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Method.

1. Consider Artin’s presentation of the monoid B;'r of positive braids on 3 strands

ZArtin = < s, t | tst :p> sts )

where :% | and t:| x

2. Compute a coherent convergent presentation by adding

new generators, new relations and coherence generators.
3. Coherently reduce this presentation by Tietze transformations.

Proposition.

For the presentation X a,tin of B;r any two proofs of the same equality are equal.
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The 2-category of reductions

o Let ( X1 | X5 ) be a string rewriting system.
® The rewriting sequences form the 2-category of reductions X3.
- the sequential composition f; x1 f> of rewriting steps is associative and unitary

fi f3
u1:I>U2:2>U3

- the parallel composition of rewriting steps
u u’
ﬂf *o ﬂg
% v/
is associative, unitary and compatible with the sequential composition
/
\>

w fvxiu'g =ugxi fv'
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The 2-category of equalities

e The equalities u < v form a 2-category ZzT similar to X3 but with all 2-cells invertible.

e An extended presentation consists of a presentation ( 1 | X ), together with a set X3
of coherence generators with shape

e A coherent presentation is an extended presentation { X1 | X2 | X3 ) such that the
congruence generated by X3 , that is

- the equivalence relation = on parallel 2-cells in ZzT,
- closed by context: f = g implies ufv = ugv,
- closed by composition: f = g implies k x1 f x1 h = k *1 g *1 h.

contains every pair of parallel 2-cells.



Coherent presentations

Problems.
1. How to compute a coherent presentation ?

2. How to transform a coherent presentation ?



Computing coherent presentations

e A family of generating confluences of ( X1 | X5 ) is a set of coherence generators of shape
it

u MA,( g t
Ny /

where (f, g) is a critical pair.



Computing coherent presentations

e A family of generating confluences of ( X1 | X5 ) is a set of coherence generators of shape
it
u MA; & t
Ny /
where (f, g) is a critical pair.

o If (X1 | X5 ) is confluent, it always admits at least one family of generating confluences.



Computing coherent presentations

e A family of generating confluences of ( X1 | X5 ) is a set of coherence generators of shape
it
u MA,( g t
Ny /
where (f, g) is a critical pair.
o If (X1 | X5 ) is confluent, it always admits at least one family of generating confluences.
Theorem. (Squier, 1994) Let X be a convergent presentation of a monoid M.

The extended presentation defined by a chosen family of generating confluences is
a coherent and convergent presentation of M.
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Tietze transformations of coherent presentations

e add a generator: for a word u, add a generator x and add a rule

5
u é X
e remove a generator: for a rule & with x a generator, remove x and «
ITRERas: > ><

e add a relation: for an equality f, add a rule x¢ and add a coherence generator Ar

f'

u AFJJ} v
Xf

e remove a relation: for a 3-cell A with « a rule, remove « and A
f

Y

p-e
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Tietze transformations of coherent presentations

A
e add a 3-cell: for two congruent equalities f = g, add a coherence generator f = g

Theorem.
If X is a coherent presentation of a monoid M, then for any Tietze transformation
T, the presentation T (X) is a coherent presentation of M.
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The homotopical completion procedure

e Let X be a terminating presentation (with a total termination order).
- For every critical pair

w

7y
J F

the homotopical completion procedure computes f’ and g’ reducing to some normal forms.
- if V.= w, the 3-cell Af . is added by Tietze transformation

/\

/

- if v < w, the 2-cell x and the 3-cell Af , are added by Tietze transformation
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Theorem. Let X be a terminating presentation of a monoid M.
The homotopical completed presentation H C (LX) is a coherent and convergent
presentation of M.

Example. The Kapur-Narendran presentation of B;:

ZKN:<s,t,a|ta:°‘>as, st:[3>a\®>

5
HC(ZkN) :<s, t,al ta = as, st:ﬁ>a, sas:y>aa,saa:> aat | A, B

Ba_s aa Yt_> aat
stﬁA /\FY // ﬂy‘é

sast lUB /

) )
% sas %} saa



The homotopical completion procedure

Theorem. Let X be a terminating presentation of a monoid M.
The homotopical completed presentation H C (LX) is a coherent and convergent
presentation of M.

Example. The Kapur-Narendran presentation of B;:

ZKN:<s,t,a|ta:°‘>as, st:[3>a\®>
o B Y 5
%G(ZKN):<s,t,a| ta = as, st = a, sas = aa, saa — aat | A, B

(33/ a% / aat W% aaas

/) Y sast sasas

sta A /
% sas %} sa{a sa¥> saaa



The homotopical completion procedure

Theorem. Let X be a terminating presentation of a monoid M.
The homotopical completed presentation H C (LX) is a coherent and convergent
presentation of M.

Example. The Kapur-Narendran presentation of B;:

Tk = (s taltass as, stz&a\@)
5
%G(ZKN):<s,t,a| ta = as, st:ﬁ>a, sas:y>aa,saa:>aat\A, B, C

(33/ aa/\Y / W% aaas ﬁa

sasas aata

sta MA 1y sast
% Saé) %} sa{a/ sa\ saaa



The homotopical completion procedure

Theorem. Let X be a terminating presentation of a monoid M.
The homotopical completed presentation H C (LX) is a coherent and convergent
presentation of M.

Example. The Kapur-Narendran presentation of B;:

ZKN:<s,t,a|ta:°‘>as, st:[3>a\®>

5
HC(ZkN) :<s, t,al ta = as, st:ﬁ>a, sas:y>aa,saa:> aat | A, B, C

(33/ a;a\Y / aat W% aaas ﬁa
st.
LA

a Y  sast sasas *UJ’C aata
N ) \ // N
s> sas sap > saa say > saaa = 5,

Ya3a qa3aa

sasaa

§ saaat



The homotopical completion procedure

Theorem. Let X be a terminating presentation of a monoid M.
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The homotopical completion procedure

Theorem. Let X be a terminating presentation of a monoid M.
The homotopical completed presentation H C (LX) is a coherent and convergent
presentation of M.

Example. The Kapur-Narendran presentation of B;:

):KN:<s,t,a|ta:°‘>as, st:[3>a\®>

HC(ZkN) :<s,t,a| ta = as, st:ﬁ>a, sas:y>aa,saa:5>aat\A, B, C, D>

(33/ a;a\Y / W% aaas ﬁa

sta MA /)Y sast // sasas aata
% sas %} saa sa\ saaa

agaf
Y24 >, agaa & aaast

sasaa YD aaot

sad > saaat =y aatat
dat

However. The extended presentation J{C(Xkn ) obtained is bigger than necessary.
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The homotopical completion-reduction procedure: step 1

e Let X~ be a convergent and coherent presentation.

- The critical triples are confluent.
i fi
. v ﬂ X \h . v ﬁ X N,
7 / N
f, f;
,/ lU,A g //g1 ¥ a y 2y Clu \*\/
« i ::> u Afyhm w' B—— 1
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e The homotopical reduction in dimension 3, denoted by JHC,
- builds such a 4-cell, for each critical triple branching,

- uses these 4-cells to reduce the coherent presentation.

Theorem. Let ¥ be a terminating presentation of a monoid M.

The extended presentation H{C (%) is a reduced coherent and convergent
presentation of M.
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Example.
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e There are four critical triple branchings, overlapping on
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MBa )}63 N
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sasx sasas \\ 5
saaa a

- The 4-cell Q31 proves that C is superfluous in the coherent presentation.
- The 3-cell C can be written as a composition of 3-cells A and B

C = sasa ! %1 (Ba*1 aax) %2 (saA x1 8a %1 aax)



The homotopical completion-reduction procedure: step 1

Example.
HE(Zkn) = (s, t,alta 2 as, st £ a, sas = aa, saa 2 aat | A, B, & B()
e There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

- Critical triple branching on sasast

aaa
yast aaast :B> aaaa yy aaast —_aaaf3
| N N

aa ot\ 7 N aaaf’
X o sasast " aaaa aaast

sasast =sayt> saaat ﬁ} aatat é \ /7 /H\
a Yaa m
D aa‘rt

\

Mﬁa B }}sa o sasaf3 sasaa

AN

sasaa
sasaf3 ¥>

sa

saaat ﬁ aatat
da

- This 4-cell Q5 proves that D is superfluous in the coherent presentation.
- The 3-cell D can be written as a composition of 3-cells A and B

D = sasa[S_1 *1 ((Ct *1 aaafd) xo (saB %1 dat x1 aaxt 1 aaaB))



The homotopical completion-reduction procedure: step 1

Example.
HC(Zkn) = (s, t,alta =& s, st £ a, sas = aa, saa 2 aat | A, B, & B)
e There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

Conclusion.

5
HC(ZkN) :<s, talta= as, st:[3>a,sas:y> aa,saa:>aat|A,B>



The homotopical completion-reduction procedure: step 2

e Let X~ be a coherent presentation.
e The homotopical reduction in dimension 2 eliminates the rules added during the
homotopical completion process.

- both x and A are removed by a Tietze transformation.



The homotopical completion-reduction procedure: step 2

e Let X~ be a coherent presentation.
e The homotopical reduction in dimension 2 eliminates the rules added during the
homotopical completion process.

- both x and A are removed by a Tietze transformation.

e The homotopical reduction in dimension 2 applied on H € (X) construct the extended
presentation H{CR(X).



The homotopical completion-reduction procedure: step 2

e Let X~ be a coherent presentation.
e The homotopical reduction in dimension 2 eliminates the rules added during the
homotopical completion process.

- both x and A are removed by a Tietze transformation.

e The homotopical reduction in dimension 2 applied on H € (X) construct the extended
presentation H{CR(X).

Theorem. Let ¥ be a terminating presentation of a monoid M.
The extended presentation HCR(X) is a coherent presentation of M, whose
underlying presentation is X.
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The homotopical completion-reduction procedure: step 2

Example.

He(Lkn) = (st al ta = as, st £ Pp——y MI X,X)

- The 3-cells A and B correspond to the adjunction of the rules v and & during the H{C

Ba/ aa Yt_ aat

sta sast

S sas % saa

- They are removed by the HCXR procedure:

procedure

}CGR(ZKN):<S,t,a|ta:‘x>as, st:[5>a|®>



The homotopical completion-reduction procedure: step 3

e The generators added before the homotopical completion can be removed at the end.



The homotopical completion-reduction procedure: step 3

e The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation

u = (u)



The homotopical completion-reduction procedure: step 3

e The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation

u 355 Y

- A Tietze transformation removes (u) and «
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e The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation

u 355 Y

- A Tietze transformation removes (u) and «

Example.
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The homotopical completion-reduction procedure: step 3

e The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation

u 355 Y

- A Tietze transformation removes (u) and «
Example.

_’J-CGSQ(ZKN):<s,t,aIta:°‘>as, st:[3>a|®>

fHGiR(ZKN):<s,t,a| ta:“>as,st:6>a|®>



The homotopical completion-reduction procedure: step 3

e The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation

u 355 Y

- A Tietze transformation removes (u) and «

Example.
HECR(Zkn) = (s, t,a] ta = as, st:[3>a|®>

HCR(ZkN) = < s, t,XI ta= as ,}%I (Z)>



The homotopical completion-reduction procedure: step 3

e The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation

u 355 Y

- A Tietze transformation removes (u) and «
Example.

_’J-CGSQ(ZKN):<s,t,aIta:°‘>as, st:[3>a|®>

FHCR(Zkn) = (s t|tst >sts|0)



The homotopical completion-reduction procedure: step 3

e The generators added before the homotopical completion can be removed at the end.

- Each superfluous generator (u) comes with a defining relation

u 355 Y

- A Tietze transformation removes (u) and «
Example.

_’J-CGSQ(ZKN):<s,t,aIta:“>as, st:[3>a|®>

FHCR(Zkn) = (s t|tst >sts|0)

Proposition.
For the presentation X a,tin of B; any two proofs of the same equality are equal.
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Braids on 4 strands

e Artin presentation of the monoid BI of braids on 4 strands:

S artin = (r, s, t|rsr=srs, sts=tst, rt =tr)

r=es L os=les | o=l ] e

IR RS R

r

Proposition.
For the presentation X p,tin of Bf{ any two proofs of the same equality are equal

modulo the Zamolodchikov relation

/ stsrst == strsrt =——» srtstr ==y srstsr == rsrtsr \

rstrsr

7

tstrst

\\ tsrtst == tsrsts =——» trsrts == rtstrs = rstsrs



Computations

e The monoid of braids on n strands

Bf = (s o1 | SiSiy1Si = Siy1Sisiy1 for1<i<n—1 )
- LR n— . .
n sisj = sjS; for |i —j| =2

- Computations with Artin, Kapur-Narendran and Brieskorn-Saito presentations.

- more generally, for the generalised Artin monoid B* (W) on a Coxeter group W, using
Garside presentation, see [Gaussent-Guiraud-Malbos, 2013].

e The plactic monoid

xpxixg = xjxpx; for i < j < k
P = (1. xy | 90k =R for i< i Sy
Xixpxj = xpxpxj for i < j < k

- Computations with Knuth and Column presentations.
o The Chinese monoid

Ch, = < X1, o0 Xn | XjXpXi = xpxiXj = xpxjxi for i < j < k >



Results of experiments

http://www.pps.univ-paris-diderot.fr/~smimram/rewr

Coherent presentations

Monoid Presentation Gen. | Rel. | Rel. comp. | Hom. gen. | Hom. gen. red.
Artin 2 1 00 00 0
Kapur-Narendran 3 2 4 4 2

BJ Brieskorn-Saito 3 2 4 6 2
Garside 5 4 12 24 8
Artin 3 3 00 00 1

B, Kapur-Narendran 7 7 47 356 31
Brieskorn-Saito 7 7 46 378 35
Artin 4 6 00 00 4

B;r Kapur-Narendran 15 17 692 48260 ?
Brieskorn-Saito 15 17 598 28384 ?
Knuth 2 2 2 1 1

P2 = Chz Column 3 3 3 1 1
Knuth 3 8 11 27 23

Ps Column 7| 12 22 42 30

P, Knuth 4 20 00 00 ?
Column 15 31 115 621 212

Ps Column 31 66 531 6893 ?



http://www.pps.univ-paris-diderot.fr/~smimram/rewr

