Énoncé et preuve du théorème de Ramsey

(d'après Analyse 1 : les réels et les fonctions, P. Mironescu, 2013)

Théorème 0.1 (Théorème de Ramsey) Toute suite $(x_n)_{n\in\mathbb{N}}\subset \bar{\mathbb{R}}$ contient une sous-suite monotone

Preuve : La preuve utilise le lemme 0.2 énoncé et démontré ci-dessous. On définit

$$A = \{ n \in \mathbb{N}, \forall m > n, x_m < x_n \}.$$

Deux cas se présentent :

1. Cas 1 : A est **infini** (i.e. il possède une infinité d'éléments). On définit alors par récurrence forte une suite $(x_{n_k})_{k\in\mathbb{N}}$ de la façon suivante :

 $\begin{array}{l} \underline{\text{Initialisation}}: \text{ on choisit } n_0 \in A \text{; par d\'efinition de } A, \text{ on a pour tout } n > n_0, \ x_n < x_{n_0}. \\ \underline{\text{H\'e\'r\'edit\'e}}: \underline{\text{Soit } n_k \in \mathbb{N}}; \text{ On suppose que } n_0, \dots, n_k \in A, \ n_0 < n_1 < \dots < n_k \text{ et } x_{n_0} > x_{n_1} > x_{n_2} > \dots > x_{n_k} \text{ (hypoth\`ese de r\'ecurrence forte)}. Comme A est infini, il contient un \'el\'ement $n_{k+1} > n_k$. Par d\'efinition de A on a $x_{n_{k+1}} < x_{n_k}$ et donc, \\ \end{array}$

$$x_{n_0} > x_{n_1} > x_{n_2} > \dots > x_{n_k} > x_{n_{k+1}}.$$

Par le principe de récurrence, on peut ainsi construire une suite $(x_{n_k})_{k\in\mathbb{N}}$ telle que

$$x_{n_0} > x_{n_1} > x_{n_2} > \dots > x_{n_k}$$
.

C'est une sous-suite de (x_n) et, par construction, elle est strictement décroissante.

2. Cas 1 : A est **fini** (i.e., il possède un nombre fini d'éléments). On définit alors par récurrence forte une suite $(x_{n_k})_{k\in\mathbb{N}}$ de la façon suivante :

<u>Initialisation</u>: si A est non vide, on définit n_0 comme l'entier naturel tel que $n_0 - 1$ soit le plus grand élément de A (cet élément existe puisque A est fini). On a donc $n_0 \notin A$ (sinon $n_0 - 1$ ne serait pas le plus grand élément de A). Si A est vide, on choisit arbitrairement $n_0 \in \mathbb{N}$ et on a bien $n_0 \notin A$.

<u>Hérédité</u>: <u>Soit</u> $n_k \in \mathbb{N}$. On suppose que $n_0, \ldots, n_k \notin A$, $n_0 < n_1 < \cdots < n_k$ et $x_{n_0} \ge x_{n_1} \ge \cdots \ge x_{n_k}$ (hypothèse de récurrence forte). Par définition de A, il existe $n_{k+1} \notin A$ tel que $n_{k+1} > n_k$ et $x_{n_{k+1}} \ge x_{n_k}$ (un tel n_{k+1} existe forcément puisque n_k n'appartient pas à A et A est fini). On en déduit que

$$x_{n_0} \ge x_{n_1} \ge \dots \ge x_{n_k} \ge x_{n_{k+1}}.$$

Par le principe de récurrence, on construit ainsi une suite $(x_{n_k})_{k\in\mathbb{N}}$ telle que

$$x_{n_0} \ge x_{n_1} \ge \cdots \ge x_{n_k}.$$

C'est une suite extraite de (x_n) et elle est croissante.

Dans les deux cas, on a réussi à extraire de (x_n) une suite monotone.

Lemme 0.2 Si une partie $A \subset \mathbb{N}$ est infinie alors

$$\forall m \in \mathbb{N}, \ \exists \ell \in A, \ \ell > m$$

PREUVE : On démontre la contraposée ; on suppose donc qu'il existe $m \in \mathbb{N}$ tel que, pour tout $\ell \in A$, $\ell \leq m$. On en déduit que $A \subset \llbracket 0, m \rrbracket$ et donc A est une partie finie de \mathbb{N} .