g %9

h  4

w

g1||||

4H||||

x

• The homotopical reduction in dimension 3, denoted by HC,

- builds such a 4-cell, for each critical triple branching,

- uses these 4-cells to reduce the coherent presentation.

Theorem. Let Σ be a terminating presentation of a monoid M.
The extended presentation HC(Σ) is a reduced coherent and convergent

presentation of M.



The homotopical completion-reduction procedure: step 1

• Let Σ be a convergent and coherent presentation.

- The critical triples are confluent.

v
f1

 4

Af ,g���

x ′

u

f
+?

g %9

h �3

w

g1||||

4H||||

g2
BBBB

�*BBBB

x

h2

*>

Ag ,h���
v ′

• The homotopical reduction in dimension 3, denoted by HC,

- builds such a 4-cell, for each critical triple branching,

- uses these 4-cells to reduce the coherent presentation.

Theorem. Let Σ be a terminating presentation of a monoid M.
The extended presentation HC(Σ) is a reduced coherent and convergent

presentation of M.



The homotopical completion-reduction procedure: step 1

• Let Σ be a convergent and coherent presentation.

- The critical triples are confluent.

v
f1

 4

Af ,g���

x ′ v

u

f
+?

g %9

h �3

w

g1||||

4H||||

g2
BBBB

�*BBBB

u

f
+?

h �3x

h2

*>

Ag ,h���
v ′ x

• The homotopical reduction in dimension 3, denoted by HC,

- builds such a 4-cell, for each critical triple branching,

- uses these 4-cells to reduce the coherent presentation.

Theorem. Let Σ be a terminating presentation of a monoid M.
The extended presentation HC(Σ) is a reduced coherent and convergent

presentation of M.



The homotopical completion-reduction procedure: step 1

• Let Σ be a convergent and coherent presentation.

- The critical triples are confluent.

v
f1

 4

Af ,g���

x ′ v

f2
BBBB

�*BBBB
u

f
+?

g %9

h �3

w

g1||||

4H||||

g2
BBBB

�*BBBB

u

f
+?

h �3

w ′

x

h2

*>

Ag ,h���
v ′ x

h1||||

4H||||
Af ,h ���

• The homotopical reduction in dimension 3, denoted by HC,

- builds such a 4-cell, for each critical triple branching,

- uses these 4-cells to reduce the coherent presentation.

Theorem. Let Σ be a terminating presentation of a monoid M.
The extended presentation HC(Σ) is a reduced coherent and convergent

presentation of M.



The homotopical completion-reduction procedure: step 1

• Let Σ be a convergent and coherent presentation.

- The critical triples are confluent.

v
f1

 4

Af ,g���

x ′ v
f1

 4

f2
BBBB

�*BBBB

x ′ h

� 
C ���

u

f
+?

g %9

h �3

w

g1||||

4H||||

g2
BBBB

�*BBBB

u

f
+?

h �3

w ′ g3 %9 û
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The homotopical completion-reduction procedure: step 1

Example.

HC(ΣKN) =
〈
s, t, a | ta α⇒ as, st

β⇒ a, sas
γ⇒ aa, saa δ⇒ aat | A,B,C ,D

〉

• There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.
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- The 4-cell Ω1 proves that C is superfluous in the coherent presentation.
- The 3-cell C can be written as a composition of 3-cells A and B

C = sasα−1 ?1 (Ba ?1 aaα) ?2 (saA ?1 δa ?1 aaα)
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The homotopical completion-reduction procedure: step 2

• Let Σ be a coherent presentation.
• The homotopical reduction in dimension 2 eliminates the rules added during the
homotopical completion process.
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- both χ and A are removed by a Tietze transformation.

• The homotopical reduction in dimension 2 applied on HC(Σ) construct the extended
presentation HCR(Σ).

Theorem. Let Σ be a terminating presentation of a monoid M.
The extended presentation HCR(Σ) is a coherent presentation of M, whose

underlying presentation is Σ.
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• The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation
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• The generators added before the homotopical completion can be removed at the end.
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The homotopical completion-reduction procedure: step 3

• The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation

u ��HHα=⇒ ��ZZ(u)

- A Tietze transformation removes (u) and α

Example.
HCR(ΣKN) =

〈
s, t, a | ta α⇒ as, st

β⇒ a | ∅
〉

HCR(ΣKN) =
〈
s, t | tst α⇒ sts | ∅

〉



The homotopical completion-reduction procedure: step 3

• The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation

u ��HHα=⇒ ��ZZ(u)

- A Tietze transformation removes (u) and α

Example.
HCR(ΣKN) =

〈
s, t, a | ta α⇒ as, st

β⇒ a | ∅
〉

HCR(ΣKN) =
〈
s, t | tst α⇒ sts | ∅

〉
Proposition.
For the presentation ΣArtin of B+

3 any two proofs of the same equality are equal.
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Braids on 4 strands

• Artin presentation of the monoid B+
4 of braids on 4 strands:

ΣArtin = 〈 r , s, t | rsr = srs, sts = tst, rt = tr 〉

r = s = t =

= = =

Proposition.
For the presentation ΣArtin of B+

4 any two proofs of the same equality are equal
modulo the Zamolodchikov relation

stsrst %9 strsrt %9 srtstr %9 srstsr %9 rsrtsr

tstrst

*>

 4

rstrsr

`t

tsrtst %9 tsrsts %9 trsrts %9 rtstrs %9 rstsrs

;O
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Computations

• The monoid of braids on n strands

B+
n =

〈
s1, . . . , sn−1

∣∣ si si+1si = si+1si si+1 for 1 6 i < n− 1
si sj = sj si for |i − j | > 2

〉
- Computations with Artin, Kapur-Narendran and Brieskorn-Saito presentations.

- more generally, for the generalised Artin monoid B+(W) on a Coxeter group W, using
Garside presentation, see [Gaussent-Guiraud-Malbos, 2013].

• The plactic monoid

Pn =
〈
x1, . . . , xn

∣∣ xjxixk = xjxkxi for i < j 6 k
xixkxj = xkxixj for i 6 j < k

〉
- Computations with Knuth and Column presentations.

• The Chinese monoid

Chn =
〈
x1, . . . , xn

∣∣ xjxkxi = xkxixj = xkxjxi for i 6 j 6 k
〉



Results of experiments

http://www.pps.univ-paris-diderot.fr/~smimram/rewr

Coherent presentations
Monoid Presentation Gen. Rel. Rel. comp. Hom. gen. Hom. gen. red.

B+
3

Artin 2 1 ∞ ∞ 0
Kapur-Narendran 3 2 4 4 2
Brieskorn-Saito 3 2 4 6 2
Garside 5 4 12 24 8

B+
4

Artin 3 3 ∞ ∞ 1
Kapur-Narendran 7 7 47 356 31
Brieskorn-Saito 7 7 46 378 35

B+
5

Artin 4 6 ∞ ∞ 4
Kapur-Narendran 15 17 692 48260 ?
Brieskorn-Saito 15 17 598 28384 ?

P2 = Ch2
Knuth 2 2 2 1 1
Column 3 3 3 1 1

P3
Knuth 3 8 11 27 23
Column 7 12 22 42 30

P4
Knuth 4 20 ∞ ∞ ?
Column 15 31 115 621 212

P5 Column 31 66 531 6893 ?

http://www.pps.univ-paris-diderot.fr/~smimram/rewr

