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Summary: We are interested in the problem of estimating a regression function ' observed with
a correlated noise Y D '.X/CU . Contrary to the usual regression model, U is not centered
conditionaly on X but rather on an observed variable W . Hence this model turns to be a difficult
inverse problem where the corresponding operator is unknown since it is related to the joint
distribution of .X;W /. We focus on the case where the eigenvalues of the corresponding operator are
observed with small perturbations and, using a well adapted spectral cut-off estimation procedure,
we build a data driven estimates and derive an oracle inequality.

1 Introduction
The problem of estimating a regression function from noisy and pointwise observations
is at the heart of modern statistical research. The observations are usually an i.i.d. sample
.Yi ;Xi /

n
iD1, associated to the model

Y D '.X/CU; (1.1)

where ' is the unknown function to be estimated. The design .Xi /
n
iD1 can either be

deterministic or random, according to the considered setting while the termU corresponds
to some centered noise independent of X. We may refer for instance to [29] for an
introduction to the model (1.1) where a penalized least square estimator is proved to
reach the minimax rate of convergence over a wide range of functional spaces. Model
selection approaches leading to an oracle inequality are tackled in [2]. We may also
mention [1] for a study of the model (1.1) in a heteroscedastic setting. Kernel methods
have been widely investigated, see for instance [5] and references therein while projections
methods have been extensively developed over the past decades, see for instance [12] for
a pioneer work.

In this article, contrary to previous statistical regression models, the error term is
correlated with the explanatory variablesX . In particular, E.U jX/¤ 0 preventing a direct
estimation of '. To overcome the endogeneity of X , we assume that there exists an
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216 Loubes – Marteau

observed random variable W , which decorrelates the effects of the two variables X and
Y in the sense that E.U jW / D 0. Hence we aim at estimating a function ' from i.i.d.
observations of .Y;X;W / satisfying the following condition

Y D '.X/CU;

´
E.U jX/ ¤ 0

E.U jW / D 0
(1.2)

The model (1.2) is often encountered when dealing with simultaneous equations, error-in-
variable models, treatment model with endogenous effects. In econometrics, it defines the
so-called instrumental variable regression model which has received a growing interest
among the last decade. In particular, we refer to [26] for general references on the use of
instrumental variables in economics.

We will see in Section 2 that the model (1.2) can be rewritten as an inverse problem
using the expectation conditional operator with respect to W , as follows:

r WD E.Y jW /D E.'.X/jW / WD T '.W /: (1.3)

The function r is unknown and only an observationbr is available, leading to the inverse
problembr D T 'C ı, where ' is defined as the solution of a noisy Fredholm equation
of the first order which may generate an ill-posed inverse problem. The literature on
inverse problems in statistics is large, see for instance [14], [23], [7], [11] or [22] for
general references. However, contrary to most of the problems tackled in this literature,
the operator T is unknown since it depends on the joint distribution of X andW . Hence,
the problem is turned into an inverse problem with unknown operator. Few results exist
in this settings and only very recently new methods have arisen. In particular [8], [24, 25]
or [13] and [18] in a more general case, construct estimators which enable to estimate
inverse problem with unknown operators in an adaptive way, i.e. getting optimal rates
of convergence without prior knowledge of the regularity of the functional parameter of
interest.

In this work, we are facing an even more difficult situation since both r and the
operator T have to be estimated from the same sample. Some papers tackle this topic,
see for instance [15] for a complete introduction to the model, or [4], [17], [16], but
all the proposed estimators rely on the prior knowledge of the regularity of the function
'. The objective of this work is to extend previous adaptive estimation procedures to
the particular case where the operator is partially unknown. Our estimator is based on
a spectral cut-off procedure. It requires the knowledge of the eigenvectors of T ?T but
the eigenvalues are estimated from the observation sample. In this setting, we provide
under some conditions, an oracle inequality to control the estimation error of the adaptive
estimate, built in this paper. In particular, we prove that the risk of our estimator can be
compared, up to a log term, to the risk of the best possible estimator (in a sense which
will be precised later on).

The article falls into the following parts. Section 2 is devoted to the mathematical
presentation of the instrumental variable framework and the building of the estimator.
Section 3 provides the asymptotic behavior of this adaptive estimate as well as an oracle
inequality, while technical Lemmas and proofs are gathered in Section 4.
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Inverse regression with unknown operator 217

2 Inverse problem formulation
2.1 A statistical framework
We observe an i.i.d. sample .Yi ;Xi ;Wi / for i D 1; : : : ; n with unknown distribution
f .Y;X;W /. Define the following Hilbert spaces

L2
X D ¹h W R ! R; khk2

X WD E.h2.X// <C1º
L2

W D ¹g W R ! R; kgk2
W WD E.g2.W // <C1º;

with the corresponding scalar product h:; :iX and h:; :iW . For the sake of simplicity, we
only consider in this paper the case where ' is univariate. Nevertheless the approach
presented in this paper may be extended to the multivariate case (i.e. with a variable X
of dimension d > 1).

Then the conditional expectation operator of X with respect to W is defined as an
operator T

T W L2
X ! L2

W

g ! EŒg.X/jW D :� :

Following for instance [10], the model (1.2) can be written as

Yi D '.Xi /C EŒ'.Xi /jWi �� EŒ'.Xi /jWi �CUi

D EŒ'.Xi /jWi �CVi

D T '.Wi /CVi ; (2.1)

where Vi D '.Xi /� EŒ'.Xi /jWi �CUi , is such that E.V jW / D 0. The parameter of
interest is the unknown function '. Hence, the observation model turns to be an inverse
problem with unknown operatorT and a correlated noise V . Solving this issue amounts to
deal with the estimation of the operator and then controlling the correlation with respect
to the noise.

The operator T is unknown since it depends on the unknown distribution f.Y;X;Z/ of
the observed variables. The estimation of this operator can be performed either by directly
using an estimate of f.Y;X;Z/, or if exists, by estimating the spectral value decomposition
of the operator.

In the following, we assume that T is compact and admits a singular value decompo-
sition (SVD) .�j ;�j ; j /j �1. Such a decomposition provides a natural basis adapted to
the operator for representing the function ', see for instance [14]. More precisely, let T �
be the adjoint operator of T . Then T �T is a compact operator on L2

X with eigenvalues
�2

j ; j � 1 associated to the corresponding eigenfunctions �j , while  j are defined by

 j D T�j

kT�j k . So we obtain

T�j D �j j ; T � j D �j�j :

We can write the following decompositions

r.w/D E.Y jW D w/D T '.w/D
X
j �1

�j h';�j iX j .w/; (2.2)

and r.w/D
X
j �1

rj j .w/; (2.3)
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218 Loubes – Marteau

with rj D hY; j iW that can be estimated by

brj D 1

n

nX
iD1

Yi j .Wi /:

Hence the noisy observations are the brj ’s and will be used to estimate the regression
function ' in the inverse problem framework.

In a very general framework, full estimation of an operator is a hard task. Some atten-
tion has been paid to this estimation issue, with different kinds of technics such as kernel
based Tikhonov regularization [15] or [17], regularization in Hilbert scales [16], finite
dimensional sieve minimum distance estimator [26], with different rates and different
smoothness assumptions, providing sometimes minimax rates of convergence. But, to
our knowledge, most of the proposed estimators rely on prior knowledge on the regularity
of the function ' expressed through an embedding condition into a smoothness space or
an Hilbert scale, or a condition linking the regularity of ' to the regularity of the operator,
namely a link condition or source condition (see [10] for general comments and insightful
comments on such assumptions).

Yet, such general methods depend on the choice of a regularization parameter which
has to be well chosen. In the following, to provide an automatic data driven choice,
we restrict ourselves to the case where the SVD of the operator is partially known in
the sense that the eigenvalues �j ’s are unknown but the eigenvectors �j ’s and  j ’s are
available. This assumption is restrictive for practical applications but, as discussed at the
end of this section, some convolution issues can still be handled that way. In addition,
this assumption is commonly encountered in the inverse problem literature. Actually, in
many inverse problems, the regularization parameter depends on the ill-posedness of the
problem. This index is generally expressed through the mere decay of the eigenvalues
or through the decay of the eigenvalues compared to the decay of the coefficients of the
function to be estimated (Source Condition assumption), which surely also requires some
knowledge of the SVD decomposition of the operator.

2.2 A general estimation approach
If the operator were known we could provide an estimator using the spectral decomposi-
tion of the function ' as follows. For a given decomposition levelm, define the projection
estimator (also called spectral cut-off [14])

b'0
m D

mX
j D1

brj

�j

�j (2.4)

Since the �j ’s are unknown, we first build an estimator of the eigenvalues. For this, using
the decomposition (2.2), we obtain

�j D hT�j ; j iW

D EŒT�j .W / j .W /�

D EŒEŒ�j .X/jW � j .W /�

D EŒ�j .X/ j .W /�:
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Inverse regression with unknown operator 219

So the eigenvalue �j can be estimated by

b�j D 1

n

nX
iD1

 j .Wi /�j .Xi /: (2.5)

As studied in [8], replacing directly the eigenvalues by their estimates in (2.4) does not
yield a consistent estimator, hence using their same strategy we define an upper bound
for the resolution level

M D inf

²
k �N W jb�kj � 1p

n
logn

³
�1: (2.6)

The parameter N provides an upper bound for M in order to ensure that M is not
too large. Typically, N can be chosen of order n� with � > 1. The main idea behind
this definition is that when the estimates of the eigenvalues are too small with respect
to the observation noise, trying to still provide an estimation of the inverse ��1

k
only

amplificates the estimation error. To avoid this trouble, we truncate the sequence of the
estimated eigenvalues when their estimate is too small, i.e. smaller than the noise level.
We point out that this parameter M is a random variable which we will have to control.
More precisely, if we define two deterministic lower and upper boundsM0;M1 as

M0 D inf

²
k W j�kj � 1p

n
log2n

³
�1; (2.7)

and

M1 D inf

²
k W j�kj � 1p

n
log3=4n

³
; (2.8)

then, we will show in Section 4, that with high probability M0 �M <M1. Note that if
in the definition (2.6) the set is empty, we set M D 0. However, from the remark above,
this case happens with very small probability.

Now, thresholding the spectral decomposition in (2.4) leads to the following estimator

b'm D
mX

j D1

brjb�j

1j �M�j : (2.9)

The asymptotic behavior of this estimate depends on the choice ofm. In the next section,
we provide an optimal procedure to select the parameter m that gives rise to an adaptive
estimator '? and an oracle inequality.

2.3 Examples
In this section, we present a brief discussion concerning the knowledge of the eigenvectors
.�j /j 2N and . j /j 2N of the unknown operator T . Assume that the link between X and
the instrument W is of the form X D L.W;Z/ with Z an independent random variable
with distribution PZ . Then the operator has the following form

T '.w/D
Z
' ıL.w;Z/dPZ.Z/D

Z
'.x/KL.x;w/dx
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220 Loubes – Marteau

with a change of variable under some differentiability conditions on L. Under technical
assumptions, the operator defines a Fredholm integral operator with kernel KL depend-
ing on the the link function L and the distribution of Z. Such operators are well studied
in [20] or [27] for instance and, in many cases, the SVD decomposition will be avail-
able, which enables to use the estimation procedure developed in this paper. We point out
that the knowledge of the operator implies that the distribution ofX should also be known.

As a practical example, one may be interested in the following particular case. Assume
that the function ' W R ! R of interest is periodic with period 1 and that we observe

Yi D '.Xi /CUi ; 8 2 ¹1; : : : ;nº;
where the Xi are i.i.d. uniform random variables on Œ0;1�. In this particular case, L2.X/

DL2.Œ0;1�/. We moreover assume that

Wi DXi CZi ; 8i 2 ¹1; : : : ;nº;
where the Zi are i.i.d. random variables with unknown density g W R ! R.

In this case, for all w 2 R, we have

Tf .w/D E.f .X/jW D w/D E.f .w�Z//D
Z C1

�1
f .w� z/g.z/dz;

with adjoint

T ?h.x/D E.h.W /jX D x/D
Z C1

�1
h.zCx/g.z/dz; 8x 2 R;

for all periodic functions f;h belonging respectively in L2.X/ and L2.W /. Hence, T
is a convolution type operator. Let .�k/k2Z be the usual complex trigonometric basis on
Œ0;1�. SinceX is uniform on Œ0;1�, .�z/z2Z is an orthonormal basis ofL2.X/. With simple
algebra, it is possible to prove that this sequence corresponds to the eigenvectors of T ?T .
The corresponding eigenvalues are related to the Fourier coefficients of the density gZ .
The eigenvalues are obviously unknown but may be easily estimated using the procedure
presented above.

3 Main result
Consider the following assumptions on both the data Yi ; i D 1; : : : ;n and the eigenfunc-
tions �k and  k for k � 1.

Assumption 3.1 (Bounded SVD functions) There exists a finite constant C1 such that

8j � 1; k�j k1 < C1; k j k1 < C1: (3.1)

Assumption 3.2 (Exponential moment conditions) The observation Y satisfy to the
following moment condition. There exists some positive numbers v � E.Y 2

j / and c such
that

8j � 1; 8k � 2; E.Y k
j / <

kŠ

2
vck�2: (3.2)
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Inverse regression with unknown operator 221

These two conditions are required in order to obtain concentration bounds using first
Hoeffding type inequality, then Bernstein inequality, see for instance [30]. Requiring
bounded SVD functions may be seen as a restrictive condition. Yet it is met when the
eigenvectors are trigonometric functions. However, this condition can be also be turned
into a moment condition if we replace the concentration bound by a Bernstein type
inequality. Note also that the moment conditions on Y amounts to require a bounded
regression function ' and equivalent moment conditions on the errors Uj .

Assumption 3.3 (Degree of ill-posedness) We assume that there exists t , called the de-
gree of ill-posedness of the operator which controls the decay of the eigenvalues of the
operator T . More precisely, there are constants �L;�U such that

�Lk
�t � �k � �U k

�t ; 8k � 1 (3.3)

In this paper, we only consider the case of mildly ill-posed inverse problems, i.e. when the
eigenvalues decay at a polynomial rate. This assumption, also required in [8], is needed
when comparing the residual error of the estimator with the risk in order to obtain the
oracle inequality.

Assumption 3.4 (Enough ill-posedness) Let �2
j D Var.Y j .W //. We assume that

there exist two positive constants �2
L and �2

U such that

8j � 1; �2
L � �2

j � �2
U : (3.4)

Note that Condition (3.2) implies the upper bound of Condition (3.4). We also point
out that this condition is not needed when building an estimator for the regression function.
However it turns necessary when obtaining the lower bound to get a minimax result, or
when obtaining an oracle inequality.

3.1 Oracle inequality
All the estimation errors will be given with respect to the L2

X norm which is a natural
choice for this kind of problems. First, let R0.m;'/ be the quadratic estimation risk for
the naive estimatorb'0

m (2.4), defined for all m 2 N, by

R0.m;'/ D Ekb'0
m �'k2

X

D
X
k>m

'2
k C 1

n

mX
kD1

��2
k �2

k ; 8m 2 N;

with 'k D h';�kiX : The best model would be obtained by choosing a minimizer of this
quantity, namely

m0 D argmin
m
R0.m;'/: (3.5)

This risk depends on the unknown function ' hence m0 is referred to as the oracle. We
aim at constructing an estimator of R0.m;'/ which, by minimization, could give rise
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222 Loubes – Marteau

to a convenient choice for m, i.e. as close as possible to m0. The first step would be to

replace 'k by their estimatesb�k

�1brk and take for estimator of �2
k

,b�2
k

, defined by

b�2
k D 1

n

nX
iD1

0
@Yi k.Wi /� 1

n

nX
j D1

Yj k.Wj /

1
A

2

D 1

n

nX
iD1

.Yi k.Wi /�brk/
2
:

This would lead us to consider the empirical risk for any m � M , the cut-off which
warrants a good behavior for theb�j ’s

U0.m;r;�/D �
mX

kD1

b��2
k br2

k C c

n

mX
kD1

b��2
k b�2

k; 8m 2 N;

for a well chosen constant c. The corresponding random oracle within the range of models
which are considered would be

m1 D arg min
m�M

R0.m;'/: (3.6)

Unfortunately, the correlation between the errors Vi and the observations Yi prevents an
estimator defined as a minimizer of U0.m;r;�/ to achieve the quadratic risk R0.m;'/.
Indeed, we have to use a stronger penalty, leading to an extra error in the estimation that
shall be discussed later in the paper. More precisely, c in the penalty is not a constant
anymore but is allowed to depend on the number of observations n.

Hence, now define R.m;'/ the penalized estimation risk as

R.m;'/D
X
k>m

'2
k C log2n

n

mX
kD1

��2
k �2

k ; 8m 2 N: (3.7)

The best choice for m would be a minimizer of this quantity, which yet depends on the
unknown regression function '. Hence, to mimic this risk, define the following empirical
criterion

U.m;r;�/D �
mX

kD1

b��2
k br2

k C log2n

n

mX
kD1

b��2
k b�2

k; 8m 2 N: (3.8)

Then, the best estimator is selected by minimizing this quantity as follows

m? WD arg min
m�M

U.m;r;�/; (3.9)

Finally, the corresponding adaptive estimator '? is defined as:

'? D
m?X

kD1

b��1
k brk�k: (3.10)

The performances of '? are presented in the following theorem.
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Inverse regression with unknown operator 223

Theorem 3.5 Let'? the projection estimator defined in (3.10). Then, under Assumptions
(2.1) to (2.4), there exists B0;B1;B2 and � positive constants independent of n such that:

Ek'? �'k2
X � B0 log2.n/ �

h
inf
m
R.m;'/

i
C B1

n

�
log.n/ � k'k2

X

�2t

C�C log2.n/ �	.'/;
where � � B2.1Ck'k2

X/exp
®� log1C� n

¯
, m0 denotes the oracle bandwidth and

	.'/D
´Pm0

kDM0

�
'2

k
C 1

n
��2

k
�2

k

�
; if M0 �m0;

0; if M0 > m0:
(3.11)

We obtain a non asymptotic inequality which guarantees a pertinent and adaptive
choice for the bandwidth parameter m. In particular, the risk R.m?; '/ of the corre-
sponding estimator can be compared, up to a logarithmic factor, to the best possible risk
infmR.m;'/ among all the projection estimators that could be constructed. We point out
that we lose a log2.n/ factor when compared with the bound obtained in [8]. This loss
comes partly from the fact that the error on the operator is not deterministic nor even
due to a independent noisy observation of the eigenvalues. Here, the �k’s have to be
estimated using the available data byb�k . In the econometric model, both the operator and
the regression function are estimated on the same sample, which leads to high correlation
effects that are made explicit in Model (2.1), hampering the rate of convergence of the
corresponding estimator.

An oracle inequality only provides some information on the asymptotic behavior of
the estimator if the remainder term 	.'/ is of smaller order than the risk of the oracle.
This remainder term models the error made when truncating the eigenvalues, i.e. the error
of selecting a model close to the random oracle m1 �M and not close to the true oracle
m0. In the next section, we prove that, under some assumptions, this extra term is smaller
than the risk of the estimator.

3.2 Rate of convergence
To get a rate of convergence for the estimator, we need to specify the regularity of the
unknown function ' and compare it with the degree of ill-posedness of the operator T ,
following the usual conditions in the statistical literature on inverse problems, see for
example [23] or [3] for some examples.

Assumption 3.6 (Regularity condition) Assume that the function ' is such that there
exists s and a constant C such that

' 2Hs.C /D
8<
:
 D .
k/k; s:t:

X
k�1

k2s
2
k < C

9=
; : (3.12)

This assumption corresponds to functions whose regularity is governed by the
smoothness index s. This parameter is unknown and yet governs the rate of convergence.

Brought to you by | Réseau National des Bibliothèques de Mathématiques - RNBM - GDS 2755 - INSMI-CNRS
Authenticated

Download Date | 1/27/17 2:35 PM



224 Loubes – Marteau

In the special cases where the eigenfunctions are the Fourier basis, this set corresponds
to Sobolev classes. We provide in the following corollary a rate of convergence for our
estimator.

Corollary 3.7 Let '? be the model selection estimator defined in (3.10). Then, we get
the following rate of convergence

sup
'2Hs .C /

Ek'? �'k2
X DO

 �
n

log2� n

� �2s
2sC2tC1

!
;

with � D 2C2sC2t .

We point out that'? is constructed without prior knowledge of the unknown regularity
s of '. The rate of convergence that we obtain corresponds, up to some logarithmic
terms, to the one given in [10]. Note that this rate corresponds to the minimax rate of
convergence under the additional assumption that the error term V in the model (2.1)
follows a Gaussian distribution and under the assumption (3.4) for the variance of this
noise. This bound is the usual bound when estimating a function in an inverse model with
known operator, see for instance in [9] for a review. In this sense, our estimator is said to
be almost asymptotically adaptive. Following [10], we point out that Hall and Horowitz
in [17] also obtain another minimax optimal rate of convergence in a similar settings but
under different regularity assumptions. More recently a lower bound for the minimax rate
of convergence in a closely related setting has been given in [19] under different weaker
assumptions than in [10].

Remark 3.8 In an equivalent way, we could have imposed a supersmooth assumption,
on the function ', i.e. assuming that for given � , t and constant C ,

1X
kD1

exp.2�kt /'2
k < C:

Following the guidelines of the proof of Corollary 3.7 and Theorem 3.5, we obtain
that M0 > m0 � .a 2� logn/1=t with 2a� > 1, leading to the optimal recovery rate for
supersmooth functions in inverse problems.

3.3 Conclusion
In this work, we provide some new paths in order to build adaptive estimators for an inverse
regression problem with unknown operator. We restrict ourselves to the framework where
the eigenvectors are known and only the eigenvalues must be estimated. In this case,
we prove that for smooth functions ', estimating the eigenvalues and using a threshold
enables to get a good estimator of the regression function and to build an adaptive
procedure. The price to pay for not knowing the operator is only an extra log2 n with
respect to usual inverse problems and is mainly due to the correlation induced by the
Vi ’s. We do not claim that we achieved optimality of the estimation procedure. Yet we
provide a general way to get oracle inequalities for a class of estimators in this setting,
which highlight the mathematical problems related to the adaptation in this instrumental
variable problem.
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Inverse regression with unknown operator 225

4 Technical lemmas
First of all, we point out that, throughout all the paper, C denotes some generic constant
that may vary from line to line.

Lemma 4.1 Set M D ¹M0 �M <M1º, where M;M0;M1 are respectively defined in
(2.6), (2.7) and (2.8). Then, for all n� 1

P.Mc/� CM0e
� log1C� n;

where C and � denote positive constants independent of n.

Proof: It is easy to see that

P.Mc/D P .¹M <M0º [ ¹M �M1º/� P.M <M0/CP.M �M1/:

Using (2.6) and (2.8)

P.M �M1/D P

 
M1\
kD1

²
jb�kj � 1p

n
logn

³!
� P

�
jb�M1

j � 1p
n

logn

�
:

The definition ofb�M1
yields

P.M �M1/ � P

�ˇ̌̌b�M1
��M1

C�M1

ˇ̌̌
� 1p

n
logn

�

� P

�ˇ̌̌b�M1
��M1

ˇ̌̌
� 1p

n
logn� j�M1

j
�

� P

 ˇ̌̌
ˇ̌1
n

nX
iD1

�M1
.Xi / M1

.Wi /� EŒ�M1
.X/ M1

.W /�

ˇ̌̌
ˇ̌ � bn

!
;

where bn D n�1=2 logn�j�M1
j for alln2N. Let k 2N and x 2 Œ0;1� be fixed. Assumption

(3.1) and Hoeffding inequality yield

P.jb�k ��kj> x/ � 2exp

²
� .nx/2

2
Pn

iD1 Var.�M1
.Xi / M1

.Wi //C2nCx=3

³

D 2exp

²
� nx2

2Var.�M1
.X/ M1

.W //C2Cx=3

³
:

Using again the Assumption (3.1) on the bases .�k/k2N and . k/k2N

Var.�M1
.X/ M1

.W // � EŒ�2
M1
.X/ 2

M1
.W /�� C 4

1 :

Hence
P.jb�k ��kj> x/ � 2exp

��Cnx2
�
; 8x 2 Œ0;1�; (4.1)
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226 Loubes – Marteau

for some constant C depending on C1 but independent of n. Using (2.8), 1 > bn > 0 for
all n 2 N. Therefore, using (4.1) with x D bn, we obtain

P.M �M1/� 2exp
®�Cnb2

n

¯ � 2exp
°
�C.logn� log3=4n/2

±
� C exp

®� log1C� n
¯
;

where C and � denote positive constants independent of n.
The bound of P.M <M0/ follows the same lines

P.M <M0/D P

0
@M0[

j D1

²
jb�j j � lognp

n

³1A �
M0X

j D1

P

�
jb�j j � lognp

n

�

�
M0X

j D1

P

�b�j � lognp
n

�
:

Let j 2 ¹1; : : : ;M0º be fixed.

P

�b�j � lognp
n

�
D P

�b�j ��j � Qbn;j

	
;

where Qbn;j D n�1=2 logn��j for all n 2 N. Thanks to (2.7), Qbn;j < 0 for all n 2 N. Using
(4.1) with x D � Qbn;j , we get

P

�b�j � lognp
n

�
� exp

°
�Cn Qb2

n;j

±
� C exp

®� log1C� n
¯
;

for some C;� > 0. This concludes the proof of Lemma 4.1. �

Lemma 4.2 Let B the event defined by

B D
M\

kD1

²
j��1

k �k j � 1

2

³
; where �k Db�k ��k; 8k 2 N

�:

Then
P.Bc/ � CM1e

� log1C� n;

for some � > 0 and positive constant C .

Proof: Using simple algebra and Lemma 4.1

P.Bc/ D P.Bc \M/CP.Bc \Mc/

� P.Bc \M/CP.Mc/

� P.Bc \M/CCM0e
� log1C� n:
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Inverse regression with unknown operator 227

Then

P.Bc \M/D P

 
M[

kD1

²
j��1

k �k j> 1

2

³
\M

!
� P

 
M1�1[
kD1

²
j��1

k �kj � 1

2

³!
:

Let k 2 ¹1; : : : ;M1 �1º be fixed. Remark that

P

�
j��1

k �kj � 1

2

�
D P

�
j�k j � j�kj

2

�
� P

�
jb�k ��kj � 1

2
p
n

log3=4n

�
:

Then, using (4.1) with x D 2n�1=2 log3=4n

P

�
jb�k ��kj � 1

2
p
n

log3=4n

�
� Ce� log1C� n; (4.2)

for some � > 0 and a positive constant C . This concludes the proof of Lemma 4.2. �

The following lemma provides some tools for the control of the ratiob��1
k
�k on the

event B.

Lemma 4.3 For all k �M , we have

 
�kb�k

�1
!2

1B � 2

3
��2

k .b�k ��k/
21B:

Moreover, we have the following expansion

 
�kb�k

!2

D 1�2��1
k .b�k ��k/C��2

k .b�k ��k/
2
k;

where 
k is uniformly bounded on the event B.

Proof: Let k �M be fixed. Then

 
�kb�k

�1
!2

1B D
 
�kb�k

!2

1B D
�

�k

�k C�k

�2

1B � 2

3
��2

k .b�k ��k/
21B;

where the �k are defined in Lemma 4.2. The end of the proof is based on a Taylor
expansion of the ratio .b��1

k
�k/

2 D .1C��1
k
�k/

�2. The variable 
k depends on ��1
k
�k

and can be easily bounded on the event B. Remark that a similar expansion holds forb��1
k
�k . �

Lemma 4.4 Let Nm a random variable measurable with respect to .Yi ;Xi ;Wi /iD1;:::;n

such that Nm�M . Then, for all K > 1 and � > 0
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228 Loubes – Marteau

(i) E

" NmX
kD1

b��2
k .brk � rk/2

#
� logK.n/

n
E

" NmX
kD1

b��2
k �2

k

#
CCNe� logK n,

(ii) E

" NmX
kD1

��2
k .brk � rk/rk

#
� ��1 logK.n/

n
E

" NmX
kD1

b��2
k �2

k

#

CC��1N 2tC1e� logK n C��1R.m0;'/

C�E
X
k> Nm

'2
k ;

where C > 0 is a positive constant independent of n, m0 denotes the oracle bandwidth
and N has been introduced in (2.6).

Proof: Let Q > 0 a positive term which will be chosen later. With simple algebra

E

" NmX
kD1

b��2
k .brk � rk/2

#

D E
NmX

kD1

b��2
k .brk � rk/21´

.brk�rk/2<
Q�2

k
n

μC E
NmX

kD1

b��2
k .brk � rk/21´

.brk�rk/2� Q�2
k

n

μ

� Q

n
E

" NmX
kD1

b��2
k �2

k

#
C E

NmX
kD1

b��2
k

 
.brk � rk/2 � Q�2

k

n

!
1´

.brk�rk /2� Q�2
k

n

μ: (4.3)

In the sequel, we are interested in the behavior of the second term in the right hand side
of (4.3). Sinceb��2

k
� n log�2n for all k �M and Nm�N

E
NmX

kD1

b��2
k

 
.brk � rk/2 � Q�2

k

n

!
1´

.brk�rk /2� Q�2
k

n

μ

� n

log2n

NX
kD1

E

 
.brk � rk/2 � Q�2

k

n

!
1´

.brk�rk/2� Q�2
k

n

μ: (4.4)

Let k 2 ¹1; : : : ;N º be fixed. It follows from integration by part that

E

 
.brk � rk/2 � Q�2

k

n

!
1´

.brk�rk /2� Q�2
k

n

μ D
Z C1

Q�2
k

n

P
�
.brk � rk/2 > x

�
dx:

Then

P
�
.brk � rk/2 � x

�D P
�jbrk � rkj � p

x
�
:
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Assumption (3.2) together with Bernstein inequality entails that

P
�jbrk � rkj � p

x
� D P

 ˇ̌̌
ˇ̌ 1
n

nX
iD1

.Yi k.Wi /� EŒYi k.Wi /�/

ˇ̌̌
ˇ̌ � p

x

!

� exp

²
� n2x

2
Pn

iD1 Var.Yi k.Wi //CCn
p
x

³

D exp

´
� nx

2�2
k

CC
p
x

μ
;

for some C > 0. Set D D .2�2
k
C�1/2. We obtain

E

 
.brk � rk/2 � Q�2

k

n

!
1´

.brk�rk/2� Q�2
k

n

μ

�
Z D

Q�2
k

n

exp

´
� nx

4�2
k

μ
dxC

Z C1

D

exp

²
� nx

C
p
x

³
dx

�
"

�4�
2
k

n
e

� nx

4�2
k

#C1

Q�2
k

=n

C
Z C1

D

exp
®�Cnp

x
¯
dx

� 4�2
k

n
e�Q=4 C e�C n:

Hence, we have

E

 
.brk � rk/2 � Q�2

k

n

!
1´

.brk�rk /2� Q�2
k

n

μ � C�2
k

n
e�Q=4 C e�C n; (4.5)

for some C > 0. Using (4.4) and (4.5)

E
NmX

kD1

b��2
k .brk � rk/21´

.brk�rk /2� Q�2
k

n

μ � CN

log2n
e�Q=4 C nNe�C n

log2n
:

From (4.3), we eventually obtain

E

" NmX
kD1

b��2
k .brk � rk/2

#
� Q

n
E

" NmX
kD1

b��2
k �2

k

#
C CN

log2n
e�Q=4 C nNe�C n

log2n
:

ChooseQ D logK.n/ in order to conclude the proof of .i/.
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230 Loubes – Marteau

Now, consider the bound of .i i/. Let m0 be the oracle bandwidth defined in (3.5).
With the convention

Pb
a D �Pa

b if b < a

E
NmX

kD1

��2
k .brk � rk/rk D E

NmX
kDm0

��2
k .brk � rk/rk

� E

ˇ̌̌
ˇ̌̌ NmX
kDm0

��2
k .brk � rk/rk

ˇ̌̌
ˇ̌̌

� E
C1X
kD1

ˇ̌
.1¹k� Nmº � 1¹k�m0º/��2

k .brk � rk/rk
ˇ̌
: (4.6)

Indeed, EŒbrk�D rk for all k 2 N. Then remark that

ˇ̌
1¹k� Nmº � 1¹k�m0º

ˇ̌ D ˇ̌
.1¹k� Nmº C 1¹k�m0º/.1¹k� Nmº � 1¹k�m0º/

ˇ̌
D .1¹k� Nmº C 1¹k�m0º/

ˇ̌
1¹k> Nmº � 1¹k>m0º

ˇ̌
� 1¹k> Nmº1¹k�m0º C 1¹k>m0º1¹k� Nmº: (4.7)

Using the Cauchy–Schwarz inequality and using that for all a;b and 1 > � > 0, 2ab �
�a2 C��1b2

E
NmX

kD1

��2
k .brk � rk/rk

�
 

E
X
k> Nm

��2
k r2

k

! 1
2

0
@E

X
k�m0

��2
k .brk � rk/2

1
A

1
2

C
0
@E

X
k>m0

��2
k r2

k

1
A

1
2
0
@E

X
k� Nm

��2
k .brk � rk/2

1
A

1
2

� �

8<
:E

X
k> Nm

'2
k C

X
k>m0

'2
k

9=
;C��1

´
E

NmX
kD1

��2
k .brk � rk/2 C E

m0X
kD1

��2
k .brk � rk/2

μ
:

We eventually obtain

E
NmX

kD1

��2
k .brk � rk/rk � ��1R.m0;'/C�E

X
k> Nm

'2
k C��1

´
E

NmX
kD1

��2
k .brk � rk/2

μ
:

We conclude the proof using a string of inequalities similar to .i/. In particular, using
Assumption (3.3), we obtain the bound ��2

k
� CN 2t for all k �M . �
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Inverse regression with unknown operator 231

Lemma 4.5 Let Nm a random variable measurable with respect to .Yi ;Xi ;Wi /iD1;:::;n

such that Nm�M . Then, for all � 2 .0;1/

E
NmX

kD1

.b��2
k ���2

k /r2
k � �C��1 log3=2n

n
E

" NmX
kD1

��2
k �2

k

#
C 1

n

 
log2.n/ � k'k2

�

!2t

C log2.n/ �R.m0;'/C�:

Proof: The term in the left hand side can be written as

E
NmX

kD1

.b��2
k ���2

k /r2
k D E

NmX
kD1

 
�2

kb�2
k

�1
!
��2

k r2
k D E

NmX
kD1

 
�2

kb�2
k

�1
!
'2

k :

Using Lemma 4.3, we obtain

E
NmX

kD1

.b��2
k ���2

k /r2
k D �2E

" NmX
kD1

'2
k�

�1
k �k

#
C E

" NmX
kD1

'2
k�

�2
k �2

k
k

#
D S1 CS2;

where the �k are defined in Lemma 4.2 and 
k denotes a variable uniformly bounded on
B. First consider the bound on S2. Using (4.1) with x D n�1=2 logn, we obtain

S2 D E

" NmX
kD1

'2
k�

�2
k �2

k
k

#
� CE

" NmX
kD1

'2
k�

�2
k �2

k

#
C�

� C
log2n

n
E

" NmX
kD1

'2
k�

�2
k

#
CCk'k2

Xe
� log1C� n; (4.8)

where C;� denote positive constants independent of n and � is defined in Theorem 3.5.
Thanks to our assumptions on the sequence .�k/k2N, for all � > 0

S2 � log2n

n
k'k2

X E sup
k� Nm

��2
k CCk'k2

Xe
� log1C� n

� �

n

NmX
kD1

��2
k �2

k C C

n

 
log2.n/ � k'k2

�

!2t

C�; (4.9)

where for the last inequality, we have used (3.3), (3.4) and the bound

sup
k� Nm

��2
k � 1

x

NmX
kD1

��2
k CCx2t ;

with x D ��1 log2.n/ � k'k2
X . More details on this bound can be found in [7].
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232 Loubes – Marteau

Now, we are interested in the bound on S1. Using (4.7) and a string of inequalities
similar to (4.6), we obtain

S1 D E
NmX

kD1

'2
k�

�2
k �k

� E
C1X
kD1

1¹k> Nmº1¹k�m0º'2
k j��1

k �k j C E
C1X
kD1

1¹k>m0º1¹k� Nmº'2
k j��1

k �k j

�
 

E
X
k> Nm

'2
k

! 1
2

0
@E

X
k�m0

��2
k .b�k ��k/

2

1
A

1
2

C
0
@E

X
k>m0

'2
k

1
A

1
2
0
@E

X
k� Nm

��2
k .b�k ��k/

2

1
A

1
2

:

Hence, for all � > 0

S1 � �

8<
:E

X
k> Nm

'2
k C

X
k>m0

'2
k

9=
;

C��1

´
E

NmX
kD1

��2
k .b�k ��k/

2 C E
m0X

kD1

��2
k .b�k ��k/

2

μ
:

Using (4.1) once again with x D n�1=2 log3=4n, we obtain for all � > 0

S1 � �

8<
:E

X
k> Nm

'2
k C

X
k>m0

'2
k

9=
;

C ��1 log3=2 n

n

´
E

NmX
kD1

��2
k �2

k C
m0X

kD1

��2
k �2

k

μ
CCe� log1C� n:

This concludes the proof of Lemma 4.5. �

Lemma 4.6 Let Nm a random variable measurable with respect to .Yi ;Xi ;Wi /iD1;:::;n

such that Nm�M . Then

1

n
E

" NmX
kD1

b��2
k .b�2

k ��2
k /

#

� C
logn

n3=2
E

" NmX
kD1

b��2
k �2

k

#
C 1

n
E

" NmX
kD1

b��2
k .r2

k �br2
k/

#
CCe� log2 n;

for some C > 0 independent of n.
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Proof: First remark that, for all k � 1

b�2
k ��2

k D 1

n

nX
iD1

.Yi k.Wi /�brk/
2 ��2

k

D 1

n

nX
iD1

Y 2
i  

2
k .Wi /Cbr2

k �2br2
k � �EŒY 2 2

k .W /�� EŒY k.W /�
2
�

D 1

n

nX
iD1

®
Y 2

i  
2
k .Wi /� EŒY 2 2

k .W /�
¯C .r2

k �br2
k/:

Hence, we obtain

1

n
E

" NmX
kD1

b��2
k .b�2

k ��2
k /

#
D 1

n
E

" NmX
kD1

b��2
k �k

#
C 1

n
E

" NmX
kD1

b��2
k .r2

k �br2
k/

#
; (4.10)

where for all k 2 N

�k D 1

n

nX
iD1

®
Y 2

i  
2
k .Wi /� EŒY 2 k.W /�

¯
:

We are interested in the first term in the right hand side of (4.10). Let ı > 0 a positive
constant which will be chosen later

1

n
E

" NmX
kD1

b��2
k �k

#
D 1

n
E

" NmX
kD1

b��2
k �k1¹�k�ıº

#
C 1

n
E

" NmX
kD1

b��2
k �k1¹�k>ıº

#

� ı

n
E

" NmX
kD1

b��2
k

#
C 1

n
E

" NmX
kD1

b��2
k .�k � ı/1¹�k>ıº

#
:

Since Nm�M , from integration by part

1

n
E

" NmX
kD1

b��2
k .�k � ı/1¹�k>ıº

#
� 1

log2n

NX
kD1

Z C1

ı

P.�k � x/dx:

Let k 2 N and x � ı be fixed. Using Bernstein inequality

P.�k � x/ D P

 
1

n

nX
iD1

®
Y 2

i  
2
k .Wi /� EŒY 2 k.W /�

¯ � x

!

� exp

´
� n2x2

2
Pn

iD1 Var.Y 2
i  

2
k
.Wi //CCxn=3

μ

� exp

²
� nx2

2D0 CD1x

³
;
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234 Loubes – Marteau

with the hypotheses (3.2) and (3.1) on Y and . k/k . The constantsD0 andD1 are positive
and independent of n. Therefore, for all k �NZ C1

ı

P.�k � x/dx

�
Z 2D0=D1

ı

exp¹�Cnx2ºdxC
Z C1

2D0=D1

exp¹�nxºdx

�
Z C1

ı

exp¹�CnıxºdxC 1

n
e�C n

� C

nı
exp¹�nı2º Cn�1e�C n;

for some C > 0. Choosing ı D n�1=2 logn and using Assumption (3.4), we obtain

1

n
E

" NmX
kD1

b��2
k �k

#
� C

logn

n3=2
E

" NmX
kD1

b��2
k �2

k

#
CCe� log2 n:

We use (4.10) in order to conclude the proof. �

5 Proofs

Proof of Theorem 3.5: The proof of our main result can be decomposed into four steps.
In a first time, we prove that the quadratic risk of '? is close, up to some residual terms,
to E NR.m?;'/ where

NR.m;'/D
X
k>m

'2
k C log2n

n

mX
kD1

b��2
k �2

k ; 8m 2 N: (5.1)

This result is uniform in m and justifies our choice of NR.m;'/ as a criterion for the
bandwidth selection.

In a second time, we show that E NR.m?; '/ and EU.m?; r;'/ are in some sense
comparable. Then, according to the definition of m? in (3.9)

U.m?; r;'/ � U.m;r;'/;8m�M:

We will conclude the proof by proving that for all m�M , EU.m;r;'/D Ekb'm �'k2,
up to a log term and some residual terms.

First note that

Ek'? �'k2
X D E

C1X
kD1

.'?
k �'k/

2 D E
X

k>m?

'2
k C E

m?X
kD1

.b��1
k brk �'k/

2:

This is the usual bias-variance decomposition. Then

E
m?X

kD1

.b��1
k brk �'k/

2 D E
m?X

kD1

.b��1
k brk �b��1

k rk Cb��1
k rk �'k/

2

� 2E
m?X

kD1

b��2
k .brk � rk/2 C2E

m?X
kD1

.b��1
k rk �'k/

2 D T1 CT2:
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Concerning T2, we use the following approach. For all � > 0, using Lemma 4.3 and the
bounds (4.8) and (4.9)

T2 D E
m?X

kD1

.b��1
k rk �'k/

2 D E
m?X

kD1

 
�kb�k

�1
!2

'2
k

D E
m?X

kD1

 
�kb�k

�1
!2

'2
k1B C E

m?X
kD1

 
�kb�k

�1
!2

'2
k1Bc

� 2

3
E

2
4 m?X

kD1

��2
k �2

k'
2
k

3
5C�

� �

n
E

m?X
kD1

��2
k �2

k CC

 
k'k2

X log2.n/

�

!2t

C�: (5.2)

where�k Db�k ��k for all k 2N. The term T1 is bounded using Lemma 4.4 with NmDm?

andK D 2. Hence, for all � > 0

Ek'? �'k2
X � .1C�/E NR.m?;'/C C

n

 
log2.n/ � k'k2

X

�

!2t

C�; (5.3)

where NR.m?;'/ is introduced in (5.1). This concludes the first step of our proof.

Now, our aim is to write E NR.m?;'/ in terms of EU.m?; r;'/

EU.m?; r;'/

D E

2
4�

m?X
kD1

b��2
k br2

k C log2n

n

m?X
kD1

b��2
k b�2

k

3
5

D E

2
4�

m?X
kD1

��2
k r2

k C log2n

n

m?X
kD1

b��2
k �2

k

3
5� E

2
4 m?X

kD1

¹b��2
k br2

k ���2
k r2

kº
3
5

� log2n

n
E

2
4 m?X

kD1

b��2
k .�2

k �b�2
k/

3
5

D E

2
4 X

k>m?

'2
k C log2n

n

m?X
kD1

b��2
k �2

k

3
5� k'k2

X � E

2
4 m?X

kD1

¹b��2
k br2

k ���2
k r2

kº
3
5

� log2n

n
E

2
4 m?X

kD1

b��2
k .�2

k �b�2
k/

3
5 :
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Hence

E NR.m?;'/ D EU.m?; r;'/Ck'k2
X C E

2
4 m?X

kD1

¹b��2
k br2

k ���2
k r2

kº
3
5

C log2n

n
E

2
4 m?X

kD1

b��2
k .�2

k �b�2
k/

3
5 : (5.4)

Remark that

E

2
4 m?X

kD1

¹b��2
k br2

k ���2
k r2

kº
3
5

D E

2
4 m?X

kD1

b��2
k .br2

k � r2
k /

3
5C E

2
4 m?X

kD1

.b��2
k ���2

k /r2
k

3
5

D E

2
4 m?X

kD1

b��2
k ¹.brk � rk/2 C2.brk � rk/rkº

3
5C E

2
4 m?X

kD1

.b��2
k ���2

k /r2
k

3
5 :

Using simple algebra

E
m?X

kD1

b��2
k .brk � rk/rk

D E
m?X

kD1

��2
k .brk � rk/rk C E

m?X
kD1

.b��2
k ���2

k /.brk � rk/rk

D E
m?X

kD1

��2
k .brk � rk/rk C E

m?X
kD1

.b��1
k ���1

k /rk.b��1
k C��1

k /.brk � rk/

� E
m?X

kD1

��2
k .brk � rk/rk C E

m?X
kD1

.b��1
k ���1

k /2r2
k CCE

m?X
kD1

b��2
k .brk � rk/2 C�:

Hence

E

2
4 m?X

kD1

¹b��2
k br2

k ���2
k r2

kº
3
5 � CE

2
4 m?X

kD1

b��2
k .brk � rk/2

3
5C2E

2
4 m?X

kD1

��2
k .brk � rk/rk

3
5

C E

2
4 m?X

kD1

.b��2
k ���2

k /r2
k

3
5C E

m?X
kD1

 
�kb�k

�1
!2

'2
k :

Brought to you by | Réseau National des Bibliothèques de Mathématiques - RNBM - GDS 2755 - INSMI-CNRS
Authenticated

Download Date | 1/27/17 2:35 PM



Inverse regression with unknown operator 237

Using Lemmata 4.4, 4.5 and (5.2), we obtain, for all 1 > � > 0 andK > 1

E

2
4 m?X

kD1

¹b��2
k br2

k ���2
k r2

k º
3
5 (5.5)

�
�
2��1 logK nCC��1 log3=2 nC�

	
� 1
n

E

2
4 m?X

kD1

b��2
k �2

k

3
5C��1R.m0;'/

C�E

" X
k>m?

'2
k

#
C�CC��1N 2tC1e� logK n C C

n

 
log2.n/ � k'k2

X

�

!2t

:

Remark that this result can be obtained for all Nm measurable with respect to the sample
.Xi ;Yi ;Wi /iD1;:::;n. Then, from (5.4) and Lemma 4.6

E NR.m?;'/

� EU.m?; r;'/Ck'k2
X

C
 
2��1 logK nCC��1 log3=2 nCC

log2n

n1=2

!
1

n
E

2
4 m?X

kD1

b��2
k �2

k

3
5

C��1R.m0;'/C�E

" X
k>m?

'2
k

#
CC��1N 2tC1e� logK n C�

C C

n

 
log2.n/ � k'k2

X

�

!2t

;

which can be rewritten

.1��.�;K;n//E NR.m?;'/

� EU.m?; r;'/Ck'k2 C��1R.m0;'/

CC��1N 2tC1e� logK n C�C C

n

 
log2.n/ � k'k2

X

�

!2t

; (5.6)

with

�.�;K;n/D 2��1 logK�2nC C

n1=2
C log�1=2nC�:

The third step of our proof can be easily derived from the definition of m? and leads to
the following result

.1��.�;K;n//E NR.m?;'/

� EU.m1; r;'/Ck'k2 C��1R.m0;'/

CC��1N 2tC1e� logK n C�C C

n

 
log2.n/ � k'k2

X

�

!2t

; (5.7)
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where m1, defined in (3.6), denotes the oracle in the family ¹1; : : : ;M º. In order to
conclude the proof, we have to compute EU.m1;r;'/Ck'k2. To begin with, remark that

EU.m1; r;'/Ck'k2

D E

"
�

m1X
kD1

b��2
k br2

k C log2n

n

m1X
kD1

b��2
k b�2

k

#
Ck'k2

D E

"
�

m1X
kD1

�2
kr

2
k

#
Ck'k2

X C log2n

n
E

"
m1X

kD1

b��2
k �2

k

#

C E

"
m1X

kD1

.��2
k r2

k �b��2
k br2

k/

#
C log2n

n
E

"
m1X

kD1

.b��2
k b�2

k �b��2
k �2

k /

#
:

Hence

EU.m1; r;'/Ck'k2

D E

2
4 X

k>m1

'2
k C log2n

n

m1X
kD1

b��2
k �2

k

3
5C E

"
m1X

kD1

.��2
k r2

k �b��2
k br2

k/

#

C log2n

n
E

"
m1X

kD1

.b��2
k b�2

k �b��2
k �2

k /

#

D E NR.m1;'/CF1 CF2:

The same bound as (5.5) occurs for F1. By the same way, using Lemma 4.6

F2 D log2n

n
E

"
m1X

kD1

.b��2
k b�2

k ���2
k �2

k /

#

� C
logn

n3=2
E

"
m1X

kD1

b��2
k �2

k

#
C 1

n
E

m1X
kD1

b��2
k .r2

k �br2
k/CCe� log2 n:

Therefore, for all K � 1

EU.m1; r;'/Ck'k2

�
 
1CC logK�2nC C log�1np

n

!
E NR.m1;'/CR.m0;'/

CC��1N 2tC1e� logK n C C

n

 
log2.n/ � k'k2

X

�

!2t

C�: (5.8)
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Using (5.7) and (5.8), we eventually obtain

.1��.�;K;N //E NR.m?;'/

�
 
1C logK�2nC C log�1np

n

!
E NR.m1;'/CC��1ER.m0;'/

CC��1N 2tC1e� logK n C C

n

 
log2.n/ � k'k2

X

�

!2t

C�

� C log2.n/ � ER.m1;'/CC��1ER.m0;'/

CC��1N 2tC1e� logK n C C

n

 
log2.n/ � k'k2

X

�

!2t

C�

� C log2.n/ �R.m0;'/C log2.n/ �	.'/C C

n

 
log2.n/ � k'k2

X

�

!2t

C�;

for some positive constant C , where 	.'/ is introduced in Theorem 3.5. An appropriate
choice of K and � yields �.�;K;N / < 1, at least for n small enough. Hence, we get

Ek'? �'k2

� C log2.n/ �R.m1;'/C C

n

 
log2.n/ � k'k2

X

�

!2t

C�C log2.n/ �	.'/: �

Proof of Corollary 3.7: We start by recalling the oracle inequality obtained for the
estimator '?.

Ek'? �'k2 � C0 log2.n/ �
h
inf
m
R.m;'/

i
C C1

n

�
log.n/ � k'k2

�2ˇ

C�C log2.n/ �	.'/:
We have to bound the risk under the regularity condition and the extra term log2.n/	.'/.
Recall that the risk is given by

R.m;'/D
X
k>m

'2
k C log2n

n

mX
kD1

��2
k �2

k :

Hence under (3.12), we obtain both upper bounds for two constants C1 and C2X
k>m

'2
k � m�2sC1;

log2n

n

mX
kD1

��2
k �2

k � C2

log2n

n
�2

Um
2tC1:
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240 Loubes – Marteau

An optimal choice is given by m D Œ.n= logn/
1

1C2sC2t �, leading to the desired rate of
convergence.

Now consider the remainder term 	.'/. Under Assumption 3.3, M0 � Œn1=2s=

log2 n�, but since m0 D Œn
1

1C2sC2t � we get clearly that m0 � M0, which entails that
	.'/D 0. �
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