Feuille 6 : Suites réelles

Exercice 6-1 [Limites de suites]

Déterminez les limites éventuelles des suites suivantes :

a)
$$u_n = \frac{n+2}{2n-1}$$
 b) $u_n = \frac{3n^2 - 2n + 3}{n^3 - 1}$ c) $u_n = \frac{3n^2 - 5}{n+4}$ d) $u_n = \frac{\sqrt{n+2}}{\sqrt{n-1}}$ e) $u_n = \frac{\sqrt{n+5} + n}{\sqrt{n^2 + 1}}$ f) $u_n = \sqrt{n+1} - \sqrt{n}$ g) $u_n = \sin n$ i) $u_n = \frac{\sin n}{\sqrt{n}}$ j) $u_n = \left(1 + \frac{1}{n}\right)^n$ k) $u_n = \frac{n - (-1)^n}{2n + (-1)^n}$ l) $u_n = \frac{3^n - 2^n}{2^n - 3^n}$ m) $u_n = \frac{2^n}{n^{100}}$

Exercice 6-2

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=8$ et la relation de récurrence $u_n=\frac{1}{2}u_{n-1}+3$ pour $n\in\mathbb{N}^*$.

- 1. On considère la suite $(v_n)_{n\in\mathbb{N}}$ donnée par $v_n=u_n+a$ où a est un réel quelconque. Ecrivez v_n en fonction de v_{n-1} .
- 2. Déterminez une valeur a pour laquelle la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique.
- 3. Déterminez v_n en fonction de n.
- 4. Déterminez u_n en fonction de n. Quelle est la limite de la suite?

Exercice 6-3 [Suites récurrentes]

Etudiez la convergence et calculez l'éventuelle limite de :

a)
$$u_{n+1} = \frac{1}{6}u_n + 5$$
, $u_0 = 3$ b) $u_{n+1} = -2u_n + 1$, $u_0 = 0$ c) $u_{n+1} = \sqrt{1 + u_n}$, $u_0 = 8$ d) $u_{n+1} = \sqrt{4 + 3u_n}$, $u_0 = 2$ e) $u_{n+1} = u_n^2 + \frac{2}{9}$, $u_0 = 0$ f) $u_{n+1} = \frac{u_n - 1}{u_n + 1}$, $u_0 = 2$

Exercice 6-4

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=7$ et la relation de récurrence $u_n=\sqrt{2+u_{n-1}}$ pour $n\in\mathbb{N}^*$.

- 1. Montrez que la fonction $f(x) = \sqrt{2+x}$ est croissante.
- 2. Déterminez l'image de l'intervalle [0,7] par f.
- 3. Montrez que $(u_n)_{n\in\mathbb{N}}$ converge et déterminez sa limite.

Exercice 6.5

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n + 8}{2u_n + 1}.$$

On pose alors, pour tout $n \in \mathbb{N}$,

$$v_n = \frac{u_n - 2}{u_n + 2}.$$

- 1. Montrez que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $-\frac{3}{5}$.
- 2. Exprimez v_n en fonction de n.
- 3. En déduire l'expression de u_n en fonction de n.
- 4. Montrez que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminez sa limite.

Exercice 6-6

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in[0,1]$ et $u_n=\frac{3-u_{n-1}^2}{2}$ pour $n\in\mathbb{N}^*$.

- 1. On considère la fonction $f(x) = \frac{3-x^2}{2}$. Montrez que f est décroissante sur $[0, \infty[$.
- 2. Déterminez l'image de l'intervalle $[0, \sqrt{3}]$ par f.
- 3. En considérant les solutions de l'équation $f \circ f(l) = l$, montrez que $(u_n)_{n \in \mathbb{N}}$ est convergente et déterminez sa limite.

Exercice 6-7

On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ de nombres réels définie par

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}.$$

- 1. Montrez que la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante.
- 2. Montrez qu'elle converge et que sa limite l vérifie :

$$\frac{1}{2} \le l \le 1.$$

3. En déduire que $\lim_{n\to\infty} \sum_{k=0}^n \frac{1}{k} = \infty$.

Exercice 6-8 $\left[\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}\right]$

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et la relation de récurrence $u_n=\sqrt{1+u_{n-1}}$ pour $n\in\mathbb{N}^*$.

- 1. Montrez que $\forall n \in \mathbb{N}, \ u_n \geq 1$.
- 2. Montrez que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 3. Montrez que la suite est bornée.
- 4. Déterminez une équation que vérifie la limite l de la suite.
- 5. Déterminez la valeur exacte de l.

Exercice 6-9

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs telle que $\lim_{n\to\infty}\frac{u_n}{1+u_n}=0$. Montrez que $\lim_{n\to\infty}u_n=0$.

Exercice 6-10

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites telles que $\forall n\in\mathbb{N}, w_n=u_n+v_n$.

- 1. On suppose que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent. Que peut on dire de $(w_n)_{n\in\mathbb{N}}$?
- 2. On suppose que $(w_n)_{n\in\mathbb{N}}$ ne converge pas. Que peut on dire de $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$?
- 3. Donnez un exemple de deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ divergentes telles que $(w_n)_{n\in\mathbb{N}}$ soit convergente.

Exercice 6-11

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que la suite $(w_n)_{n\in\mathbb{N}}$ donnée par $w_n=u_n^2+u_nv_n+v_n^2$ soit convergente vers 0.

- 1. En utilisant une identité remarquable, écrire w_n comme la somme de 2 carrés.
- 2. En déduire que les deux carrés convergent vers 0.
- 3. En déduire que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent aussi vers 0.

Exercice 6.12

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs.

- 1. On suppose que $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = 10$
 - (a) Justifiez qu'il existe un rang $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, $u_{n+1} \geq 5u_n$.
 - (b) Montrez qu'alors, pour tout $n \ge N$, $u_n \ge 5^{n-N}u_N$.
 - (c) En déduire que $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

- 2. On suppose à présent que $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = 0$
 - (a) Justifiez qu'il existe un rang $N \in \mathbb{N}$ tel que, pour tout $n \ge N$, $u_{n+1} \le \frac{1}{2}u_n$.
 - (b) En raisonnant comme avant, montrez que $(u_n)_{n\in\mathbb{N}}$ converge cette fois vers 0.

Exercice 6-13

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites définies par :

$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 $v_n = u_n + \frac{1}{n}$

- 1. Montrez que $(u_n)_{n\in\mathbb{N}}$ est croissante et que $(v_n)_{n\in\mathbb{N}}$ est décroissante.
- 2. Montrez que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont convergentes.

Exercice 6-14

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2$ et $u_{n+1}=\sqrt{2u_n-1}$.

- 1. Montrez que $(u_n)_{n\in\mathbb{N}}$ est minorée par 1.
- 2. Montrez que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. En déduire que $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminez sa limite.

Exercice 6-15 Soit $(u_n)_{n\in\mathbb{N}}$ une suite croissante telle que la sous suite $(u_{2n})_{n\in\mathbb{N}}$ des termes pairs converge vers l. Montrez que $(u_n)_{n\in\mathbb{N}}$ est aussi convergente.

Indications pour l'exercice 6-3

- 1. a) Montrez que la suite est minorée par 4, majorée par 6, puis qu'elle est monotone.
- 2. b) Considérez les sous suites des termes pairs et impairs.
- 3. c) Montrez que la suite est minorée par 1, majorée par 8, puis qu'elle est monotone.
- 4. d) Trouvez, en résolvant une équation, quelle peut être l'éventuelle limite l de la suite. Montrez que cette valeur est un majorant de la suite, puis que la suite est monotone.
- 5. e) Comme ci dessus, trouvez un bon majorant de la suite.
- 6. f) Calculez les 5 premiers termes de la suite.

Exercice 6.101 Soit $(u_n)_{n\in\mathbb{N}}$ une suite croissante de limite l. On pose

$$\forall n \in \mathbb{N}^*, \, v_n = \frac{u_1 + \dots + u_n}{n}.$$

- (a) Montrez que $(v_n)_{n\in\mathbb{N}}$ est croissante.
- (b) Montrez que, pour tout $n \in \mathbb{N}^*$, $v_n \leq l$. En déduire que (v_n) converge.
- (c) On note l' la limite de (v_n) . Peut-on donner une inégalité entre l et l'?
- (d) Établir que $v_{2n} \ge \frac{u_n + v_n^{(n)}}{2}$.
- (e) En passant à la limite dans l'inégalité précédente, en déduire que $(v_n)_{n\in\mathbb{N}}$ converge vers l.

Exercice 6-102
$$\left[1 + \frac{1}{1 + \frac{1}{1$$

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et la relation de récurrence $u_n=1+\frac{1}{u_{n-1}}$ pour $n\in\mathbb{N}^*$.

3

- 1. Calculez u_1 , u_2 et u_3 .
- 2. Montrez que $\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$.
- 3. Montrez que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.

4. Déterminez la limite l de la suite, à partir d'une equation qu'elle doit vérifier.

Exercice 6-103 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites définies par :

$$u_n = \sum_{k=1}^{n} \frac{1}{k!}$$
 $v_n = u_n + \frac{1}{nn!}$

- 1. Montrez que $(u_n)_{n\in\mathbb{N}}$ est croissante et que $(v_n)_{n\in\mathbb{N}}$ est décroissante
- 2. Montrez que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont convergentes.

Exercice 6-104 Soit $(u_n)_{n\in\mathbb{N}}$ et la suite définie par $u_0\in]1,2[$ et la relation de récurrence $u_{n+1}=\frac{u_n^2}{4}+\frac{3}{4}$.

- 1. Montrez que $\forall n \in \mathbb{N}, u_n > 1$.
- 2. Montrez que $\forall n \in \mathbb{N}, u_n \leq 2$.
- 3. Montrez que la suite est monotone. En déduire sa convergence.
- 4. Déterminez sa limite.

Exercice 6-105 Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=\frac{3}{2}$ et par la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = (u_n - 1)^2 + 1.$$

- 1. On introduit la fonction $f(x) = (x-1)^2 + 1$. Montrer que f est croissante sur $[1, \infty[$. Déterminer l'image de l'intervalle]1, 2[par f.
- 2. En déduire que, pour tout $n \in \mathbb{N}$, $1 < u_n < 2$.
- 3. Montrer que la suite (u_n) est monotone.
- 4. En déduire que (u_n) est convergente et déterminer sa limite.

Exercice 6-106 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et par la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{6}u_n^2 + \frac{3}{2}.$$

- 1. Montrez que, pour tout $n \in \mathbb{N}^*$, $u_n > 0$.
- 2. Si la suite (u_n) converge, quelle peut être sa limite éventuelle?
- 3. Montrez que, pour tout $n \in \mathbb{N}$, $u_n < 3$.
- 4. Montrez que (u_n) est croissante. Que peut-on en conclure?

Exercice 6-107 Etudiez la monotonie des suites définies par les termes généraux suivants :

$$\frac{1}{n} + \frac{1}{n+1}$$
 (pour $n \ge 1$), $n-2^n$, $\frac{e^n}{n!}$, $(n+1)(n+2)\dots(n+n)$, $\frac{n-1}{n+3}$, $n-\sinh n$.

Exercice 6-108

1. Montrez que, pour tout $k \in \mathbb{N}^*$,

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}.$$

2. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie pour tout n>0 par

$$u_n = \sum_{k=1}^n \frac{1}{k(k+1)}.$$

4

À l'aide de la question 1, montrez que $(u_n)_{n\in\mathbb{N}^*}$ est convergente et déterminez sa limite.