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Abstract. We consider the problem of finding (possibly non connected)
discrete surfaces spanning a finite set of discrete boundary curves in the
three-dimensional space and minimizing (globally) a discrete energy in-
volving mean curvature. Although we consider a fairly general class of
energies, our main focus is on the Willmore energy, i.e. the total squared
mean curvature. Most works in the literature have been devoted to the
approximation of a surface evolving by the Willmore flow and, in par-
ticular, to the approximation of the so-called Willmore surfaces, i.e., the
critical points of the Willmore energy. Our purpose is to address the deli-
cate task of approximating global minimizers of the energy under bound-
ary constraints. The main contribution of this work is to translate the
nonlinear boundary value problem into an integer linear program, using
a natural formulation involving pairs of elementary triangles chosen in
a pre-specified dictionary and allowing self-intersection. The reason for
such strategy is the well-known existence of algorithms that can compute
global minimizers of a large class of linear optimization problems, how-
ever at a significant computational and memory cost. The case of integer
linear programming is particularly delicate and usual strategies consist
in relaxing the integral constraint x ∈ {0, 1} into x ∈ [0, 1] which is easier
to handle. Our work focuses essentially on the connection between the
integer linear program and its relaxation. We prove that:
– One cannot guarantee the total unimodularity of the constraint ma-

trix, which is a sufficient condition for the global solution of the
relaxed linear program to be always integral, and therefore to be a
solution of the integer program as well;

– Furthermore, there are actually experimental evidences that, in some
cases, solving the relaxed problem yields a fractional solution.

These facts indicate that the problem cannot be tackled with classical
linear programming solvers, but only with pure integer linear solvers.
Nevertheless, due to the very specific structure of the constraint matrix
here, we strongly believe that it should be possible in the future to de-
sign ad-hoc integer solvers that yield high-definition approximations to
solutions of several boundary value problems involving mean curvature,
in particular the Willmore boundary value problem.
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1 Introduction

The Willmore energy of an immersed compact oriented surface f : Σ → RN
with boundary ∂Σ is defined as

W(f) =

∫
Σ

|H|2dA+

∫
∂Σ

κ ds

where H is the mean curvature vector on Σ, κ the geodesic curvature on ∂Σ,
and dA, ds the induced area and length metrics on Σ, ∂Σ. The Willmore en-
ergy of surfaces with or without boundary plays an important role in geom-
etry, elastic membranes theory, strings theory, and image processing. Among
the many concrete optimization problems where the Willmore functional ap-
pears, let us mention for instance the modeling of biological membranes, the
design of glasses, and the smoothing of meshed surfaces in computer graphics.
The Willmore energy is the subject of a long-standing research not only due to
its relevance to some physical situations but also due to its fundamental prop-
erty of being conformal invariant, which makes it an interesting substitute to
the area functional in conformal geometry. Critical points of W with respect to
interior variations are called Willmore surfaces. They are solutions of the Euler-
Lagrange equation δW = 0 whose expression is particularly simple when N = 3:
∆H+2H(H2−K) = 0, being K the Gauss curvature. It is known since Blaschke
and Thomsen [23] that stereographic projections of compact minimal surfaces in
S3 ⊂ R4 are always Willmore surfaces in R3. However, Pinkall exhibited in [22]
an infinite series of compact embedded Willmore surfaces that are not stereo-
graphic projections of compact embedded minimal surfaces in S3. Yet Kusner
conjectured [17] that stereographic projections of Lawson’s g-holed tori in S3
should be global minimizers of W among all genus g surfaces. This conjecture is
still open, except of course for the case g = 0 where the round sphere is known
to be the unique global minimizer.

The existence of smooth surfaces that minimize the Willmore energy span-
ning a given boundary and a conormal field has been proved by Schätzle in [27].
Following the notations in [27], we consider a smooth embedded closed oriented
curve Γ ⊂ RN together with a smooth unit normal field nΓ ∈ NΓ and we
denote as ±Γ and ±nΓ their possible orientations. We assume that there ex-
ist oriented extensions of ±Γ , ±nΓ , that is, there are compact oriented sur-
faces Σ−, Σ+ ⊂ RN with boundary ∂Σ± = ±Γ and conormal vector field
coΣ± = ±nΓ on ∂Σ±. We also assume that there exists a bounded open set
B ⊃ Γ such that the set

{Σ± oriented extensions of (Γ, nΓ ), Σ+ connected ,

Σ+ ∪Σ− ⊂ B, W(Σ+ ∪Σ−) < 8π}
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is not empty. The condition on energy ensures that Σ+ ∪Σ− is an embedding.

It follows from [27], Corollary 1.2, that the Willmore boundary problem as-
sociated with (Γ, nΓ ) in B has a solution, i.e., there exists a compact, oriented,
connected, smooth surface Σ ⊂ B with ∂Σ = Γ , coΣ = nΓ on ∂Σ, and

W (Σ) = min{W (Σ̃), Σ̃ smooth, Σ̃ ⊂ B, ∂Σ̃ = Γ, coΣ̃ = nΓ on ∂Σ̃}

There have been many contributions to the numerical simulation of Willmore
surfaces in space dimension N = 3. Among them, Hsu, Kusner and Sullivan
have tested experimentally in [16] the validity of Kusner’s conjecture: starting
from a triangulated polyhedron in R3 that is close to a Lawson’s surface of
genus g, they let it evolve by a discrete Willmore flow using Brakke’s Surface
Evolver [6] and check that the solution obtained after convergence is W-stable.
Recent updates that Brakke brought to its program give now the possibility to
test the flow with various discrete definitions of the mean curvature. Mayer and
Simonett [19] introduce a finite difference scheme to approximate axisymmet-
ric solutions of the Willmore flow. Rusu [26] and Clarenz et al. [8] use a finite
elements approximation of the flow to compute the evolution of surfaces with
or without boundary. In both works, position and mean curvature vector are
taken as independent variables, which is also the case of the contribution by
Verdera et al. [33], where a triangulated surface with a hole in it is restored
using the following approach: by the coarea formula, the Willmore energy (actu-
ally a generalization to other curvature exponents) is replaced with the energy
of an implicit and smooth representation of the surface, and the mean curvature
term is replaced by the divergence of an unknown field that aims to represent
the normal field. Droske and Rumpf [9] propose a finite element approach to
the Willmore flow but replace the standard flow equation by its level set for-
mulation. The contribution of Dziuk [10] is twofold: it provides a finite element
approximation to the Willmore flow with or without boundary conditions that
can handle as well embedded or immersed surfaces (turning the surface problem
into a quasi-planar problem), and a consistency result showing the convergence
of both the discrete surface and the discrete Willmore energy to the continuous
surface and its energy when the approximated surface has enough regularity.
Bobenko and Schröder [4] use a difference strategy: they introduce a discrete
notion of mean curvature for triangulated surfaces computed from the circles
circumscribed to each triangle that shares with the continuous definition a few
properties, in particular the invariance with respect to the full Möbius group in
R3. This discrete definition is vertex-based and a discrete flow can be derived.
Based also on several axiomatic constraints but using a finite elements frame-
work, Wardetzky et al. [34] introduce an edge-based discrete Willmore energy
for triangulated surfaces. Olischläger and Rumpf [21] introduce a two step time
discretization of the Willmore flow that extends to the Willmore case, at least
formally, the discrete time approximation of the mean curvature motion due
to Almgren, Taylor, and Wang [2], and Luckhaus and Sturzenhecker [18]. The
strategy consists in using the mean curvature flow to compute an approxima-
tion of the mean curvature and plugging it in a time discrete approximation of
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the Willmore flow. Grzibovskis and Heintz [14], and Esedoglu et al. [11] discuss
how 4th order flows can be approximated by iterative convolution with suitable
kernels and thresholding.

While all the previous approaches yield approximations of critical points
of the Willmore energy, our motivation in this paper is to approximate global
minimizers. This is an obviously nontrivial task due to the high nonlinearity and
nonconvexity of the energy. Yet, for the simpler area functional, Sullivan [31]
has shown with a calibration argument that the task of finding minimal surfaces
can be turned into a linear problem. Even more, when a discrete solution is
seeked among surfaces that are union of faces in a cubic grid partition of R3,
he proved that the minimization of the linear program is equivalent to solving a
minimum-cost circulation network flow problem, for which efficient codes have
been developed by Boykov and Kolmogorov [5] after Ford and Fulkerson [12].
Sullivan [31] did not provide experiments in his paper but this was done recently
by Grady [13], with applications to the segmentation of medical images.

The linear formulation that we propose here is based on two key ideas: the
concept of surface continuation constraints that has been pioneered by Sulli-
van [31] and Grady [13], and the representation of a triangular surface using
pairs of triangles. With this representation and a suitable definition of discrete
mean curvature, we are able to turn into a linear formulation the task of mini-
mizing discrete representations of any functional of the form

Wϕ(Σ) =

∫
Σ

ϕ(x, n,H)dA

among discrete immersed surfaces with boundary constraints:

∂Σ = Γ, coΣ̃ = nΓ on ∂Σ.

In the expression of Wϕ(Σ), x denotes the space variable, n the normal vector
field on Σ and H the mean curvature vector. The linear problem we obtain
involves integer-valued unknowns and does not seem to admit any simple graph-
based equivalent. We will therefore discuss whether classical strategies for linear
optimization can be used.

The paper is organized as follows: in Section 2 we discuss both the cho-
sen representation of surfaces and the definition of discrete mean curvature. In
Section 3 we present a first possible approach yielding a quadratic energy. We
present in Section 4 our linear formulation and discuss whether it can be tackled
by classical linear optimization techniques.

2 Discrete Framework

2.1 Triangular Meshes from a Set of Pre-defined Triangles

The equivalence shown by Sullivan between finding minimal surfaces and solving
a flow problem holds true for discrete surfaces defined as a connected set of cell
faces in a cellular complex discrete representation of the space. We will consider
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here polyhedral surfaces defined as union of triangles with vertices in (a finite
subset of) the cubic lattice εZ3 where ε = 1

n is the resolution scale. Not all
possible triangles are allowed but only those respecting a specified limit on the
maximal edge length. We assume that each triangle, as well as each triangle edge,
is represented twice, once for each orientation. We let I denote the collection of
oriented triangles, N = |I| its cardinality, and M the number of oriented triangle
edges. The constrained boundary is given as a contiguous oriented set of triangle
edges. The orientation of the boundary constrains the spanning surfaces since
we will allow only spanning triangles whose orientation is compatible.

In this framework, one can represent a triangular mesh as a binary indicator
vector x = {0, 1}N where 1 means that the respective triangle is present in
the mesh, 0 that it is not. Obviously, not all binary indicator vectors can be
associated with a triangular surface since the corresponding triangles may not
be contiguous. However, as discussed by Grady [13] and, in a slightly different
setting, by Sullivan [30, 31], it is possible to write in a linear form the constraint
that only binary vectors that correspond to surfaces spanning the given boundary
are considered. We will see that using the same approach here turns the initial
boundary value problem into a quadratic program. Another formulation will be
necessary to get a linear problem.

2.2 Admissible Indicator Vectors: A First Attempt

To define the set of admissible indicator vectors, we first consider a relationship
between oriented triangles and oriented edges which is called incidence: a triangle
is positive incident to an edge if the edge is one of its borders and the two agree
in orientation. It is negative incident if the edge is one of its borders, but in the
opposite orientation. Otherwise it is not incident to the edge. For example, the
triangle in Figure 1 is positive incident to the edge e1, negative incident to e2
and e3 and not incident to e4.

e4
e3

e2

e1 Fig. 1. Incidence of oriented triangles
and edges. e1 is positively incident to
the oriented triangle, e2 and e3 are neg-
atively incident, and e4 is not incident
to the triangle.

Being defined as above the set of N oriented triangles and their M oriented
edges, we introduce the matrix B = (bij)i∈{1,··· ,N}

j∈{1,··· ,M}
whose element bij gives

account of the incidence between triangle i and edge j. More precisely
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bij =


1 if edge i is an edge of triangle j with same orientation

−1 if edge i is an edge of triangle j with opposite orientation

0 otherwise.

The knowledge of which edges are present in the set of prescribed boundary
segments is expressed as a vector r ∈ {−1, 0, 1}M with

rj =



1 if the oriented boundary contains the edge j

with agreeing orientation

−1 if the oriented boundary contains the edge −j
with opposing orientation

0 otherwise.

With these notations, we can now describe the equation system defining that
a vector x ∈ {0, 1}N encodes an oriented triangular mesh with the pre-specified
oriented boundary. This system has one equation for each edge. If the edge
is not contained in the given boundary, this equation expresses that, among
all triangles indicated by x that contain the edge, there are as many triangles
with same orientation as the edge as triangles with opposite orientation. If the
edge is contained in the boundary with coherent orientation, there must be
one more positive incident triangle than negative incident. If it is contained with
opposite orientation, there is one less positive than negative incident. Altogether
the constraint for edge j can be expressed as the linear equation∑

i

bij xi = rj

and the entire system as
B x = r. (1)

So far, we did not incorporate the conormal constraint. Actually not all conormal
constraints are possible, exactly like not all discrete curves can be spanned in
our framework but only union of edges of dictionary triangles, i.e. the collection
of triangles defined in the previous section that determine the possible surfaces.
For the conormal constraint, only the conormal vectors that are tangent to dic-
tionary triangles sharing an edge with the boundary curve are allowed. Then
the conormal constraint can be easily plugged into our formulation by simply
imposing the corresponding triangles to be part of the surface, see Figure 2, and
by defining accordingly a new boundary indicator vector r̃.

Denoting as J the collection of those additional triangles, the complete con-
straint reads {

B x = r̃
xj = 1, j ∈ J (2)

We discuss in the next section how discrete mean curvature can be evaluated in
this framework.
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Fig. 2. The boundary and conormal constraints can be imposed by pre-specifying suit-
able triangles to be part of the surface.

2.3 Discrete Mean Curvature on Triangular Meshes

The various definitions of discrete mean curvature that have been proposed in the
literature obviously depend on the chosen discrete representations of surfaces.
Presenting and discussing all possible definitions is out of the scope of the present
paper. The important thing to know is that there is no fully consistent definition:
the pointwise convergence of mean curvature cannot be guaranteed in general
but only in specific situations [15, 20]. Among the many possible definitions,
we will use the edge-based one proposed by Polthier [24] for it suits with our
framework. Recalling that, in the smooth case but also for generalized surfaces
like varifolds [29], the first variation of the area can be written in terms of the
mean curvature, the definition due to Polthier of the mean curvature vector at
an interior edge e of a simplicial surface reads

H(e) = |e| cos
θe
2
Ne (3)

where |e| is the edge-length, θe is the dihedral angle between the two triangles
adjacent to e, and Ne is the angle bisecting unit normal vector, i.e., the unit
vector collinear to the half sum of the two unit vectors normal to the adjacent
triangles (see Figure 3). We remark that this formula is a discrete counterpart
of the continuous H = κ1 + κ2 depending on the principal curvatures, which is
used in many papers for simplicity as definition of mean curvature. When the
correct continuous definition H = 1

2 (κ1 + κ2) is used, the formulas above and
hereafter should be adapted. The justification of formula (3) by Polthier [24,
25] is as follows: it is exactly the gradient at any point m ∈ e of the area of
the two triangles T1 and T2 adjacent to e, and this gradient does not depend
on the exact position of m. Indeed, one can subdivide T1, T2 in four triangles
T ′i , i ∈ {1, · · · , 4} having m ∈ e as a vertex and such that T1 = T ′1 ∪ T ′2 and
T2 = T ′3∪T ′4. The area of each triangle is half the product of the opposite edge’s
length and the height. Therefore, if ei is the positively oriented edge opposite to
m in the triangle T ′i and J1, J2 the rotations in the planes of T1, T2 by π

2 , the
area gradients of T ′i , i ∈ {1, · · · , 4} at m are 1

2J1e1, 1
2J1e2, 1

2J2e3, 1
2J2e4. The

sum is the total area gradient of T1 ∪ T2 at m and equals 1
2 (J1e + J2e), which

coincides with the formula above.
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θe

Ne

e

Fig. 3. The edge-based definition of a discrete mean curvature vector due to Polth-
ier [24] depends on the dihedral angle θe and the angle bisecting unit normal vector
Ne.

As discussed by Wardetsky et al. using the Galerkin theory of approximation,
this discrete mean curvature is an integrated quantity: it scales as λ when each
space dimension is rescaled by λ. A pointwise discrete mean curvature rescaling
as 1

λ is given by (see [34])

Hpw(e) =
3|e|
Ae

cos
θe
2
Ne,

where Ae denotes the total area of the two triangles adjacent to e. The factor
3 comes from the fact that, when the mean curvatures are summed up over all
edges, the area of each triangle is counted three times, once for each edge. Then

a discrete counterpart of the energy

∫
Σ

ϕ(H) dA is given by

∑
edges e

Ae
3
ϕ(

3|e|
Ae

cos
θe
2
Ne). (4)

In particular, the edge-based total squared mean curvature is∑
edges e

3|e|2

Ae
(cos

θe
2

)2. (5)

3 A Quadratic Program for the Minimization of the
Discrete willmore Energy

Ultimately we are aiming at casting the optimization problem in a form that can
be handled by standard linear optimization software. Having in mind the frame-
work described above where a discrete surface spanning the prescribed discrete
boundary is given as a collection of oriented triangles satisfying equation (2) and
chosen among a pre-specified collection of triangles, a somewhat natural direc-
tion at first glance seems to be solving a quadratic program. Like in Section 2.1,
let us indeed denote as (xi) the collection of binary variables associated to the
“dictionary” of triangles (Ti) and define

– eij the common edge to two adjacent triangles Ti and Tj ;
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– θij the corresponding dihedral angle;
– Nij the angle bisecting unit normal;
– Aij the total area of both triangles.

Then a continuous energy of the form

∫
Σ

ϕ(x, n,H)dA can be discretized as

∑
i,j

qij xi xj (6)

with qij =


1

2

Aij
3
ϕ(eij , Nij ,

3|eij |
Aij

cos
θij
2
Nij) if i 6= j are adjacent

ϕ̃(Ti, Ni) if i = j

0 otherwise,
where ϕ̃ allows to incorporate dependences on each triangle Ti’s position and
unit normal Ni. In particular, the discrete Willmore energy is∑

i,j

qwijxi xj (7)

with

qwij =


3|eij |2

2Aij
(cos

θij
2

)2 if i 6= j are adjacent

0 otherwise.

Assuming that the maps ϕ and ϕ̃ are positive-valued, both energy matrices

Q = (qij) and Qw = (qwij) are symmetric matrices in R+N×N , and the minimiza-
tion of either (6) or (7) with boundary constraints turns out to be the following
quadratic program with linear and integrality constraints:

min
x

〈Qx, x〉

such that B x = r

xi = 1 ∀i ∈ J
x ∈ {0, 1}N .

We know of no solution to solve this problem efficiently due to the integrality
constraint. What is worse, even the relaxed problem where one optimizes over
x ∈ [0, 1]N is very hard to solve: terms of the form xixj with i 6= j are indefinite,
so (unless Q has a dominant diagonal) the objective function is a non-convex
one.

Moreover, a solution to the relaxed problem would not be of practical use:
already for the 2D-problem of optimizing curvature energies over curves in the
plane, the respective quadratic program favors fractional solutions. The relax-
ation would therefore not be useful for solving the integer program. However, in
this case Amini et al. [3] showed that one can solve a linear program instead.
This inspired us for the major contribution of this work: to cast the problem as
an integer linear program.
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4 An Integer Linear Programming Approach

4.1 Augmented Indicator Vectors

The key idea of the proposed integer linear program is to consider additional
indicator vectors. Aside from the indicator variables xi for basic triangles, one
now also considers entries xij corresponding to pairs of adjacent triangles 4. Such
a pair is called quadrangle in the following. We will denote x̂ the augmented
vector (x1, · · · , xN , · · · , xij , · · · ) where i 6= j run over all indices of adjacent
triangles. The cost function can be easily written in a linear form with this
augmented vector, i.e. it reads ∑

wkx̂k

with (see the notations of the previous section)

wk =

{
qii if x̂k = xi
qij if x̂k = xij .

The major problem to overcome is how to set up a system of constraints that
guarantees consistency of the augmented vector: the indicator variable xij for
the pair of triangles i and j should be 1 if and only if both the variables xi and
xj are 1. Otherwise it should be 0. In addition, one again wants to optimize only
over indicator vectors that correspond to a triangular mesh.

To encode this in a linear constraint system, a couple of changes are necessary.
First of all, we will now have a constraint for each pair of triangle and adjacent
edge. Secondly, edges are no longer oriented. Still, the set of pre-specified indices
J implies that the orientation of the border is fixed - we still require that for
each edge of the boundary an adjacent (oriented) triangle is fixed to constrain
the conormal information.

To encode the constraint system we introduce a modified notion of incidence.
We are no longer interested in incidence of triangles and edges. Instead we now
consider the incidence of both triangles and quadrangles to pairs of triangles and
(adjacent) edges.

For convenience, we define that triangles are positive incident to a pair of
edge and triangle, whereas all quadrangles are negative incident.

We propose an incidence matrix where lines correspond to pairs (triangle,
edge) and columns to either triangles or quadrangles. The entries of this incidence
matrix are either the incidence of a pair (triangle, edge) with a triangle, defined
as

d((triangle k, edge e), triangle i) =

{
1 if i = k, e is an edge of triangle i

0 otherwise,

4 This strategy of doubling the variables shares some similarity with techniques in
semi-definite programming



The Discrete Willmore Boundary Problem 11

or the incidence of a pair (triangle, edge) with a quadrangle, defined as

d((triangle k, edge e), quadrangle ij) =

{
−1 if i=k or j=k and i, j share e

0 otherwise.

The columns of this incidence matrix are of two types: either with only 0’s and
exactly three 1 (a column corresponding to a triangle T , whose three edges are
found at lines (T, e1), (T, e2), (T, e3)), or with only 0’s and exactly two (−1)’s (a
column corresponding to a quadrangle (T1, T2) that matches with lines (T1, e12)
and (T2, e12)).

Again, both the conormal constraints and the boundary edges can be imposed
by imposing additional triangles indexed by a collection J of indices. The general
constraint has the form∑

i

d((xk, e), xi) +
∑
i,j

d((xk, e), xij) = r′(k,e),

where the right-hand side depends whether the edge e is shared by two triangles
of the surface (and even several quadrangles in case of self-intersection), or be-
longs to the new boundary indicated by the additional triangles. If e is an inner
edge, then the sum must be zero due to our definition of d, otherwise there is
an adjacent triangle, but no adjacent quadrangle, so the right-hand side should
be 1:

r′(k,e) =

{
1 if k ∈ J , e is part of the modified boundary

0 otherwise.

To sum up, we get the following integer linear program:

min
x̂

〈w, x̂〉 (8)

such that D x̂ = r′

x̂j = 1 ∀j ∈ J
x̂i ∈ {0, 1} ∀i ∈ {1, . . . , N̂}

where N̂ is the total number of entries in x̂, namely all triangles plus all pairs
of adjacent triangles. It is worth noticing that such formulation allows triangle
surfaces with self-intersection.

4.2 On the Linear Programming Relaxation

Solving integer linear programs is an NP-complete problem, see e.g. [28, Chapter
18.1]. This implies that, to the noticeable exception of a few particular prob-
lems [28], no efficient solutions are known. As a consequence one often resorts
to solving the corresponding linear programming (LP) relaxation, i.e. one drops
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the integrality constraints. In our case this means to solve the problem:

min
x̂

〈w, x̂〉 (9)

such that D x̂ = r′

x̂j = 1 ∀j ∈ J
0 ≤ x̂i ≤ 1 ∀i ∈ {1, . . . , N̂}

or, equivalently, by suitably augmenting D and r′ in order to incorporate the
second constraint x̂j = 1, ∀j ∈ J :

min
x̂
〈w, x̂〉 such that D̂x̂ = r̂

0 ≤ x̂i ≤ 1 ∀i ∈ {1, . . . , N̂}
(10)

There are various algorithms for solving this problem, the most classical being
the simplex algorithm and several interior point algorithms. Let us now discuss
the conditions under which these relaxed solutions are also solutions of the orig-
inal integer linear program. Recalling the basics of LP-relaxation [28], the set of
admissible solutions

P = {x̂ ∈ RN̂ , D̂x̂ = r̂, 0 ≤ x ≤ 1}

is a polyhedron, i.e. a finite intersection of half-spaces in RN̂ . A classical result
states that minimizing solutions for the linear objective functions can be sought
among the extremal points of P only, i.e. its vertices. Denoting Pe the integral

envelope of P , that is the convex envelope of P ∩ ZN̂ , another classical result
states that P has integral vertices only (i.e. vertices with integral coordinates)
if and only if P = Pe

Since P = {x̂ ∈ RN̂ , D̂x̂ = r̂, 0 ≤ x̂ ≤ 1}, according to Theorem 19.3 in [28],
a sufficient condition for having P = Pe is the property of B being totally
unimodular, i.e. any square submatrix has determinant either 0, −1 or 1. Under
this condition, any extremal point of P that is a solution of

min
D̂x̂=r̂, x̂i∈[0,1]

〈w, x̂〉

has integral coordinates therefore is a solution of the original integer linear pro-
gram

min
D̂x̂=r̂, x̂i∈{0,1}

〈w, x̂〉.

Theorem 19.3 in [28] mentions an interesting characterization of total unimodu-
larity due to Paul Camion [7]: a matrix is totally unimodular if, and only if, the
sum of the entries of every Eulerian square submatrix (i.e. with even rows and
columns) is divisible by four.

Unfortunately, we can prove that, as soon as the triangle space is rich enough,
the incidence matrix D̂ does not satisfy Camion’s criterion, therefore is not
totally unimodular, and neither are the matrices for richer triangles spaces. As



The Discrete Willmore Boundary Problem 13

... 24T

T9

T2 T1
e2

e

e3

1

T

T ...T10 13

3 T T T T4 6 7

5

8

T

T14

Fig. 4. A configuration in a tri-
angle space with sufficient reso-
lution. The associated incidence
matrix is Eulerian (see text)
but does not satisfy Camion’s
criterion, thus is not totally
unimodular.

a consequence, there are choices of the triangle space for which the polyhedron

P = {x̂ ∈ RN̂ , D̂x̂ = r̂, 0 ≤ x̂ ≤ 1} may have not only integral vertices, or more
precisely one cannot guarantee this property thanks to total unimodularity. This
is summarized in the following theorem.

Theorem 1. The incidence matrix associated with any triangle space where
each triangle has a large enough number of adjacent neighbors is not totally
unimodular.

Proof. We show in Figure 4 a configuration and, in Table 1, an associated square
submatrix of the incidence matrix. The sum of entries over each line and the
sum over each column are even, though the total sum of the matrix entries is
not divisible by four. By a result of Camion [7], the incidence matrix is not
totally unimodular which yields the conclusion according to Theorem 19.3 in
[28]. Clearly, any triangle space for which this configuration can occur is also
associated to an incidence matrix that is not totally unimodular. �

It is worth noticing that the previous theorem does not imply that the extremal
points of the polyhedron P are necessarily not all integral. It only states that
this cannot be guaranteed as usual by the criterion of total unimodularity.

For the sake of completeness, let us mention that there actually exist neces-
sary and sufficient conditions of integrality due to Truemper [32], or sufficient
conditions different from above due to Grady [13], but we have not been able to
exploit them so far.

We will discuss in the next section what additional informations about inte-
grality can be obtained from a few experiments that we have done using classical
solvers for addressing the relaxed linear problem.
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4.3 Testing the Relaxed Linear Problem

We have tested the relaxed formulation on a few examples at low-resolution
using the dual simplex method implemented in the CLP solver. The main reason
for using low-resolution is that the number of triangles becomes significantly
important as the resolution increases, and both the computational cost and
the memory requirements tend to become large. Another reason for working
at low-resolution is that there is no need to go high before finding a case of
non-integrality. Indeed, consider the examples in Figure 5: integral solutions are
obtained when the resolution is very low (i.e. when there is no risk to have
configurations like in Figure 4). In the last configuration, however, the optimal
solution of the relaxed problem has fractional entries. This confirms that our
initial problem cannot be addressed though the classical techniques of relaxation,
and with usual LP solvers.

4.4 On Integer Linear Programming

Our results above indicate that, necessarily, integer linear solvers [28, 1] should
be used. These commonly start with solving the linear programming relaxations,
then derive further valid inequalities (called cuts) and/or apply a branch-and-
bound scheme. Due to the small number of fractional values that we have ob-
served in our experiments, it is quite likely that the derivation of a few cuts only
would give integral solutions. However, we did not test this so far because of
the running times of this approach: in cases where we get fractional solutions
the dual simplex method often needs as long as two weeks and up to 12 GB
memory! From experience with other linear programming problems we consider
it likely that the interior point methods implemented in commercial solvers will
be much faster here (we expect less than a day). At the same time, we expect
the memory consumption to be considerably higher, so the method would most
probably be unusable in practice.

We strongly believe that a specific integer linear solver should be developed
rather than using general implementations. It is well known that, for a few prob-
lems like the knapsack problem, see Chapter 24.6 of [28], their specific structure
gives rise to ad-hoc efficient approaches. Recalling that our incidence matrix is
very sparse and well structured (the nonzero entries of each column are either
exactly two (−1), or exactly three 1) we strongly believe that an efficient integer
solver can be developed and our approach can be amenable to higher-resolution
results in the near future.

5 Conclusion

We have shown that the minimization under boundary constraints of mean cur-
vature based energies over surfaces, and in particular the Willmore energy, can
be cast as an integer linear program. Unfortunately, this integer program is
not equivalent to its relaxation so the classical LP algorithms offer no warranty
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Fig. 5. A series of experiments (the result and the mesh edges) with increasing resolu-
tion of the triangle space (and various boundary constraints). An integral solution of
the relaxed problem is obtained by a standard LP-solver in both top cases. As for the
last case, the triangle space resolution is now large enough for having configurations
similar to the counterexample of figure 4. And indeed, an optimal solution is found for
the relaxed problem that is not integral. The mesh on the bottom-right shows actually
two nested semi-spheres whose triangles have, at least for a few of them, non binary
labels.
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that the integer optimal solution will be found. This implies that pure integer
linear algorithms must be used, which are in general much more involved. We
believe however that the particular structure of the problem paves the way to a
dedicated algorithm that would provide high-resolution global minimizers of the
Willmore boundary problem and generalizations. This is the purpose of future
research.
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