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Introduction

Our purpose is to prove that a monoid which has a ‘nice’ solution to its word
problem satisfies a certain homological finiteness condition. More precisely, we
prove: if a monoid $ has a finite terminating Church-Rosser presentation, then S
is (FP),; this is Theorem 4.1 below. (See Section 2 for the definition of
“terminating” and “Church-Rosser”.) Examples of groups that are not (FP), are
known; see Section 4 for a brief description of several of these. For completeness,
we provide an example of a monoid that is not (FP),. In each case, the monoid
(or group) is finitely-presented and has a solvable word problem. These examples
answer (in the negative) the following question of Jantzen [15]: does a finitely-
presented monoid with a solvable word problem have a finite terminating
Church-Rosser presentation?

The Church—Rosser property was discovered by Church and Rosser [9] during
the course of research on the A-calculus. Properties of terminating relations were
investigated by Newman [16]. For a systematic treatment of both topics together
with further references, see [14]. Monoids with terminating Church-Rosser
presentations have been studied by Nivat [17] and others. See [5] for a recent
survey.

‘We conclude this introduction with a brief outline of what follows and some
further discussion.

Section 1 contains basic results on Noetherian relations. In particular, we
develop some tools for dealing with free abelian groups which have a basis
ordered by a Noetherian relation.

Section 2 introduces and Church-R (Because
of difficulties in verifying that the relation — defined in Section 2 is Noetherian, it
is common to assume that the rewriting rules R are length-reducing: if (r, s) € R,
then |r| > |s|. We specifically do not make this assumption, so that our terminol-
ogy differs, for example, from that of [5].) Variations of Theorem 2.1, which gives
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Abstract

The main purpose of this paper is to describe a negative answer to the following question:
Doss every fntely presented monoid with a decidablo word problem havo  presentation
(SiR) where R is a finite canonical rewriting system?

To obtain this answer a certain homological finiteness condition for monoids is considered.

is a monoid that can be presented by a finite canonical rewriting system, then 0

U"I’),—monold Since there are well-known examples of finitely presented groups that have

easily decidable word problem, but that do not meet this condition, this implies that there are

finitely presented monoids (and groups) with decidable word problem that cannot be presented
by finite canonical rewriting systems.

Introduction

Let © be an alphabet. identity 1, the
empty word. A string rewriting system R on I is a subset of £’ 5, the elements of
which are called (rewrite) rules. R induces a single-step reduction relation =>; on £°,
which s defined through u = v if and-only if w = zly and v = zry for some words

Then £° denotes the free monoid generated by £

2,y €X° and a rule (I,r) € R. The reflexive transitive closure =»7 of =>p is the reduc-
tion relation generated by R, and the reflexive symmetric and transitive closure w7 of it is
the Thue congruence gencrated by R. The factor monoid £*/o+7 of the free monoid £
modulo the congruence « is denoted by Mg, and the ordered pair (Z,R ) is called a monoid
presentation of this monoid.

The word problem for Mp, is the following well-known decision problem :



Squier’s theory for monoids and algebras

I. Introduction: from the word problem to homology of monoids.

Il. Low-dimensional coherence from convergence.
» Presentations of monoids and Syzygies.

» Coherence and three-dimensional presentations.

I1l. Homological syzygies from convergence.
» Homological finiteness conditions.

» Polygraphic resolutions from convergence.

IV. Linear rewriting.



Part I. Introduction: from the word problem to homology
of monoids



Critical pair Lemma

Séminaire DUBREIL 7-01
(A1gdbre)
25e année, 1971/72, n°® 7, 9 p. 31 janvier 1972

CONGRUENCES PARFAITES ET QUASI-PARFAITES

par Maurice NIVAT

(rédigé avec la collaboration de Michdle BENOIS)

1. Introduction.

Nous définissons ci-dessous une classe de congruences sur un monoide libre qui
Jjouit de propriétés de décidabilité remarquables. Ces congruences ont été considé-
rées pour la premidre fois, semble-t-il, par M. NIVAT & 1'occasion de ses travaux
sur les langages algébriques. Un langage algébrique qui joue un r8le fondamental
dans toute la théorie est en effet le langage de Dyck que l'on définit comme classe
d'équivalence du mot vide dans une congruence parfaite, congruence que les mathéma-
ticiens connaissent bien puisqu'il s'agit de celle qui permet de construire le
groupe libre comme quotient d'un monoide libre.

Nous ne donnons ci-dessous que les propriétés fondamentales, renvoyant & la bi-

bliographie pour les applications.
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Examples: confluence of 2-polygraphs

» Monoid of positive braids on three strands:

e el R R0

Bj = (s, t|sts=tst)

» The 2-polygraph

v
(st | tst => sts)
has only one critical branching:
YstSt_s, stsst
tstst

tsYst tssts



Examples: confluence of 2-polygraphs

» The 2-polygraph
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Examples: confluence of 2-polygraphs

» The 2-polygraph

(rs;t | sr g rs, ts g st, tr g r)

> It has only one critical branching

sy
str :rt> srt
Ystr
tsr
tYrS
trs —— rts

YrS



Examples: confluence of 2-polygraphs

» The 2-polygraph

(rs;t | sr g rs, ts g st, tr g r)

> It has only one critical branching

SYrt
str =——> sr
Ystr
tsr
ty
" trs = rts

Yrst



Knuth-Bendix’'s completion procedure

Input: £ be a terminating 2-polygraph with a total termination order <.
KB(L):=X
Cb:={ critical branchings of X}

while €b # 0 do /}f—é v

Picks a branching in Cb: u L
\ w
F

f
Ch:= b\ {(f, g)} /-;Xv:>v
ll/

Reduce v (resp. w) to a normal form v (resp. w) with respect to KB (X),
if V# w then }\_>w:>w

if v > w then

f ~
u VOC

KB(X)s = KB(Z)aU{x:v=w}

end
if w > v then

KB(L)z := KB(Z)aU{x:w=Vv}: u o

end

end
Cb := Cb U/ {critical branching created by o}

end



Knuth-Bendix’s completion procedure

» If the procedure stops, it returns the 2-polygraph KB (X).

» Otherwise, it builds an increasing sequence of 2-polygraphs, whose limit is denoted
by KB(X).

» If the starting 2-polygraph X is already convergent, then KB (X) = X.

Theorem. (Knuth-Bendix, 1970)
> A Knuth-Bendix's completion KB (X) of a 2-polygraph £ is a convergent presentation
of the category X.

> Moreover, the 2-polygraph B (%) is finite if, and only if, the 2-polygraph X is finite
and if the Knuth-Bendix's completion procedure halts.



Existence of finite convergent presentations

» The normal form procedure proves that, if a monoid admits a finite convergent

presentation, then it has a decidable word problem.
» The converse implication was still an open problem in the middle of the eighties.

Question. (Jantzen, 1982, see also Bauer, Book, Otto and Diekert)
Does every finitely presented monoid with a decidable word problem admit a finite

convergent presentation ?
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Example. (Bauer-Otto, 1984) Knuth-Bendix completion of the 2-polygraph

ZKN:<s,t,a\ta % as, st :ﬁ> a)
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Example. (Bauer-Otto, 1984) Knuth-Bendix completion of the 2-polygraph

ZKN:<s,t,a\ta % as, st :ﬁ> a)

JC‘B(ZKN) :<s,t,a|ta % as, st :B> a

B%;aa

sta
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Example. (Bauer-Otto, 1984) Knuth-Bendix completion of the 2-polygraph
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Knuth-Bendix’'s completion: example

Example. (Bauer-Otto, 1984) Knuth-Bendix completion of the 2-polygraph

ZKN:<s,t,a\ta % as, st :ﬁ> a)

IK‘B(ZKN) :<s,t,a| ta % as, st :B> a, sas % aa
B%} aa % aat

sta /)Y sast

\\s% sas

N\
53[3 Ssaa



Knuth-Bendix’'s completion: example

Example. (Bauer-Otto, 1984) Knuth-Bendix completion of the 2-polygraph

ZKN:<s,t,a\ta % as, st :ﬁ> a)

KB (KN *<s t,alta % as, s a, sas % aa, saa % aat

: %
o ’>>
sta Y sast
\\s% sas



Knuth-Bendix’'s completion: example

Example. (Bauer-Otto, 1984) Knuth-Bendix completion of the 2-polygraph

ZKN:<s,t,a\ta % as, st :ﬁ> a)

v
, sas =—> aa, saa % aat

Yasy aaas

B
:> a
sast />> sasas

sta /)Y
\\s% sas sax saaa

KB (KN *<sta|ta % as, st



Knuth-Bendix’'s completion: example

Example. (Bauer-Otto, 1984) Knuth-Bendix completion of the 2-polygraph

ZKN:<s,t,a\ta % as, st :ﬁ> a)

v
, sas =—> aa, saa % aat

5.
7?7 2aas Laax

KB (KN *<sta|ta % as, st

sast sasas aata

sta /)Y
\\s% sas sa% saaa /



Knuth-Bendix’'s completion: example

Example. (Bauer-Otto, 1984) Knuth-Bendix completion of the 2-polygraph

ZKN:<s,t,a\ta % as, st :ﬁ> a)

v
KB (KN ) =(s talta % as, st a, sas —, aa, saa % aat

g
B%; v?; aaas Laax
b

sta Y sast sasas aata

\\s% sas saf sa¥ saaa /
W% aaaa

sasaa

Vi

sad saaat



Knuth-Bendix’'s completion: example

Example. (Bauer-Otto, 1984) Knuth-Bendix completion of the 2-polygraph

ZKN:<s,t,a\ta % as, st :ﬁ> a)

v
a, sas —» aa, saa % aat )

B
=
7?7 2aas Laax

KB (KN *<sta|ta % as, st

K

¥

sasas aata

sa% saaa = § 4

sta

Y sast

/

agaf
44 > 23aa & aaast

sasaa />> aaxt

sa5 > Saaat = aatat
dat

\



Questions.
> Which condition a monoid need to satisfy to admit a presentation by a finite

convergent rewriting system 7

> How can we caracterize the class of finitely presented monoids that have finite
convergent presentations ?
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Example

Example. Stallings, 1963, constructed a finitely presented group G whose H3(G,Z) is not
finitely generated and thus it does not have homological type FP3.

> The given presentation has five generators a, b, ¢, x, y and seven relations:
[x,al = [y,al = [x,b] = [y, b] = [a~*x,c] = [a"ty,c] = [bta,c] =1,

where the bracket is defined by [x, y] = xyx~1y—1.

> Bieri, 1976, proved that this group has a decidable word problem,
» It was not yet known that it was the first example of a group
> with a decidable word problem,

> whose word problem cannot be solved by the normal form algorithm.

» Similar example (group of matrices) by Abels, 1979.



Squier’s example

Example. Consider, for every k > 1, the monoid Sy presented by
(abt,xt, . oxkyt vk | (an)nens (Bi)icick: (Yidicick: (8)1<icks (€1)1<ick )

with

o4 i i S; €
at"b :n> 1, xja L} atx;, Xt i} tx;, Xxib :’> bxi, xiyj —> 1.
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Squier’s example

Example. Consider, for every k > 1, the monoid Sy presented by

(abt,xt, . oxkyt vk | (an)nens (Bi)icick: (Yidicick: (8)1<icks (€1)1<ick )

with
P Bi Yi 8 €
at"h = 1, xa — atx;, xt — tx, xb = bx;, xy; — 1.

Theorem. (Squier, 1987)
> For k > 1, Sy is finitely presented.
> For k > 1, Sy has a decidable word problem.
> For k > 2, H3(Sg,Z) is not finitely generated.
> Hence, for k > 2, Sy does not admit a finite convergent presentation.

> Sy is of finite homological type left-FP,, H,(S1,Z) are finitely generated for all n > 0.

> Theorem A does not apply.
> « the author does not known whether or not Sy has
a finite uniquely terminating presentation. »

Theorem. (Squier, 1994)
> S; does not have of finite derivation type.
> Hence, S; does not admit a finite convergent presentation.
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Extensions of Squier’s finiteness conditions

Theorem. (Anick 1986, Kobayashi 1990, Groves 1990, Brown 1992)
If a monoid admits a finite convergent presentation, then it is of homological type
left-FPo.

» Numerous finiteness conditions where introduced with the goal to have a sufficient

condition for the finite-convergence:
> Wang-Pride 2000, Kobayashi-Otto 2001-2003, Pride-Otto 2004, Pride-Glashan-Pasku
2005.

> The characterization of the class of finitely presented monoids having a presentation by
a finite convergent rewriting system is still an open problem.

» How to describe in the higher-categorical framework the constructions by Anick, Kobayashi,

Groves, Brown ?

Question. (Lafont-Metayer, 2009)
Is it true that a monoid presented by a finite convergent rewriting system always has a
finite cofibrant approximation in the folk model structure on co-categories ?



Part Il. Low-dimensional coherence from convergence
(proof of Theorem B).

» Presentations of monoids and Syzygies.

» Coherence and three-dimensional presentations.



Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B (S3), obtained from Artin’s
presentation by coherent adjunction of the Coxeter element st

Z§N2<s,t,a ! ta % as, st :ﬁ> a>

The deglex order generated by t > s > a proves the termination of ZgN.

S(Z?N):<s,t,a ‘ ta % as, st i} a, sas %} aa, saa :5> aat | A, B, C, D>

Y sast 5 sasas iU/C aata

sa% saaa /

/

W% aaaa <: aaast

sasaa aaxt

528 ” saaat = aatat
dat



Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B (S3), obtained from Artin’s

presentation by coherent adjunction of the Coxeter element st

Z§N2<s,t,a ! ta % as, st :ﬁ> a>

The deglex order generated by t > s > a proves the termination of Zg{N.

S(ZgN):<s,t,a | ta % as, st i} a, sas ;} aa, saa :5> aat | A B C, D)

Y sast 5 sasas iU/C aata

sa% saaa %\

/

W% aaaa <: aaast

sasaa aaxt

528 ” saaat = aatat
dat

» We will see that this coherent presentation is bigger than necessary.



A variant of Squier’'s example

Example. (Lafont-Prouté, 1991) Consider the monoid M presented by the 2-polygraph:
!

L ={ab,cdd ‘ ab 2} a, da :B> ac, d’a L} ac ).

» The monoid M admits a finite presentation, it has a decidable word problem, yet it is not of
finite derivation type.
» Infinite Knuth-Bendix completion of X:

/

KB(L) = (ab,cdd | (ac"h % ac") ey, da :B> ac, d’a % ac).

» Squier's completion of KB (ZF) has two infinite families of 3-cells:

%1

dac"b lUA,, ac"tt d’ac"b MB,, ac"t1

%dac"% d o, d/ac”%

» The monoid M is not of finite derivation type:

> KB (X) has no triple critical branching.

> The 3-cells B, induce a projection 71 : KB (Z)T — (Z)T, so that the family
(7t(An)) nen is an infinite homotopy basis of Z 7.

+1 +1
Bc"bs ac" b B'c"bs ac""t b __atpi1

> No finite subfamily of (7t(A,))qen can be a homotopy basis of (X) 7.



Application of Squier’'s completion: coherence for monoids
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compute f’ and g’ reducing to some normal forms.
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For a terminating presentation ¥ of a category C, the homotopical completion $(X) is a

coherent convergent presentation of C.



Homotopical completion procedure

» Potential adjunction of additional 2-cells otf , can create new critical branchings,
> whose confluence must also be examined,
> possibly generating the adjunction of additional 2-cells and 3-cells
> ...

» This defines an increasing sequence of (3,1)-polygraphs

Zzzogzlg._'gzngzn+lg_”

» The homotopical completion of X is the (3,1)-polygraph
s(x)y=z"

n=0

Theorem. [Gaussent-Guiraud-M., 2015]
For a terminating presentation ¥ of a category C, the homotopical completion $(X) is a
coherent convergent presentation of C.

Proof.
> 8(X) obtained from X by successive application of Knuth-Bendix's procedure.
> Squier's coherence theorem.



Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B (S3), obtained from Artin’s

presentation by coherent adjunction of the Coxeter element st

Z§N2<s,t,a ! ta % as, st :ﬁ> a>

The deglex order generated by t > s > a proves the termination of Zg{N.

S(ZgN):<s,t,a | ta % as, st i} a, sas % aa, saa :5> aat | A B C, D)

Y sast 5 sasas iU/C aata

sa% saaa %\

/

W% aaaa <: aaast

sasaa aaxt

528 ” saaat = aatat
dat

However. The coherent presentation S(Z?N) is bigger than necessary.
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INPUT: A terminating 2-polygraph X.



Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute an homotopical completion 8(X) (convergent and coherent).

Step 2. Compute critical triple branching, that is overlappings of three rewriting steps:

AN, SN TN
N s S Nl S




Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute an homotopical completion S(X) (convergent and coherent).

Step 2. Compute critical triple branching, that is overlappings of three rewriting steps:

AN, TN
N S N ls S

Step 3. Apply the homotopical reduction to §(X) with a collapsible part I made of

> 3-spheres induced by some of the generating triple confluences of §(X),




Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
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Step 2. Compute critical triple branching, that is overlappings of three rewriting steps:
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Step 1. Compute an homotopical completion 8(X) (convergent and coherent).
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute an homotopical completion 8(X) (convergent and coherent).

Step 2. Compute critical triple branching, that is overlappings of three rewriting steps:
N S Nl S

Step 3. Apply the homotopical reduction to §(X) with a collapsible part " made of

> 3-spheres induced by some of the generating triple confluences of S(X),
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INPUT: A terminating 2-polygraph X.
Step 1. Compute an homotopical completion 8(X) (convergent and coherent).
Step 2. Compute critical triple branching, that is overlappings of three rewriting steps:
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Step 3. Apply the homotopical reduction to $(X) with a collapsible part " made of
> 3-spheres induced by some of the generating triple confluences of §(X),
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute an homotopical completion 8(%) (convergent and coherent).

Step 2. Compute critical triple branching, that is overlappings of three rewriting steps:

Step 3. Apply the homotopical reduction to S(X) with a collapsible part " made of
> 3-spheres induced by some of the generating triple confluences of S(X),
> the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence:

> some collapsible 2-cells or 3-cells already present in the initial presentation X.

» The homotopical completion-reduction of the 2-polygraph X is the (3,1)-polygraph
R(E) = mr(8(2))

Theorem. [Gaussent-Guiraud-M., 2015]
For every terminating presentation L of a category C, the homotopical
completion-reduction R(X) is a coherent presentation of C.
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The homotopical completion-reduction procedure

Example.

Z?N:<s,t,a } ta%as,st:6>a>
S(Z?N):<s,t,a | ta % as, st :B> a, sas %) aa, saa :5> aat| A B,C,D)
(sit,a | ta X s, st :B> a, sas ;> aa, saa :6> aat | A,B,J)&.D)

» There are four critical triple branchings, overlapping on
sasta, sasast, sasasas, sasasaa.

> Critical triple branching on sasta proves that C is redundant:

aax
ta aata aaas ta aata
Y é Y % -..\a X
M,Ba /» da
sasta " aaas aao
sasta =saf} a» saaa = N & \

v
> =
Msa A a)say 5350% sasas MC aata
2
saso sasas \x %
say saaa ’/éa

C = sasa ! %1 (Ba*1 aax) %> (saA x1 8a %1 aax)

7



The homotopical completion-reduction procedure

Example.

Z?N:<s,t,a } ta % as, st :B> a)

S(Z?N):<s,t,a } ta % as, st :B> a, sas %} aa, saa :5> aatIA,B,C,D>
<s,t,a | ta % as , st :B> a, sas % aa, saa :6> aatIA,B,XBQ

» There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

> Critical triple branching on sasast proves that D is redundant:

aaafd
yast aaast =———> aaaa

C tm Kaa ot\

sasast =sayt> saaat 5:} aatat
at

lsaB /))sazs

sasaf} sasaa

yast >, aaast \aiaﬁ

4 XY gaaf}
sasast I aaaa aaast

W i

N

535% saaat ﬁ aatat
a

D = sasa[3>_1 *1 ((Ct %1 aaafd) x2 (saB x1 dat x1 aaxt x1 aaa[S))



The homotopical completion-reduction procedure

Example. Z?N :<s, t a } ta % as, st :B> a)
KN B Y 2
S(=5N)=(sta | ta % as, st = asas —p aa,;saa — aat|AB.C,D)
(sit,a | ta = as,st :ﬁ> a, sas % aa, saa :6> aat | A, B, 8. K)

> The 3-cells A and B are collapsible and the rules v and & are redundant.

ﬁa/aa %aat
sta lUA })Y sast MB />>6



The homotopical completion-reduction procedure

Example. Z?N _ < st a } ta % as, st :B> a)

S(Z?N):<s,t,a | ta % as, st :B> a, sas %) aa, saa :5> aat| A B,C,D)

(sit,a | ta % as , st i} a,%MX,XXBQ

> The 3-cells A and B are collapsible and the rules v and & are redundant.

Ba/ aa % aat

sta sast

\scx\\> sas :% saa



The homotopical completion-reduction procedure

Example. Z?N — < st a ta % as, st :B> 3>

S(ZXN) = (s,t,a ta%as stz}asasz}aasaaz}aatlABCD>

stx ta%x%%%)@&)iﬁ@

B . .
> The rule st —> a is collapsible and the generator a is redundant.



The homotopical completion-reduction procedure

Example. Z?N — < st a ta % as, st :B> a)

S(ZXNYy = (st a ta as, st a, sas aa, saa :> aat| A B,C,D
2

(s, tx | tst % sts%%%”{ﬁ)&ﬁ@

R(Z?N)=< st | tst % sts

= Art3(S3)

SRR RIS 10



The homotopical completion-reduction procedure

Example. Z?N _ < st a } ta % as, st :B> a)

S(Z?N):<s,t,a | ta % as, st :B> a, sas ;) aa, saa :5> aat| A B,C,D)

<s,t,x | tst % sts,%%%”&?i)&ﬁ@

R(EEN) ={ s, t | tst%sts | 0)

= Art3(S3)
S(RLIR RIS T 0
St

K H With presentation Artz(S3) two proofs
& H‘ > of the same equality in B;r are equal.
58 (3

./

/
250
Q”ﬂfﬁ
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The homotopical completion-reduction procedure

Exemple.
Art2(Sa) = (r,s,t | rsr =srs, sts = tst, rt = tr)

r:%ll 51'*' tlex

HHRE IBHRE R

r




The homotopical completion-reduction procedure

Exemple.
Art2(Sa) = (r,s,t | rsr =srs, sts = tst, rt = tr)

r=e |l os=l s | e IS

HHRE IBHRE R

r

Proposition. (Deligne, 1997)
For presentation Art>(S4) of B} two proofs of the same equality are equal modulo
Zamolodchikov relation:

stsrst strsrt srtstr srstsr rsrtsr
P «

7/ m N\

rstrsr

Va
tsrtst == tsrsts == trsrts == rtstrs = rstsrs /
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» Let W be a Coxeter group
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Artin monoids: Garside’'s presentation

» Garside's extended presentation of the Artin monoid B (W)
> 1-cells:
Gary (W) = W\ {1}
> 2-cells:
Garz(W) = { ulv o%” uv whenever [(uv) = I(u) + I(v) }

where uv is the product in W and u|v is the product in the free monoid over W.
> Gar3 (W) made of one 3-cell

ulviw MAu,v,w uvw

u% ulvw %

for every u, v, w in W \ {1} such that the lengths can be added.

Theorem. [Gaussent-Guiraud-M., 2015]
Gar3 (W) is a coherent presentation the Artin monoid B™ (W)

Proof.
By homotopical completion-reduction of the 2-polygraph Garz (W).



Artin monoids: Artin’s coherent presentation

Theorem. [Tits, 1981, Gaussent-Guiraud-M., 2015]
The Artin monoid B* (W) admits the coherent presentation Art3 (W) made of

> Artin's presentation

Arta(W) = (S | (ts)™ = (st)™t )

> one 3-cell Z, s for every t > s > r in S such that the subgroup Wy, ; ¢, is finite.



Artin monoids: Zamolodchikov Z, s ; according to Coxeter type

Type A3

SYnSY, Srysel
strsrt == srtstr == srstsr

Sty Yrstsr
stsrst rsrtsr
Vaerst rsYnsr
tstrst mzy‘s‘r rstrsr.
rsymﬂ sty
tsrtst rstsrs
tsry s rysers

tsrsts ﬁ trsrts NT‘/.?S rtstrs
Type H3

o sttt == srtsstssrt = rrtsrstssst T sttt i

a Ny

SYrsrYar,

Vi

strsrstsr

sty m’”‘

stsrsrtsr

Yt ,m,ﬂ*

tstrsrtse

tsrtstrse

tsryac B,JL

tsrstsrse

e

N

.
sty tmmﬂk’ﬁ ,f:mnmkﬁ tmm.i ﬁ ';lsrtﬁtrsnﬁ,;tﬂmbs =

Type B3

¢

Type A1 X A1 X A]_

SYn

str ﬁ srt
yﬂ/ N
tor Mz o

s == is

Type h(p) x A1, p > 3,

sy ()P 2

rsrstsrst

'W*my“ st

rsrtstrst

Yty stie? T EEES () — (17 = Yt

t(sr)P

7.

S

eSS e —— (o) = (

Yre(sr)? ryst(sr)?

N

(rs)Pt



Plactic monoids

» Knuth’s presentation of the plactic monoid P,



Plactic monoids

» Knuth’s presentation of the plactic monoid P,

> 1-cells:

Knuthy(n) = {1,...

,n}



Plactic monoids

» Knuth’s presentation of the plactic monoid P,

> 1-cells:
Knuthy(n) = {1,...,n}

> 2-cells are Knuth relations:

Knutha(n) = { “Y > foralll< x<y<z<n )
yzx =yxz foralll<x<y<z<n



Plactic monoids

» Knuth’s presentation of the plactic monoid P,

> 1-cells:
Knuthy(n) = {1,...,n}

> 2-cells are Knuth relations:
zxy = xzy foralll<x<y<z<n }

Knutha (n) =
2(n) { yzx =yxz foralll<x<y<z<n

» For n > 4, there is no finite completion of Knuthx(n), (Kubat-Okninski, 2014).



Plactic monoids

» Knuth’s presentation of the plactic monoid P,

> 1-cells:
Knuthy(n) = {1,...,n}

> 2-cells are Knuth relations:

Knutha(n) = { “Y > forall<x<y<z<n )
yzx =yxz foralll<x<y<z<n

» For n > 4, there is no finite completion of Knuthz(n), (Kubat-Okninski, 2014).

» We need to add new generators to Knuthy (n).



Plactic monoids

» Knuth’s presentation of the plactic monoid P,

> 1-cells:
Knuthy(n) = {1,...,n}

> 2-cells are Knuth relations:

Knutha(n) = { “Y > forall<x<y<z<n )
yzx =yxz foralll<x<y<z<n

» For n > 4, there is no finite completion of Knuthz(n), (Kubat-Okninski, 2014).
» We need to add new generators to Knuthy (n).

» Any l-cell w in Knuthj(n) is equals to its Schensted’s tableau P(w):



Plactic monoids

» Knuth’s presentation of the plactic monoid P,

> 1-cells:
Knuthy(n) = {1,...,n}

> 2-cells are Knuth relations:

Knutha(n) = { “Y > forall<x<y<z<n )
yzx =yxz foralll<x<y<z<n

» For n > 4, there is no finite completion of Knuthz(n), (Kubat-Okninski, 2014).
» We need to add new generators to Knuthy (n).

» Any l-cell w in Knuthj(n) is equals to its Schensted’s tableau P(w):

1]1]1]2]2]3]4]
2]2[3]3[4]6
4]5]6]6

6]7




Plactic monoids

» Knuth’s presentation of the plactic monoid P,

> 1-cells:
Knuthy(n) = {1,...,n}

> 2-cells are Knuth relations:

Knutha(n) = { “Y > forall<x<y<z<n )
yzx =yxz foralll<x<y<z<n

» For n > 4, there is no finite completion of Knuthx(n), (Kubat-Okninski, 2014).
» We need to add new generators to Knuthy (n).

» Any l-cell w in Knuthj(n) is equals to its Schensted’s tableau P(w):

1]1]1]2]2]3]4]
2]2[3]3[4]6
4]5]6]6

6]7

» Column presentation (Cain-Gray-Malheiro, 2015)

> add columns as generators:

Cu = Xp...xox1 € Knuthi (n) suchthat x, > ... > x > x1.
p 1 p
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» Column extended presentation of the plactic monoid P,
> 1-cells:
Coli1(n) = { Cu | uis a column }
> 2-cells: Coly(n) is the set of 2-cells

Xuv

CuCy = CwCyr

such that
> u and v are columns,
> the planar representation of P(uv) is not the juxtaposition of columns u and v,
> w and w’ are respectively the left and right columns of P(uv).
> 3-cells:

Celel ¢
Oy Ces, CoCe! Ct ——> CeCpCpr X bChr

CxCyCe Mxx, vt CaCdCp/

m %ylwl
CxCwCy/ % C2Cyt Cy/
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wCw

with x in Knuthy(n) and v, t are columns.

Theorem. [Hage-M., 2015]
For n > 2, Colz(n) is a finite coherent presentation of the plactic monoid P,,.
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» Column extended presentation of the plactic monoid P,
> 1-cells:
Coli1(n) = { Cu | uis a column }
> 2-cells: Coly(n) is the set of 2-cells

Xyv
cucy CwCy/
such that
> u and v are columns,
> the planar representation of P(uv) is not the juxtaposition of columns u and v,
> w and w’ are respectively the left and right columns of P(uv).
> 3-cells:

Celel ¢
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CaCdChr

cxcvee Mxx,v.t
CxCw Cyy/ % C2Cyt Cy/ ;
Oy ,

wCw

with x in Knuthy(n) and v, t are columns.

Theorem. [Hage-M., 2015]
For n > 2, Colz(n) is a finite coherent presentation of the plactic monoid P,,.

Proof. By homotopical completion-reduction of the 2-polygraph Colz(n).
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» An n-polygraph X is a sequence
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constructed by induction
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Polygraphs

» An n-polygraph X is a sequence
(X0, Z1,%2,...,%,)

constructed by induction

P paE:

S1
5
to t1
S0 I S1 JA\ S2
to t1 t2
P 3

px



Polygraphs

» An n-polygraph X is a sequence
(X0, Z1,%2,...,%,)
constructed by induction

So S2
* * *
P Y PR X3

to t2
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Polygraphs

» An n-polygraph X is a sequence
(X0, Z1,%2,...,%,)

constructed by induction

So S1 S2 S3
o€ IR PRS- T3¢ (---
to t1 to t3
S0 I S1 I S2 I S3
to t t2 t3
I o I3 ()

» An n-polygraph L induces an abstract rewriting system on Z* .
» We extend the (abstract) rewriting properties:

termination / confluence / locally confluence / convergence.
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» A family of generating confluences of X is a cellular extension of the (n, n — 1)-category
Z;,r that contains exactly one (n + 1)-cell

« v o’
// \\\\
/ MY
u lA u’
AN a
B\’ w /B/
for every critical branching («, ) of .

» A Squier’s completion of the n-polygraph X is the (n+ 1, n— 1)-polygraph

where T is a chosen family of generating confluences of X.

) S2 Sn—1 Sn T
o€ pIE: [CERDE: DI x,
to t2 tn
I el N\
to t2 th—1 th
Zn—l Zn



Squier’s completion and finite derivation type

Proposition.

If X is a convergent presentation of an (n — 1)-category C, thatisC~X* ,/%,, then a
Squier’s completion S(X) = (Z,T) is a coherent presentation of C, thatis £ /T is
aspherical.



Squier’s completion and finite derivation type

Proposition.

If X is a convergent presentation of an (n — 1)-category C, thatisC~X* ,/%,, then a
Squier’s completion S(X) = (Z,T) is a coherent presentation of C, thatis £ /T is
aspherical.

Consequence.
For n > 1, a finite convergent n-polygraph X with a finite number of critical branchings
has finite derivation type.



Squier’s completion and finite derivation type

Proposition.

If X is a convergent presentation of an (n — 1)-category C, thatisC~X* ,/%,, then a
Squier’s completion S(X) = (Z,T) is a coherent presentation of C, thatis £ /T is
aspherical.

Consequence.
For n > 1, a finite convergent n-polygraph X with a finite number of critical branchings
has finite derivation type.

» For n = 2, this is Squier's Theorem.



Squier’s completion and finite derivation type

Proposition.

If X is a convergent presentation of an (n — 1)-category C, thatisC~X* ,/%,, then a
Squier’s completion S(X) = (Z,T) is a coherent presentation of C, thatis £ /T is
aspherical.

Consequence.
For n > 1, a finite convergent n-polygraph X with a finite number of critical branchings
has finite derivation type.

» For n = 2, this is Squier's Theorem.

> Two shapes of critical branchings in a 2-polygraph:



Squier’s completion and finite derivation type

Proposition.

If X is a convergent presentation of an (n — 1)-category C, thatisC~X* ,/%,, then a
Squier’s completion S(X) = (Z,T) is a coherent presentation of C, thatis £ /T is
aspherical.

Consequence.
For n > 1, a finite convergent n-polygraph X with a finite number of critical branchings
has finite derivation type.

» For n = 2, this is Squier's Theorem.
> Two shapes of critical branchings in a 2-polygraph:

Regular critical branchings




Squier’s completion and finite derivation type

Proposition.

If X is a convergent presentation of an (n — 1)-category C, thatisC~X* ,/%,, then a
Squier’s completion S(X) = (Z,T) is a coherent presentation of C, thatis £ /T is
aspherical.

Consequence.
For n > 1, a finite convergent n-polygraph X with a finite number of critical branchings
has finite derivation type.

» For n = 2, this is Squier's Theorem.
> Two shapes of critical branchings in a 2-polygraph:

Regular critical branchings Inclusion critical branchings

S~ S %



Squier’s completion and finite derivation type

Proposition.

If X is a convergent presentation of an (n — 1)-category C, thatisC~X* ,/%,, then a
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aspherical.
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» For n > 3, there exist finite convergent n-polygraphs which does not have finite derivation
type.
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» Regular critical branchings:

» Inclusion critical branchings:

» Left-indexed critical branchings, multi-indexed critical branchings.
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Let = be a finite, convergent 3-polygraph.

> If X does not have indexed critical branchings, then I has finite derivation type.

> If £ has indexed critical branchings, but each of them has a finite number of normal
instances, then X has finite derivation type.
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Part Ill. Homological syzygies from convergence.
» Proof of Theorem A.

» Polygraphic resolutions from convergence.
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» A construction with (oo, 1)-polygraphs.



Polygraphic resolutions from convergence.

» Higher-dimensional normalisation strategies for acyclicity.
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» For p < n, an (n, p)-polygraph is a data made of
> a p-polygraph (Xo,..., X,),
> for p < k < n, a cellular extension X1 of the free (k, p)-category

I o= Z5(Zpa) - (Ze).
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Polygraphic resolutions

» A polygraphic resolution of a p-category C is an acyclic (oo, p)-polygraph whose
underlying (p + 1)-polygraph is a presentation of C.

O\Z1<u <Z;\P+1<&a+z<u»<}::1\u.
pars o1 Tpi2
C~X,/Zpi1, Z;+1/Zp+2 aspherical, ... ZnTil/Z,, aspherical, ...

Theorem. (Guiraud-M., 2012)
Let X be a polygraphic resolution of a p-category C. The canonical projection

sTC
is a cofibrant approximation of C in the canonical model structure on (oo, p)-categories.

» (Guiraud-M., 2012) Method to compute polygraphic resolutions for 1-categories from
convergence.
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Normalisation strategy

» A normalisation strategy for X is a mapping o of every k-cell f of ZZ to a (k+ 1)-cell of

T
Zk+1
such that
> (T); = 1?’ where f = O—Skfl(f) *k—1 Gtk—l(f)
D> Ofyjg = Of %j Og.

Theorem. (Guiraud-M., 2012)
An (n,1)-polygraph is acyclic if and only if it admits a normalisation strategy.
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Reidemeister-Fox-Squier complex

» Let X be an (n, 1)-polygraph and C be the 1-category presented by X.

» The Reidemeister-Fox-Squier complex of X is the complex of natural systems over C:

dn dp—1 da d1 13
FclZp] —— FclZp-1] .- FclZi] FclZo] —— Z —— 0.

dicloc] = [sk—1 ()] — [ti—1(ed)].

» If X is a polygraphic resolution of C
> a normalisation strategy for X induces a contracting homotopy for the complex Fc[X].
Theorem. (Guiraud-M., 2012)

If £ is a polygraphic resolution of a 1-category C, then the complex Fc[X] is a free
resolution of the trivial natural system Z.

Consequence.
> If C has a finite convergent presentation, then C is of homological type FP.
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The rightmost normalisation strategy

» Suppose that X is a reduced convergent 2-polygraph.

» Denote p, the rightmost rewriting step on a reducible 1-cell u:

\Q_Lf”//

» The rightmost normalisation strategy of X is the normalisation strategy p defined by

> on a irreducible 1-cell u

> on a reducible 1-cell u
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» Suppose that X is equipped with its rightmost normalisation strategy p.
> Any critical branching has the shape (@, p,,5):

with ¢ in Zo.
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Basis of generating confluences

» Any critical branching has the shape (@ U, p,,5):

uy

7t Yy @ with ¢ in X,.
\\\ \ﬂ/pj

S

» The basis of generating confluences of X is the cellular extension Cgz(X) of ZZT made of
one 3-cell

// —
nu Wh nu
\\\&"*.::::;.
Pusd
for every critical branching b = (@1, py,5)-
Theorem B. (Squier's Theorem)
The (3, 1)-polygraph
PR —— 31 Z;
NI\ [N
0 pE] " 2 . Ces(X)

is acyclic.



The basis of generating triple confluences

» A critical triple branching is an overlapping of three rewriting steps:

> For both shapes, the corresponding critical triple branching can be written

b = (CE, pu’ﬂ) = (fﬁ, pu/ﬁ, pu/g)

where ¢ = (f, p,/) is a critical branching and p,, = u1.
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The basis of generating triple confluences

» The basis of generating triple confluences is the cellular extension Cgy(A) of Cgz(A)

made of one 4-cell

T

for every critical triple branching

b= (fﬁr pu’ﬁr pu’ﬁ)

where ¢ = (f, p,/) is a critical branching.

Proposition.
The (4, 1)-polygraph

Yo Zli £ /\;r § Cg:;,(/\)T

So S1 I S2 I

to [51 t2
z

is acyclic.

Cga(A)



Basis of generating n-fold confluences

» An n-critical branching of X has the shape
b = (CE, pu’ﬁ)
where c is a critical (n — 1)-fold branching with source u’.
» The basis of generating n-fold confluences is the cellular extension Cg,,;(X) of
Cg,(Z)" made of one (n+ 1)-cell
~ ¥ — %

wp @ (welh)" — weu

for every critical n-fold branching b = (cu, p,/5)-

Theorem. (Guiraud-M., 2012)
Any convergent 2-polygraph X extends to a Tietze-equivalent polygraphic resolution

Cg(X)

Yo Ii¢ 5] ¢ Cg3 an
£ t:
° Tz R Cg3 an

1

whose n-cells, for n > 3, are indexed by the critical (n — 1)-fold branchings.



Part IV. Linear rewriting
» Linear 2-polygraphs.

» Linear polygraphic resolutions and Koszulity.
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Motivation

» Consider a homogeneous algebras A (eg. quadratic algebras, xy = x2 + zy, ...)
> The algebra A is naturally graded:
A=A DA DA BA3BALD - DAL DAK1D -

Ap=K>1, A;=KX)3x,y,x+y, Az>x2x2+y2 ..

> This induces a graduation on the vectors spaces Tor’,;‘y(,) (K, K),
> k refers to the homological degree and (i) refers to the weight grading.

0 0 0
0 0 .
0 ° 0
0 0 0
0 0 0
. 0 0

Tory (K,K)  Torf(K,K) Tors(K,K) Torh(K,K) Torf(K,K)

Definition. A graded algebra A is Koszul if the Torfy(i) (K,K) are "concentrated on the
diagonal":
Tory ;) (K,K) =0, for k # i.



Motivation

Theorem. (Priddy, 1970)
An algebra admitting a Poincaré-Birkhoff-Witt basis is Koszul.



Motivation

Theorem. (Priddy, 1970)
An algebra admitting a Poincaré-Birkhoff-Witt basis is Koszul.

Theorem.

An algebra having a presentation by a quadratic Grébner basis is Koszul.



Motivation

Theorem. (Priddy, 1970)
An algebra admitting a Poincaré-Birkhoff-Witt basis is Koszul.

Theorem.
An algebra having a presentation by a quadratic Grébner basis is Koszul.

Proofs:
> Anick, 1986, Green, 1999. Computation of free resolutions using non-commutative
Grobner bases.
— Hilbert series, Poincaré-Betti series, Betti numbers, ...
Description of the vector spaces Torfv(i) (K, K) in term of k-fold critical branching.



Motivation

Theorem. (Priddy, 1970)
An algebra admitting a Poincaré-Birkhoff-Witt basis is Koszul.

Theorem.
An algebra having a presentation by a quadratic Grébner basis is Koszul.

Proofs:
> Anick, 1986, Green, 1999. Computation of free resolutions using non-commutative
Grobner bases.
— Hilbert series, Poincaré-Betti series, Betti numbers, ...
Description of the vector spaces Torfv(i) (K, K) in term of k-fold critical branching.

> Berger, 1998: Confluence and Koszulity (X-confluence).



Motivation

Theorem. (Priddy, 1970)
An algebra admitting a Poincaré-Birkhoff-Witt basis is Koszul.

Theorem.
An algebra having a presentation by a quadratic Grébner basis is Koszul.

Proofs:
> Anick, 1986, Green, 1999. Computation of free resolutions using non-commutative
Grobner bases.
— Hilbert series, Poincaré-Betti series, Betti numbers, ...
Description of the vector spaces Torﬁ(i) (K, K) in term of k-fold critical branching.

> Berger, 1998: Confluence and Koszulity (X-confluence).

Definition. (Berger, 2001)
An N-homogeneous algebra A is Koszul if
IN if k=2/

Tor® . (K,K) =0, fori# (y(k), h Oy (k) =
orj (i) (K. K or i # tulk),  where  ty(k) {IN+1 i k—2/+1
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Motivation

» Computation of free resolutions using Grdbner bases (Anick, 1986, Green, 1999, ...)
> Given a Grdbner basis for (R) wrt a monomial order, that is a subset G of R such that

—(G) =(R),
— (16(6)) = (t(R)).
» Anick’s resolution:

5.1 o 51 5o Sn
0+—K ¢«— A — A[X] ¢ A[R] = A[O2] +— ... +— A[Op_1] — A[Op] +— ---

where
— A[O,] is the free A-module generated by minimal n-fold overlapping,

— the map 6, decomposes n-fold overlappings into (n — 1)-fold overlappings of G.
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Example.
Alx,y,z | xyz=x3+y3+23)

» Grobner basis wrt lexicographic order with x <y < z

G:{ z3fxyz+x3+y3, zy3fzxyz+zx3+xy227x3zfy3z }

o 1 o d o o
0«+—K +— A %0 Alx,y, z] (—1 A[Z3, 23] (—2 AlZ*, 233 %3 A%, 243 «—— ...

> giving an infinite free resolution,

> that computes Torf’(l.) (K, K):
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Example.

Alx,y,z | xyz=x3+y3+23)

» Grobner basis wrt lexicographic order with x <y < z

G:{ z3fxyz+x3+y3, zy3fzxyz+zx3+xy227x3zfy3z }

o o d o o
0+—K %1 A %0 Alx,y, z] (—1 A[Z3, 23] (—2 AlZ*, 233 %3 A%, 243 «—— ...

> giving an infinite free resolution,

> that computes Tor’,;\’(l.) (K, K):

0

4 0 0 0
3 0 0 K 0
2 0 0 0 0
1 0 K3 0 0
0 K 0 0 0
k  Torh(K,K) Torf(K,K) Tora(K,K) Tors(K,K)

> It follows that the algebra A is Koszul.
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Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no Poincaré-Birkhoff-Witt basis:
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> The algebra A is presented by the linear rewriting system
1
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\% e W‘E
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Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no Poincaré-Birkhoff-Witt basis:

Alx,y z | x>+yz=0, x>+azy=0) with a # 0,1

> The algebra A is presented by the linear rewriting system

1
yz % —x2 zy :ﬁ> —=x? yx? :> zx
a

\
/’

7—yx 7—xz

drdrd
e b e S

m\»—ﬂ
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x B 1 Y
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a
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Motivation

Example. (Backelin 1991, Polishchuk-Positselski 2005)
> A Koszul algebra that has no Poincaré-Birkhoff-Witt basis:

Alx,y z | x>+yz=0, x>+azy=0) with a # 0,1

> The algebra A is presented by the linear rewriting system

o
yz => —x°2
1
y/ﬁ7 - % e
yzy zyz

>A(x,y,z | «, B | 0) is a coherent quadratic presentation of the algebra A.
> It will follow that the algebra A is Koszul.

> Note that
Tora(m (K, K) ~ K, Tor?[l)(K,K) ~ K3, Toré,(z) (K.K) ~ K2,
TOTI/:(,-) (K,K) = 0 otherwise.






Four families of local branchings in a linear 2-polygraph

> Aspherical branchings
Aa+h

Au+h Af+h

Aa+h
with a: u = f 2-monomial, A € K\ {0}, h € AY, u & Supp(h).
> Additive branchings,

Aa+puv+h

/Af+uv+h

Au+ pnv+h

\Au+ pg +h

Au+ pb+ h

with a:u=f, b:v =g 2-monomials, A, u € K\ {0}, h € AL, u,v & Supp(h).



Four families of local branchings in a linear 2-polygraph

> Peiffer branchings,
Aav + h

/>Afv+h

Auv + h

\Aungh

Aub+ h

f

with a:u = f, b:v = g 2-monomials, A € K\ {0}, h € /\‘{, uv & Supp(h).
> Overlapping branchings,

Aa+h

Au—+h

\?\ +h
Ab+h 7€

with a:u = f, b: u= g 2-monomials, such that the branching (a, b) is neither aspherical
nor Peiffer, A € K\ {0}, h € AL, uv & Supp(h).
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Linear critical branching Lemma

» Some local branchings can be nonconfluent without termination, even if all critical

branchings are confluent.

Example.

A= (xy,zt]|xy % Xz, zt i} 2yt)

» A has no critical branching.

» However, A has a nonconfluent additive branching:

4ot 4x
dxyt —— dxzt — - - -
. oxzt+xf3
!
xzt + 2xyt
o
ot + 2xyt
3xzt = bxyt — - -

3x3 6t
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Linear critical branching Lemma

» Non-confluence of critical branchings may imply non-confluence of Peiffer local branchings,

even under the hypothesis of termination.

Example.

A={(xy,z | xy % 2x, yz :B> z)

» /\ terminates, but it has a nonconfluent Peiffer branching:

6xz 3xz

3ocz/H\ /
3x3
xyz + xyz 3xyz .
/ Tl 2xPB 4 xyz
Rl

Xyyz + xyz = 2xz + xyz

xy R + xyz 2xyz

» The critical branching (z, xf3) of source xyz is not confluent.



