Image and video colorization by variational approaches

Jean-Francois Aujol

Univ. Bordeaux, IMB

Joint work with Fabien Pierre, Aurelie Bugeau, and Vinh-Thong Ta

Thursday 7th July 2016

Overview

- 2 Luminance-chrominance coupled model
- Oprimal-dual like algorithm.
- Unified model for colorization
- 5 Extension to video

Colorization problem

- 2 Luminance-chrominance coupled model
- 3 Primal-dual like algorithm.
- Unified model for colorization
- 5 Extension to video

Luminance-chrominance space

Luminance :

Y = 0.299R + 0.587G + 0.114B

(U, V) are defined such that:

$$egin{aligned} [0,255]^3 &
ightarrow [a1,a2] imes [b1,b2] imes [c1,c2] \ (R,B,G) &\mapsto (Y,U,V) \end{aligned}$$

is a bijection.

- The human eye is sensitive to Y;
- If Y is a gray-scale image to colorize, the computation of U and V gives the color image.

Color image. Jean-Francois Aujol

Image colorization

Gray-scale version (Y).

Manual colorization.

- State-of-the-art: Levin et al. 2004, Sapiro 2005, Horiuchi et al. 2004;
- Need some tedious work for the user;
- Regular results;
- Most of methods work in luminance-chrominance spaces.

Figure : Manual colorization of Levin et al.

The problem of exemplar-based colorization.

Source.

Target.

Result.

- Correspondence between textures and colors;
- Regularization of the result for a realistic image;
- A new difficulty: find an appropriate source image.

Add of a prior with textures.

- State-of-the-art: Welsh et al. 2002;
- No regularization;
- Problem of the choice of metric between patches;
- Method of Welsh *et al.* works in the $l\alpha\beta$ color-space.

Speed up the search.

- Sub-sampling of 200 pixels of the image on a grid.
- Use of a fast algorithm such as patchmatch (Barnes et al 2009) to find a close patch.

- State-of-the-art: Charpiat *et al.* (*Lab*) 2008, Bugeau *et al.* 2013 (*YUV*), Gupta *et al.* 2013 (*YUV*).
- Two steps:
 - Search of information: candidates extraction from textures criteria;
 - Spatial regularization of colors.

Used criteria:

- standard-deviation: $\rho_1(p, q, P) := |\sigma^2(P_p) \sigma^2(P_q)|$, where $\sigma(P_p)$ stands for the standard-deviation of the patch around the pixel p;
- the DFT: $\rho_2(p, q, P) := \sum_{\xi} \left| ||\hat{P}_p(\xi)||_2 ||\hat{P}_q(\xi)||_2 \right|$, where \hat{P}_p is the DFT of the patch around the pixel p;
- cumulative histogram: $\rho_3(p,q,P) := \sum_i |H_{P_p}(i) H_{P_q}(i)|$, where *H* is the cumulative histogram of the patch around the pixel *p*.

Colorization problem

2 Luminance-chrominance coupled model

3 Primal-dual like algorithm.

Unified model for colorization

5 Extension to video

$$F(u, W) := TV_{\mathcal{C}}(u) + \frac{\lambda}{2} \int_{\Omega} \sum_{i=1}^{N} w_i ||u - c_i||^2$$

 $+\chi_{u\in R} + \chi_{W\in\Delta}$

u: chrominance vector, to be computed. R is a rectangle (where the chromaticity lives). $\Delta = \left\{ w \in \mathbb{R}^N \text{ s.t. } 0 \le w_i \le 1 \text{ , } \forall i \in [1..N] \text{ and } \sum_{i=1}^N w_i = 1 \right\}.$ c_i are chrominance candidates.

$$TV_{\mathcal{C}}(u) = \int_{\Omega} \sqrt{\gamma \partial_x Y^2 + \gamma \partial_y Y^2 + \partial_x U^2 + \partial_y U^2 + \partial_x V^2 + \partial_y V^2}$$

Intuitions about coupling.

Consider the following model:

$$F(u, W) := TV_{\mathcal{C}}(u) + \frac{\lambda}{2} \int_{\Omega} \|M(u-c)\|^2$$

With M a mask and c seeds of color put by the user.

Scribbles

Without coupling

With coupling

Different regularizations with different coupling:

Small γ : contours of low perimeter for chrominance channels.

Target image

source Image

without post-processing

Our model

Colorization problem

- 2 Luminance-chrominance coupled model
- Oprimal-dual like algorithm.
- 4 Unified model for colorization
- Extension to video

Primal problem:

 $\min_{x\in X}\left[F(Kx)+G(x)\right] ,$

where $G: X \to [0, +\infty]$; $F^*: Y \to [0, +\infty]$ are convex, proper, lower semi-continuous; K is a continuous linear operator. Associated saddle point problem:

$$\min_{x\in X} \max_{y\in Y} \left[\langle Kx|y \rangle + G(x) - F^*(y) \right].$$

with F^* convex conjugate of F.

Convergence of the primal-dual algorithm to a saddle-point of the functional.

Algorithm 1 Primal-dual algorithm of Chambolle and Pock 2011.

1: Initialization τ , $\sigma > 0$, $\theta \in [0, 1]$, $(x^0, y^0) \in X \times Y$ et $\overline{x}^0 = x^0$. 2: for $n \ge 0$ do 3: $y^{n+1} = \operatorname{prox}_{\sigma F^*} (y^n + \sigma K \overline{x}^n)$ 4: $x^{n+1} = \operatorname{prox}_{\tau G} (x^n - \tau K^* y^{n+1})$ 5: $\overline{x}^n = 2x^{n+1} - x^n$. 6: end for

where
$$\operatorname{prox}_f(\tilde{u}) = \operatorname{argmin}_u \frac{\|\tilde{u} - u\|_2^2}{2} + f(u).$$

Non-convex model:

$$\min_{x\in X, w\in W} F(Kx) + G(x) + h(x,w) + H(w) ,$$

and associated saddle point problem:

$$\min_{x\in X}\min_{w\in W}\max_{y\in Y}ig\langle {\it K} x|y
angle -{\it F}^*(y)+{\it G}(x)+{\it h}(x,w)+{\it H}(w)$$
 ,

where $G: X \to [0, +\infty)$, $F^*: Y \to [0, +\infty)$, $H: W \to [0, +\infty)$ and $h: (X \times W) \to [0, +\infty)$ are proper, lower semi-continuous, F^* , G, H are convex, h is convex with respect to each variable.

Moreover $\forall w \in \mathbb{R}^n$, G + h(., w) and $\forall x \in \mathbb{R}^n$, H + h(x, .) are proper.

Minimization algorithm.

Algorithm 2 Computing a solution.

1: for
$$n \ge 0$$
 do
2: $y^{n+1} \leftarrow \operatorname{prox}_{\sigma F^*} (y^n + \sigma K \overline{x}^n)$
3: $w^{n+1} \leftarrow \operatorname{prox}_{\rho H + \rho h(\overline{x}^n, .)} (w^n)$
4: $x^{n+1} \leftarrow \operatorname{prox}_{\tau G + \tau h(., w^{n+1})} (x^n - \tau K^* y^{n+1})$
5: $\overline{x}^{n+1} \leftarrow 2x^{n+1} - x^n$
6: end for

Theorem (Pierre *et al.* 2014)

Assume $\tau \sigma \|K\|^2 < 1$ and $\rho > 0$.

• The sequence (x^n, y^n, w^n) generated by the algorithm is bounded.

•
$$x^{n+1} - x^n \rightarrow 0$$
, $y^{n+1} - y^n \rightarrow 0$, and $w^{n+1} - w^n \rightarrow 0$.

 If the cluster points of (xⁿ, yⁿ, wⁿ) are isolated, then (xⁿ, yⁿ, wⁿ) converges to a fixed point.

Minimization algorithm.

Algorithm 3 Applied to colorization.

1:
$$W \leftarrow 1/N$$

2: $u^{0} \leftarrow \sum_{i} w_{i}c_{i}$
3: $Z^{0} \leftarrow \nabla u^{0}$
4: for $n \ge 1$ do
5: $Z^{n+1} \leftarrow P_{B} (Z^{n} + \sigma \nabla \overline{u}^{n})$
6: $W^{n+1} \leftarrow P_{\Delta} \left(W^{n} - \rho \left(\left(\| \overline{u}^{n} - c_{i} \|^{2} \right)_{i} \right) \right)$
7: $u^{n+1} \leftarrow P_{\mathcal{R}} \left(\frac{u^{n} + \tau \left(\operatorname{div}(Z^{n+1}) + \lambda \sum_{i} w_{i}^{n+1}c_{i} \right)}{1 - \delta \lambda} \right)$
8: $\overline{u}^{n+1} \leftarrow 2u^{n+1} - u^{n}$
9: end for

- P_{Δ} projection onto the simplex;
- $P_{\mathcal{R}}$ is a projection onto a rectangle.

$$F(u, W) := TV_{\mathcal{C}}(u) + \frac{\lambda}{2} \int_{\Omega} \sum_{i=1}^{N} w_i ||u - c_i||^2$$

$$+\chi_{u\in R}+\chi_{W\in\Delta}+\alpha\|w\|_2^2.$$

Theorem (Pierre et al. 2014)

Assume $\tau \sigma ||K||^2 < 1$ and $\rho > 0$. Assume the candidates C are all different. Then if $\alpha > 0$ is small enough, the sequence (w^n) generated by the previous algorithm converges to w^* . Moreover, w^* belongs to the finite set:

 $\mathcal{W} := \{(1,0,\ldots,0),\ldots,(1/2,1/2,0,\ldots,0),\ldots,(1/N,\ldots,1/N)\}.$

Algorithm 4 Minimization of the functional

1: for until convergence of
$$w^n$$
 to w^* do
2: $y^{n+1} \leftarrow \operatorname{prox}_{\sigma F^*}(y^n + \sigma K \overline{x}^n)$
3: $w^{n+1} \leftarrow \operatorname{prox}_{\rho H + \rho h(\overline{x}^n, .)}(w^n)$
4: $x^{n+1} \leftarrow \operatorname{prox}_{\tau G + \tau h(., w^{n+1})}(x^n - \tau K^* y^{n+1})$
5: $\overline{x}^{n+1} \leftarrow 2x^{n+1} - x^n$
6: end for
7: for until convergence of (x^n, y^n) to (x^*, y^*) do
8: $y^{n+1} \leftarrow \operatorname{prox}_{\sigma F^*}(y^n + \sigma K \overline{x}^n)$
9: $x^{n+1} \leftarrow \operatorname{prox}_{\tau G + \tau h(., w^*)}(x^n - \tau K^* y^{n+1})$
10: $\overline{x}^{n+1} \leftarrow 2x^{n+1} - x^n$
11: end for

Towards a fast algorithm

$$\begin{aligned} & \operatorname{prox}_{\rho H + \rho h(\overline{x}^n, .)}(w^n) \\ &= \operatorname{argmin}_w \|\tilde{w^n} - w\|_2^2 + \rho \left(\int_{\Omega} \sum_i w_i \|x - c_i\|_2^2 + \alpha \|w\|_2^2 + \chi_{\Delta}(w) \right) \\ & \text{becomes, if } \rho \to +\infty: \end{aligned}$$

$$\operatorname{argmin}_W \int_{\Omega} \sum_i w_i \|x - c_i\|_2^2 + \alpha \|w\|_2^2 + \chi_{\Delta}(w).$$

 $\implies w^* \in \mathcal{W} \text{ with}$ $\mathcal{W} := \{(1, 0, \dots, 0), \dots, (1/2, 1/2, 0, \dots, 0), \dots, (1/N, \dots, 1/N)\}.$

$$\min_{w} \min_{x} \max_{y} \langle Kx | y \rangle - F^{*}(y) + \int_{\Omega} \sum_{i} w_{i} ||x - c_{i}||_{2}^{2} + \chi_{W}(w) + \chi_{R}(x).$$

Algorithm 5 Minimization

1:
$$W = 1/8$$
 and $x = \sum_{i} w_{i}c_{i}$.
2: $y \leftarrow \nabla u$
3: for $n \ge 0$ do
4: $y \leftarrow P_{B}(y + \sigma \nabla x^{n})$
5: $x^{n+1} \leftarrow P_{\mathcal{R}}\left(\frac{x^{n} + \tau (\operatorname{div}(y) + \lambda S)}{1 + \tau \lambda}\right)$
6: end for

where $S = \sum_{i} w_{i}^{*} c_{i}$ stands for the closest candidate to x^{n} .

Colorization problem

- 2 Luminance-chrominance coupled model
- 3 Primal-dual like algorithm.
- Unified model for colorization
- 5 Extension to video

No current method is effective all situations:

- The selection of an image for the exemplar-based method is complex.
- The manual colorization is long and tedious.
- The exemplar-based method often provides good result, but small defects are very common.

Previous functional:

$$F(u, W) := TV_{\mathcal{C}}(u) + \frac{\lambda}{2} \int_{\Omega} \sum_{i=1}^{N} w_i ||u - c_i||^2$$

 $+\chi_{u\in R} + \chi_{W\in\Delta}$

Use of the non-convexity.

Gradient descent algorithm: $x_{n+1} \leftarrow x_n - \gamma \nabla f(x_n)$. The result depends of the initialization. W is initialized as the inverse of the geodesic distance for the candidate corresponding to the scribble.

Initial scribble Geodesic distance. Diffusion. Example of diffusion of color with geodesic distance.

Choice of the initialization.

Source.

Exemplar-based. With one scribble.

3 scribbles.

Final result.

Choice of the initialization.

Source. Target. With example.

Scribbles.

les. S

Scribbles.

Scribbles.

Target

Source

Scribbles

Manual

Exemplar

Both

Colorization problem

- 2 Luminance-chrominance coupled model
- 3 Primal-dual like algorithm.
- Unified model for colorization
- 5 Extension to video

Overview of the Approach

Color propagation

From a given result at time t - 1, two possible propagation results are provided at time t from the two maps.

 $\mathsf{Patch}\mathsf{Match}$

TVL1 optical flow

Propagation result

Fusion of correspondence maps

- advantages of TVL1 optical flow and PatchMatch;
- reducing the number of propagation mistakes.

Basic data:

- Chrominance c₁ and correspondence v₁ from PatchMatch;
- c_2 and v_2 from TV-L1 optical flow.

Luminance-chrominance Propagation Model

Propagation functional:

$$(\hat{u}^{(t)}, \hat{w}^{(t)}) = \operatorname{argmin}_{u^{(t)}, w^{(t)}} \lambda \int_{\Omega} \sum_{i=1}^{2} w_{i}^{(t)}(x) \| u^{(t)}(x) - c_{i}^{(t)}(x) \|_{2}^{2} dx$$

+ $\alpha \operatorname{TV}_{\mathcal{C}}(u^{(t)}) + \beta \operatorname{TV}(v^{(t)}) + \chi_{v^{(t)} = w_{1}^{(t)} v_{1}^{(t)} + w_{2}^{(t)} v_{2}^{(t)}} + \chi_{\mathcal{R}}(u) + \chi_{\Delta}(w),$
(1)

where $TV_{\mathcal{C}}(u)$ is the coupled total variation:

$$\mathsf{TV}_{\mathcal{C}}(u) = \int_{\Omega} \sqrt{\gamma |\nabla Y|^2 + |\nabla U|^2 + |\nabla V|^2}.$$

 $u^{(t)}$: chrominance channels (U, V) at time t; $w^{(t)}$: auxiliary weight variable; $TV(v^{(t)})$ enforces the regularisation of the propagation map; Δ is the probability simplex.

The Model is rewritten in the primal-dual form:

$$\begin{split} \min_{u^{(t)} \in \mathbb{R}^{3 \times N \times M}, w^{(t)} \in \mathbb{R}^{N \times M}} \max_{p \in \mathbb{R}^{6 \times N \times M}, z \in \mathbb{R}^{4 \times N \times M}} \\ \lambda \sum_{x \in \mathbb{R}^{N \times M}} w(x) \| u(x) - c_1(x) \|_2^2 + (1 - w(x)) \| u(x) - c_2(x) \|_2^2 \\ &+ \langle p(x) | \nabla u \rangle_{\mathbb{R}^{6 \times N \times M}} - \chi_{B(0,\alpha)^{N \times M}}(p) \\ &+ \langle Aw | z \rangle_{\mathbb{R}^{4 \times N \times M}} + \langle \nabla v_2 | z \rangle_{\mathbb{R}^{4 \times N \times M}} - \chi_{B(0,\beta)^{N \times M}}(z) \\ &+ \chi_{\mathcal{R}^{N \times M}}(u) + \chi_{[0,1]^{N \times M}}(w). \end{split}$$

where $Aw = (v_1 - v_2) \otimes \nabla w + w(\nabla v_1 - \nabla v_2).$

Let us consider the general model :

$$\begin{array}{l} \min \max_{u \in \mathcal{U}, w \in \mathcal{W}} \max_{p \in \mathcal{P}, z \in \mathcal{Z}} \\ h(u, w) \\ + \langle p | Ku \rangle - F^*(p) \\ + \langle Aw | z \rangle - J^*(z) \\ + G(u) + H(w) , \end{array}$$

where $G: \mathcal{U} \to [0, +\infty)$, $F^*: \mathcal{P} \to [0, +\infty)$, $J^*: \mathcal{Z} \to [0, +\infty)$, $H: \mathcal{W} \to [0, +\infty)$ and $h: (\mathcal{U} \times \mathcal{W}) \to [0, +\infty)$ are proper lower semi-continuous functions. F^* , J^* , G, H are convex, h is convex w.r.t. each of its variables separately. K and A are a continuous linear mapping.

A General Algorithm

Primal-dual like algorithm:

1: for
$$n \ge 0$$
 do
2: $p^{n+1} \leftarrow \operatorname{prox}_{\sigma_u F^*} (p^n + \sigma_u K \overline{u}^n)$
3: $z^{n+1} \leftarrow \operatorname{prox}_{\sigma_w J^*} (z^n + \sigma_w A \overline{w}^n)$
4: $w^{n+1} \leftarrow \operatorname{prox}_{\tau_w H + \tau_w h(u^{n+1}, \cdot)} (w^n - \tau_w A^* z^{n+1})$
5: $u^{n+1} \leftarrow \operatorname{prox}_{\tau_u G + \tau_u h(., w^{n+1})} (u^n - \tau_u K^* p^{n+1})$
6: $\overline{u}^{n+1} \leftarrow 2u^{n+1} - u^n$
7: $\overline{w}^{n+1} \leftarrow 2w^{n+1} - w^n$
8: end for

Parameters τ_u , τ_w , σ_u and σ_w are the time steps.

Theorem (Pierre *et al.*)

Let L = ||K||, Q = ||A||, choose $\tau_u \sigma_u L^2 < 1$, $\tau_w \sigma_w Q^2 < 1$. Assume that \mathcal{U} , \mathcal{P} , \mathcal{W} and \mathcal{Z} are of finite dimension.

- Then, the sequence (u^n, p^n, w^n, z^n) is uniformly bounded.
- There exists a cluster point which is a fixed-point of the Algorithm.

Under additional technical hypothesis, the sequence converges.

Overview of the Correction Model

Correction Model

$$(\hat{u}^{(t)}, \hat{w}^{(t)}) = \operatorname{argmin}_{u \in \mathbb{R}^{\Omega \times [0,n] \times 2}, w \in \mathbb{R}^{\Omega \times [0,n] \times 2}} \alpha TV_{[0,n]}(u)$$

+ $\lambda \int_{\Omega \times [0,n]} \sum_{i=1}^{2} w_i^{(t)}(x) \| u^{(t)}(x) - \tilde{c}_i^{(t)}(x) \|_2^2 dx + \chi_{\mathcal{B}}(u) + \chi_{\mathcal{E}}(w),$

where

$$TV_{[0,n]}(u) = \int_{\Omega \times [0,n]} \left(\|\Lambda \nabla U\|_2^2 + \|\Lambda \nabla V\|_2^2 + \|\gamma \Lambda \nabla Y\|_2^2 \right)^{\frac{1}{2}},$$

with $\nabla = (\partial_x, \partial_y, \partial_t), \Lambda := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \mu \end{pmatrix}$, and γ a coupling

parameter.

Top: Yatziv and Sapiro 2006; down: ours.

Top: Yatziv and Sapiro 2006; down: ours.

Top: Yatziv and Sapiro 2006; down: ours.

Top: Levin et al 2004 (more then 50 well chosen scribbles); down: ours (1 scribble).

Top: Levin et al 2004 (more then 400 well chosen scribbles); down: ours (20 coarse scribbles).

See videos on player.

Questions ?

More details at: http://www.math.u-bordeaux.fr/~jaujol/