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Abstract. This paper contains a systematic analysis of a natural measure theoretic notion
of connectedness for sets of finite perimeter in IRN, introduced by H. Federer in the more
general framework of the theory of currents. We provide a new and simpler proof of the
existence and uniqueness of the decomposition into the so-called M-connected components.
Moreover, we study carefully the structure of the essential boundary of these components
and give in particular a reconstruction formula of a set of finite perimeter from the family
of the boundaries of its components. In the two dimensional case we show that this notion
of connectedness is comparable with the topological one, modulo the choice of a suitable
representative in the equivalence class. Our strong motivation for this study is a mathematical
justification of all those operations in image processing that involve connectedness and
boundaries. As an application, we use this weak notion of connectedness to provide a rigorous
mathematical basis to a large class of denoising filters acting on connected components of
level sets. We introduce a natural domain for these filters, the space WBV(�) of functions
of weakly bounded variation in �, and show that these filters are also well behaved in the
classical Sobolev and BV spaces.

1. Introduction

Recently, and from different points of view, there has been a renewed interest
in measure theoretic notions of connectedness [21,71] (see also [36]). For the
case of BV functions and sets of finite perimeter, we shall present here a theory
as much complete as possible, giving at the same time new and simpler proofs
of some classical results. We are strongly motivated by the use of such objects
as “connected components of level sets”, “Jordan curves”, etc. in digital image
technology. One of our aims will be to give a well founded mathematical model
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for the well-spread use, in image processing and image analysis, of connectedness
properties to create regions or “shapes” in an image. Also, the description of the
regions boundaries in terms of “curves” and the existence of “level lines” in an
image will be justified.

The extraction of shapes from images

Image analysis theory admits the existence of “shapes” in an image. There are many
theories and algorithms for the extraction of such objects from a digital image. Some
theories propose a segmentation of the image into connected regions by a variational
principle [52,53]. Other theories assume that the discontinuity set of the image
provides curves which, in some way or another, can be closed by an algorithm
(see [8,50] and the discussion in [7]). Canny’s filter [9], for instance, computes
a set of discontinuity points in the image which must be thereafter connected by
some variational principle. The obtained curves are supposed to be the boundaries
of the “shapes” of the image. Many pattern recognition theories directly assume
the existence of Jordan curves in the image (without explaining how such shapes
should be extracted) and focus on subsequent recognition algorithms [33,40,41].

To summarize, most shape analysis methods deal with connected regions and
their surrounding curves, and the curves surrounding their holes as well. Now,
the ways such regions and curves are extracted are rather diverse and uncertain.
Indeed, this extraction is often based on “edge detection theory”, a wide galaxy of
heuristic algorithms finding boundaries in an image. See [14] for a survey of these
techniques and also the book [51] for an attempt of mathematical classification. We
shall see, however, that in most practical cases shapes can and should be extracted
as connected components of level sets of the image, and Jordan curves as their
boundaries.

Why scalar images and not vector (colour) images ?

Let us first define the digital image as raw object. We shall then discuss what the
alternatives for the extraction of shapes are. An image can be realistically modelled
as a real function u(x) where x represents an arbitrary point of IRN (N = 2 for
usual snapshots, 3 for medical images or movies, 4 for moving medical images)
and u(x) denotes the grey level, or colour, at x. In general, the image domain is
finite (a hyperrectangle) but there will be no loss of generality in assuming that it
is defined on the whole euclidean space. An image may be panchromatic; in that
case u(x) represents the photonic flux over a wide band of wavelengths and we
have a proper grey level image. Now, u(x) may also represent a colour intensity,
when the photonic flux is subjected to a colour selective filter. In the following,
we always consider scalar images, that is, images with a single channel, be it
colour or grey level. When several channels have been captured simultaneously,
we obtain naturally vector images, with e.g. three channels (Red, Green, Blue). It
may appear at first as a restriction not to consider vector images, but only scalar
ones. Indeed, the use of colour images is well-spread in human communication
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and most image processing and analysis operators must therefore be defined on
vector images. Now, the redundancy of the colour images (from the perceptual
viewpoint) is high. It is well admitted that the essential geometric features of any
natural image are contained in its panchromatic (grey level) representation. Given
a colour image, this panchromatic version is simply given as a linear positive
combination of the three colour channels. As a consequence of this empiric obser-
vation, most image processing operators are defined separately for each channel
and most image analysis operators are expected to give essentially the same result
no matter whether applied to each one of the colour channel or to the panchromatic
(grey level) version of the image. This fact, that geometric information essentially
be contained in the grey level representation, can be checked by numerical ex-
perimental procedures [11]. These procedures involve discrete implementations of
operators computing connected components of level sets, so that they are part of
our motivations for investigating connectedness.

Image formation

From now on, and for the reasons just developed, we shall limit ourselves to
the problem of connectedness in scalar images. We sketch in the following some
aspects of image formation which will be relevant to our discussion. The process of
image formation is, in a first approximation, given by the following formula [70]:

u = Q
{
g(k ∗ O)�+ n

} · d, (1)

where O represents the photonic flux (in a given wavelength band), k is the point
spread function of the optical-captor joint apparatus, ∗ denotes the convolution
operator, � is a sampling operator, i.e. a Dirac comb supported by the centers
of the matrix of digital sensors, g is a nonlinear contrast change characterizing
the nonlinear response of the sensors, n represents a random perturbation due to
photonic or electronic noise, Q is a uniform quantization operator mapping IR to
a discrete interval of values, typically [0, 255], and d represents an impulse noise
due to transmission. Each one of the operations involved in (1) is at the basis of one
of the main theories of signal processing. For instance, Shannon theory fixes the
conditions under which we can recover k ∗ O from the sampled signal (k ∗ O)�,
assuming that k ∗O is a bandlimited function, i.e., its frequency range has compact
support.

Nonlinear contrast changes and level sets

Let us focus on the consequences of the nonlinear contrast change g for image
processing. In human communication, none of the camera parameters is known
to the observer; in most cases this information is lost when the image u is used.
This loss is rather the rule for the contrast change g. The informations about g
are inasmuch neglected as they are generally irrelevant: indeed, the contrast of an
image widely depends on the sensor’s properties but also on the lighting conditions
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and finally on the objects’ temporary reflection properties: these conditions are
anyway unknown! This led the physicist and gestaltist M. Wertheimer [68] to state
as a principle that the grey level is not an observable. Images are observed up to an
arbitrary and unknown contrast change.

An image analysis doctrine, the so called Mathematical Morphology, has rec-
ognized contrast invariance as a basic invariance requirement and proposed that
image analysis operations should take into account this invariance principle [60].
With this principle, an image u is a representative of an equivalence class of images
v obtained from u via a contrast change, i.e., v = g(u) where g, for simplicity,
will be a continuous strictly increasing function. Under this assumption, an image
is characterized by its upper (or lower) level sets Xλ = {x : u(x) ≥ λ} (resp.
X ′
λ = {x : u(x) ≥ λ}). Moreover, the image can be recovered from its level sets by

the reconstruction formula

u(x) = sup{λ : x ∈ Xλ}.
As it is easily seen, the family of the level sets (upper or lower) of u is invariant
under continuous strictly increasing contrast changes. An image operator T is
contrast invariant if

T(g(u)) = g(T(u)),

for any continuous strictly increasing contrast change g and any image u. In particu-
lar, many efficient denoising operators respect this principle. See a classification
of contrast invariant image multiscale smoothing operators in [2].

Connected components of level sets

Level sets are therefore basic objects for image processing and analysis. They have
been acknowledged as such in several shape analysis theories, where thresholding
is the basic image analysis operator [34]. Very early in image processing, authors
noticed that to find a single and the right threshold in an image was enough to
deliver a binary image with most of the relevant shape information. Theories of
the “optimal threshold” were even developed [69]. In order to have a more local
description of the basic objects of an image, several authors ([12,60]) proposed
to consider the connected components of (upper or lower) level sets as the basic
objects of the image. They argue that contrast changes are local and depend upon
the reflectance properties of objects. Thus, not only global contrast, but also local
contrast is irrelevant. In [12], a notion of local contrast change is defined and it
is proved that only connected components of level sets are invariant under such
contrast changes. This approach was generalized in [6] where the authors compare
different satellite images of the same landscape, taken at different times or in
different channels. They show that these images have many connected components
of bilevel sets in common (we call bilevel set any set {x, a ≤ u(x) ≤ b}). This
same technique has been recently extended in [48] to image registration, one
of the most basic tools in multiimage processing. Image registration based on
connected components of level sets is shown to work efficiently where classical
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correlation techniques fail: when both registered images do not correspond to
almost simultaneous snapshots. If u belongs to a function space such that each
connected component of a level set is bounded by a countable or finite number
of oriented Jordan curves, we call topographic map the family of these Jordan
curves [12]. In [44], a disocclusion method is developed, which restores images
with spots or missing parts. This method computes Jordan curves in the image as
boundaries of level sets and interpolates them in the missing parts.

A nested Jordan curves representation

Following [12], P. Monasse and F. Guichard [49] proposed, in a discrete framework,
a fast and consistent discrete algorithm to compute a topographic map: they consider
connected components of level sets, then they define a tree, ordered by inclusion,
in the following way: they construct (in a discrete framework) a uniquely defined
Jordan curve surrounding each connected component of each upper level set. In the
same way, they consider all external Jordan curves of all connected components of
lower level sets of the same image. Provided connectedness is adequately defined
in the discrete grid (this definition is different for the upper level sets and the lower
level sets!) they show that both systems of Jordan curves fuse into one, such that
no pair of Jordan curves crosses. In this way, they obtain a topographic map, i.e.
a system of Jordan lines organized by inclusion as a tree. They call this digital
representation “fast level set transform” and it provides a fast numerical access
to any connected region of the image and any “shape”, understood as a Jordan
curve surrounding a region. They let notice by some examples, however, that the
inclusion trees of u and −u are not necessarily identical.

WBV: Functions whose level sets have finite perimeter

One of the main purposes of this paper is to justify the assumptions underlying
the above mentioned methods. We shall define a functional model for u where
it is possible to define a notion of connected components for the level sets of u.
Boundary of these connected components must consist of a countable or finite
number of oriented Jordan curves from which we can recover the set by the obvious
filling algorithm. This functional model, called WBV, is a variant of the space of
functions of bounded variation. Indeed, WBV functions are BV functions modulo
a change of contrast, i.e. for any u ∈ WBV there exists a bounded, continuous
and strictly increasing contrast change g such that g(u) is a function of bounded
variation. The space of functions of bounded variation is a sound model for images
which have discontinuities and it has been frequently used as a functional model
for the purposes of image denoising, edge detection, etc. [56]. L. Rudin [55]
proposed that images should be handled as functions with bounded variation.
He used the classical result of geometric measure theory [29] that the essential
discontinuity set of a BV function is rectifiable and argued that the “edge set”
sought in edge detection theory [42,43], was nothing but this discontinuity set. An
indirect confirmation of this thesis is given by the variational image segmentation
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theory. Indeed, a paradigmatic variational model proposed by Mumford-Shah [52]
finds naturally its minima in a class of functions with bounded variation, SBV [3,
4,17,18]. A full account can be found in the book [5].

As a consequence of the results discussed in this paper, we shall show that
all of the mentioned approaches, Mathematical Morphology, BV model, shapes
described by Jordan curves or by connected regions, fast level set transform are
compatible with a single underlying functional model, WBV. We shall introduce the
“M-connectedness” as the right notion of connectedness for sets of finite perimeter.
We shall develop this formalism in full generality for sets of finite perimeter in IRN.
For sets of finite perimeter in IR2 a more precise description is possible, since in
this case, the essential boundary of each M-connected component can be described
as a countable or finite union of rectifiable Jordan curves. Since almost all level sets
of functions in WBV are sets of finite perimeter, then level sets of WBV functions
can be described in terms of rectifiable Jordan curves and we get a description of
the shapes in an image which is both complete and well-founded.

Image denoising or segmentation operators based on connected components

The use of connected components of level sets has become recently very relevant
in a series of image filters introduced in Mathematical Morphology. Motivated
by the study of a family of filters by reconstruction [37,38,57,64,65], J. Serra
and Ph. Salembier [58,62] introduced the notion of connected operators. To be
precise, Serra and Salembier call connected an operator ψ on sets if, for each
family of sets A, the partition of the image domain associated to ψ(A) (i.e., the
partition of the image domain made of the connected components of ψ(A) and the
connected components of its complement) is less fine than the partition associated
to A (i.e., the partition of the image domain made of the connected components of
A and the connected components of its complement). Such operators simplify the
topographic map of the image. These filters have become very popular because,
on an experimental basis, they have been claimed to simplify the image while
preserving contours. This property has made them very attractive for a large number
of applications such as noise cancellation [64,65] or segmentation [47,66]. More
recently, they have become the basis of a morphological approach to image and
video compression (see [59] and references therein, and more recently [27]).

Application to connected operators

As an application of the theory of M-connected components for sets of finite
perimeter developed here, we study the L. Vincent filters (filters which, when
defined on sets, remove the connected components of small measure). We show
that these filters can be defined on functions of bounded variation and, more
generally, in WBV. We prove that they define contrast invariant filtering operators
which are well behaved also in the classical Sobolev and BV spaces and simplify
the connected components of the upper and/or lower level sets of the image (see
also [44]).
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An objection to the BV model

Before closing with this introduction, it may be useful to answer to an obvious
objection: according to the classical model given by (1), the raw image O may be
BV, but the digital image g(k ∗O) is more regular, at least, say, C1 if g is and if the
image formation follows Shannon conditions. Thus, we might as well have worked
in a space of continuous functions. In this framework, connected components can
be defined in the classical way and Jordan curves obtained in the image by Sard
Lemma and the Implicit Functions theorem. To take this assumption would save
all of the effort spent here. The answer to this objection comes from technology.
There is no evidence in all of the works dedicated to image processing in favour
of any advantage taken of a regularity assumption for the images. Because of
the three noises present in image caption (transmission impulse noise, gaussian
quantum noise of sensors, quantization noise), the image cannot be considered as
a continuous function. In many cases, Shannon conditions are imperfectly satisfied.
In addition, the BV model makes sense for the subjacent “real” image O, which
presents rectifiable discontinuity lines along all apparent contours of objects. Thus,
O is at least as discontinuous as a BV function, and probably more. In fact, an
experimental procedure can be defined [1] to check whether the subjacent image
is in BV or not: the results seem to indicate that most images are too oscillating to
belong to BV. We mentioned that both restoration and segmentation models try with
success to project back in some more or less nonlinear way the image onto BV [56].
This is also true for the recent “wavelet shrinkage” method for image denoising [19]
or image deconvolution [20]. Last but not least, the discrete representations used
in Mathematical Morphology [60] are not more regular than BV and the recent
image compression standards aim at the delivery of a BV compressed image. To
summarize, the BV model is probably too smooth for the “real” subjacent image
(i.e. the photonic flux), but seems to be on the way to be acknowledged as the
right model to describe the digital images handled in technology. We may add the
results of the present work as one more argument in favour of the BV model (and
the variant WBV we propose) as a common denominator to image analysis and
restoration.

Plan of this paper

This paper is organized as follows. Sections 2 and 3 introduce some basic facts
about Caccioppoli sets and BV functions. In Sect. 4 we study in detail a definition
of M-connectedness for sets with finite perimeter, first proposed by H. Federer in
the more general framework of the theory of currents. We compare this concept
with the conventional topological one and give a new proof, based on a sim-
ple variational argument, of the existence and uniqueness of the decomposition
into M-connected components. Section 5 explains how to “fill the holes”, or to
“saturate”, an indecomposable set. Section 6 defines Jordan boundaries (which
correspond in dimension 2 to Jordan curves) and gives a unique decomposition
theorem (Theorem 4) of the essential boundary into Jordan boundaries, with their
structure. Theorem 5 gives a converse statement and a reconstruction formula of
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a Caccioppoli set from its set of Jordan boundaries. In Sect. 7 we construct for
any Caccioppoli set E a “topographic function”, an integer valued BV function
whose boundaries of upper level sets yield all Jordan boundaries of E. In this way,
the Jordan boundaries of E benefit of the obvious inclusion structure of the upper
level sets of u and are numbered in odd and even levels of u, following their level
of inclusion and their classification into set, versus hole, boundaries. In Sect. 8,
we give the two dimensional interpretation of these results and show that in this
case the link with conventional topology is much stronger: indeed, we show that
the essential boundary of any simple set E (i.e. such that both E and IR2 \ E are
indecomposable) is equivalent, moduloH1-negligible sets, to a Jordan curve (this
result was first proved by W.H. Fleming in [25]) and also that for any indecom-
posable set E there exists a canonical set F equivalent to E which is connected by
rectifiable arcs. Section 9 is devoted, as an illustration, to a case study in image
denoising. We show the good definition and properties of the above mentioned
Vincent-Serra “connected operators” in WBV and in the classical Sobolev and BV
spaces. In particular, we prove that these operators, notwithstanding their nonlocal
nature, map W1,p in W1,p for any p ∈ [1,∞] and do not increase a.e. the modulus
of the gradient. In this respect, quite surprisingly, they behave as the usual local
truncation operators.

2. Notation and main facts about sets of finite perimeter

We consider a N-dimensional euclidean space IRN, with N ≥ 2. The Lebesgue
measure of a Lebesgue measurable set E ⊆ IRN will be denoted by |E|. For
a Lebesgue measurable subset E ⊆ IRN and a point x ∈ IRN, the upper and lower
densities of E at x are respectively defined by

D(E, x) := lim sup
r→0+

|E ∩ B(x, r)|
|B(x, r)| , D(E, x) := lim inf

r→0+
|E ∩ B(x, r)|
|B(x, r)| .

If the upper and lower densities are equal, their common value will be called
the density of E at x and it will be denoted by D(E, x). We shall use the word
measurable to mean Lebesgue measurable.

Using densities we can define the essential interior E̊M , the essential closure
E

M
and the essential boundary ∂M E of a measurable set E as follows:

E̊M := {x : D(E, x) = 1} , E
M := {x : D(E, x) > 0

}
(2)

∂M E := E
M ∩ IRN \ E

M = {x : D(E, x) > 0, D(IRN \ E, x) > 0
}
. (3)

Notice also that by the Lebesgue differentiation theorem the symmetric difference
E̊M

�E is Lebesgue negligible, hence the measure theoretic interior of E̊M is E̊M

(in this sense E̊M is essentially open), and also that

∂M E = IRN \ (E̊M ∪ ˚︷ ︷
IRN \ E

M )
.

We also use the notation E1/2 to indicate the set of points where the density of E
is 1/2.



Connected components of sets and applications 47

Here and in what follows we shall denote by Hα the Hausdorff measure of
dimensionα in IRN. In particular,HN−1 denotes the (N−1)-dimensional Hausdorff
measure andHN , the N-dimensional Hausdorff measure, coincides with the (outer)
Lebesgue measure in IRN. Given any Borel set B ⊆ IRN with Hα(B) < ∞, we
denote by Hα B the finite Borel measure χBHα, i.e. Hα B(C) = Hα(B ∩ C)
for any Borel set C ⊆ IRN. We recall that

lim
r→0+

Hk (B ∩ B(x, r))

rk
= 0 forHk-a.e. x ∈ IRN \ B (4)

holds whenever B ⊆ IRN is a Borel set with finite k-dimensional Hausdorff measure
(see for instance §2.3 of [22]).

Given A, B ⊆ IRN, we shall write E1 = E2 (modHα) if Hα(E1�E2) = 0,
where E1�E2 = (E1 \ E2)∪ (E2 \ E1) is the symmetric difference of E1 and E2.
We will use an analogous notation for the inclusion and in some cases, in order
to simplify the notation, the equivalence or inclusion (modHN ) will be tacitly
understood.

We say that a measurable set E ⊆ IRN has finite perimeter in IRN if there exist
a positive finite measure µ in IRN and a Borel function νE : IRN → SN−1 (called
generalized inner normal to E) such that the following generalized Gauss–Green
formula holds

∫
E

divφ dx = −
∫

IRN
〈νE , φ〉 dµ ∀φ ∈ C1

c (IR
N, IRN).

Hence the measure νEµ is the distributional derivative ofχE , which will be denoted
by DχE , while µ = |DχE | is its total variation; the perimeter P(E, B) of E in
a Borel set B ⊆ IRN is defined by |DχE |(B), and we use the notation P(E) in the
case B = IRN.

The main facts concerning sets of finite perimeter that we will use in the
following are listed below, for the reader’s convenience (see for instance [5,22,24,
29,72]).

• Criteria for the finiteness of perimeter
By Riesz theorem, a measurable set E ⊆ IRN has finite perimeter if and only if

sup

{∫
E

divφ dx : φ ∈ C1
c (IR

N, IRN), |φ| ≤ 1

}
<∞ (5)

and in this case the supremum equals the perimeter. A much deeper criterion is
due to Federer: E has finite perimeter in IRN if and only if HN−1(∂M E) < ∞
(if HN−1(∂E) < ∞ the proof is much simpler, see for instance Proposition 3.62
of [5]).
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• Structure of DχE

According to the De Giorgi and Federer theorems, for any set with finite perimeter
the sets E1/2 and ∂M E have the sameHN−1 measure, so thatHN−1(∂M E\E1/2) = 0
and

HN−1(IRN \ (E̊M ∪ E1/2 ∪ ˚︷ ︷
IRN \ E

M
)
) = 0. (6)

So, atHN−1-a.e. point of IRN the density exists and belongs to {0, 1/2, 1}. Moreover

|DχE | = HN−1 ∂M E = HN−1 E1/2.

• Lower semicontinuity, approximation and compactness

The functional E �→ P(E) (defined by (5), so that P(E) = ∞ if E has not finite
perimeter) is lower semicontinuous with respect to local convergence in measure in
IRN (i.e. L1

loc convergence of the characteristic functions); moreover, for any set E
with P(E) < ∞ there exists a sequence of sets Eh with smooth boundary locally
converging in measure to E and such that P(E) = limh P(Eh). Any sequence
of sets with equibounded perimeters admits subsequences locally converging in
measure.

• Isoperimetric inequalities

If E ⊆ IRN has finite perimeter, then either E or IRN \ E have finite measure and
the isoperimetric inequality holds:

min
{
|E| N−1

N , |IRN \ E| N−1
N

}
≤ γN P(E).

Denoting by ωN the measure of the unit ball B(0, 1), the optimal isoperimetric
constant is ω−1/N

N /N (see [16]). A local counterpart of this inequality is the relative
isoperimetric inequality:

min {|B(x, r) ∩ E|, |B(x, r) \ E|} ≤ ηNrHN−1 (∂M E ∩ B(x, r)
)
. (7)

3. BV functions and related spaces

In this section we recall some definitions and properties related to the space of
functions with bounded variation in �, denoted by BV(�).

Given a Borel function u : � → [−∞,+∞], the approximate lower and
upper limits u−, u+ : �→ [−∞, +∞] are Borel functions defined at every point
x ∈ � as follows: u−(x) is the supremum of all those t ∈ [−∞,+∞] such that

x ∈ ˚︷ ︷{u ≥ t}M whereas u+(x) is the infimum of all those t ∈ [−∞,+∞] such that

x ∈ ˚︷ ︷{u ≤ t}M . The set

Su :=
{

x ∈ � : u−(x) < u+(x)
}
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is called the approximate discontinuity set of u and is negligible with respect to the
Lebesgue measure. The function u is said to be approximatively continuous at any
point x ∈ � \ Su and we shall denote

ap lim
y→x

u(y) = u−(x) = u+(x) ∀x ∈ � \ Su .

Let x ∈ � \ Su such that ap lim u(x) ∈ IR. We say that u is approximatively
differentiable at x if there exists a vector ∇u(x) such that the sets

{
y ∈ � \ {x} : |u(y)− ap lim u(x)− 〈∇u(x), y − x〉|

|y − x| > ε

}

have 0 density in x for every ε > 0.

We define BV(�) as the space of all those functions u ∈ L1(�)whose distribu-
tional derivative is representable as a IRN-valued measure Du = (D1u, . . . , DN u)
with finite total variation in �, i.e.

∫
�

u divφ dx = −
N∑

i=1

∫
�

φi dDiu ∀φ ∈ [C1
c(�)
]N
.

The total variation |Du| of a BV function u is defined as the total variation of
the vector measure Du. The space BV(�) is endowed with the norm ‖u‖BV =
‖u‖L1 +|Du|(�). We shall denote by BVloc(�) the space of all those functions that
belong to BV(�̃) for every open set �̃ ⊂⊂ �. In view of Sect. 2, it is easily seen
that a subset E ⊂ IRN has finite perimeter in � if and only if u = χE ∈ BVloc(�)

and |Du|(�) < ∞. Main properties of BV functions are the following (see for
instance [5,22,24,29,72]):

• Lower semicontinuity of the variation measure
Suppose {un}n∈IN ⊂ BV(�) and un → u in L1

loc(�) then

|Du|(�) ≤ lim inf
n→∞ |Dun |(�).

• Approximation by smooth functions
Assume u ∈ BV(�). There exist functions un ∈ BV(�) ∩ C∞(�) such that

un → u in L1(�) and |Dun |(�)→ |Du|(�) as n →∞.

• Compactness
If {un} is a sequence in BV(�) satisfying supn ‖un‖BV < ∞, then there exist
a subsequence {unk } and a function u ∈ BV(�) such that

unk → u in L1
loc(�).
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• Poincaré inequality

If� is bounded,connected and with Lipschitz boundary, then there exists a constant
C such that∫
�∩B(x,r)

|u−u| ≤ C|Du|(B(x, r)∩�) for all balls B(x, r) ⊂ IRN and u ∈ BV(�)

where u(x) = --
∫
�∩B(x,r)

u(y) dy.

• Coarea formula

Let u ∈ BV(�). Then {u > t} has finite perimeter in � for L1-a.e. t ∈ IR and

|Du|(�) =
∫ +∞

−∞
P({u > t},�) dt.

Conversely, if u ∈ L1(�) and
∫ +∞

−∞
P({u > t},�) dt < ∞ then u ∈ BV(�).

In addition, notice that P({u > t},�) = P({u < t},�) since the fact that u is
measurable is enough to ensure that |{u = t}| > 0 for at most countably many
t ∈ IR.

• Rectifiability of Su and approximate jump set Ju

Let u ∈ BV(�). Then Su is countably (N − 1)-rectifiable and −∞ < u−(x) ≤
u+(x) < +∞ for HN−1-almost every x ∈ �. In addition, for HN−1-a.e. x ∈ Su

there exists a unique unit vector νu ∈ SN−1 such that, setting B+
r (x, νu) := {y ∈

Br(x) : 〈y − x, νu〉 > 0} and B−
r (x, ν) := {y ∈ Br(x) : 〈y − x, νu〉 < 0},

lim
r↓0

[
--
∫

B+r (x,νu)

|u(y)− u+(x)| dy + --
∫

B−r (x,ν)
|u(y)− u−(x)| dy

]
= 0.

The set of points where this equality occurs is called the approximate jump set and
denoted as Ju . Hence,HN−1(Su \ Ju) = 0 and Du vanishes on Su \ Ju .

• Decomposition of the derivative

Let u ∈ BV(�). Then Du can be decomposed into three parts:

Du = Dau + D ju + Dcu

where Dau is the absolutely continuous part of Du with respect toLN and, denoting
by Dsu the singular part of Du with respect to LN , D ju := Ds Ju and Dcu :=
Dsu (�\Su). D ju is called the jump part of the derivative and Dcu the Cantor part
of the derivative. Then Dau = ∇u Ln , D ju = Du Ju = (u+−u−)νuHN−1 Ju
and Dcu vanishes on sets which are σ-finite with respect toHN−1.

Several functional spaces were introduced in [3] (see also [54]) to offer a reliable
framework for some minimization problems issuing from image processing and
the mathematical theory of liquid crystals. We shall concentrate on the space of
generalized functions of bounded variation GBV(�), which can be defined as
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follows: we say that u : � → [−∞,+∞] is a generalized function of bounded
variation if

uN := (−N) ∨ u ∧ N ∈ BV(�) ∀N ∈ IN,

which means that all truncations of u have bounded variation. For the sake of
simplicity, we have chosen to work with BV(�) rather than BVloc(�), which is the
definition adopted in [3]. Remark that GBV functions are not summable in general.
Let us now define the function mu : IR → [0,∞] as

mu(t) := P({u > t},�).
Lemma 1. Let u : � → [−∞,+∞] be a Borel function such that u #≡ +∞ and
u #≡ −∞ up to Lebesgue negligible sets. Then the following propositions hold:

(i) if � is bounded then mu ∈ L1
loc(IR) if and only if u ∈ GBV(�).

(ii) if � is bounded, connected and with Lipschitz boundary then mu ∈ L1(IR) if
and only if u ∈ BV(�).

Proof. (i) (⇐) By definition, u N ∈ BV(�) for every N ∈ IN. Since, for any
N ∈ IN, {u > t} = {uN > t} for every t ∈ (−N, N) we get by the coarea formula
applied to the truncated function∫ N

−N
P({u > t},�) dt =

∫ N

−N
P({uN > t},�) dt ≤ |DuN |(�) < +∞

for every N ∈ IN.

Therefore, mu ∈ L1
loc(IR).

(⇒) First recall the well-known equality for Borel functions

u(x) =
∫ +∞

0
χ{u>t}(x) dt −

∫ 0

−∞
(1− χ{u>t})(x) dt ∀x ∈ �.

Given φ ∈ C1
c(�; IRN) with ‖φ‖∞ ≤ 1, we use Riesz Theorem applied to the

upper level sets, Fubini’s Theorem and the fact that the integral of divφ is zero to
get for every N ∈ IN∫

�

uN divφ dx =
∫
�

∫ +N

−N
χ{uN>t}divφ dx dt

=
∫ +N

−N

∫
�

χ{u>t}divφ dx dt

≤
∫ +N

−N
P(χ{u>t},�) dt < +∞.

By Riesz Theorem, this implies that uN ∈ BV(�) for every N ∈ IN.

(ii) (⇐) is a straightforward consequence of the coarea formula.
(⇒) It follows from (i) that u ∈ GBV(�). Using Poincaré inequality we get that
for every N ∈ IN∫

�

|uN − uN |dx ≤ C|DuN |(�) ≤ C
∫ +∞

−∞
P({u > t},�) dt = C1
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with uN = --
∫
�

uN (y) dy. Now, let us prove that the sequence |u N | is bounded.

Assume that for some sequence Ni ∈ IN, uNi → +∞ (the argument is analogous
if uNi →−∞) and let �M = {u ∈ [−∞, M]}. Then, for i large enough

(uNi − M)|�M | ≤
∫
�

|uN − uN | dx ≤ C1

thus |�M| = 0. It follows that u ≡ +∞which is contradictory to our assumptions.
Thus |uN | is bounded and, possibly by extracting a subsequence, u N → z. Finally,
letting N →∞, we get that ∫

�

|u − z| dx ≤ C1

which implies that u ∈ L1(�) and u is real-valued. Then u ∈ BV(�) by a simple
application of the coarea formula. ()

4. Decomposability of a set with finite perimeter

Let E ⊆ IRN be a set with finite perimeter. We say that E is decomposable if there
exists a partition (A, B) of E such that P(E) = P(A)+ P(B) and both |A| and |B|
are strictly positive. We say that E is indecomposable if it is not decomposable;
notice that the properties of being decomposable or indecomposable are invariant
(modHN ) and that, according to our definition, any Lebesgue negligible set is
indecomposable.

It is natural to compare this definition with the topological one of connected-
ness: no implication is trivial in general, since on one hand in the definition of
indecomposability the sets A, B are not required to be relatively open, but on the
other hand they are required to be sets of finite perimeter. We will see that in some
cases a comparison is possible, especially in the case of subsets of the plane, and
that in any case all formal properties satisfied by connected sets are fulfilled in this
slightly different setting.

We start our investigation by analyzing the situations in which the equality
P(A ∪ B) = P(A)+ P(B) occurs.

Proposition 1. Let A, B be sets of finite perimeter. Then

P(A ∪ B)+ P(A ∩ B) ≤ P(A)+ P(B)

and

P(A)+ P(B) = P(A ∪ B)+ 2HN−1(∂M A ∩ ∂M B) whenever |A ∩ B| = 0.

Proof. The following inclusions are a straightforward consequence of the definition
of ∂M:

∂M(A∪B)∪∂M(A∩B) ⊂ ∂M A∪∂M B, ∂M(A∪B)∩∂M(A∩B) ⊂ ∂M A∩∂M B.
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Taking into account that P(E) = HN−1(∂M E) for any set of finite perimeter E, the
first inequality follows. If |A ∩ B| = 0 we denote by L the HN−1-negligible set
(∂M A \ A1/2) ∪ (∂M B \ B1/2) and notice that

∂M(A ∪ B) \ L ⊂ ∂M A�∂M B, ∂M A�∂M B ⊂ ∂M(A ∪ B)

hence P(A ∪ B) = HN−1(∂M A�∂M B). From this fact the second identity easily
follows. ()

As an application of Proposition 1 we can prove that any open connected set
with finite perimeter is indecomposable. We will obtain a converse property in
Theorem 2 (see also Theorem 8, for domains in the plane).

Proposition 2 (Connectedness and indecomposability). Any connected open set
� ⊆ IRN satisfyingHN−1(∂M�) <∞ is indecomposable.

Proof. By Federer’s theorem, we know that � has finite perimeter. Let (A, B) be
a partition of � such that P(�) = P(A)+ P(B). Then, since

∂M A ⊂ ∂M B ∪ ∂M�

and, by Proposition 1, ∂M A ∩ ∂M B = ∅ (modHN−1), we have

HN−1(� ∩ ∂M A) ≤ HN−1(� ∩ ∂M�) = 0

hence DχA = 0 in �. This proves that χA is locally equivalent to a constant in �,
and, being � connected, this is true globally. ()

Another simple consequence of Proposition 1 is the subadditivity of perimeter

P

(⋃
i∈I

Ai

)
≤
∑
i∈I

P(Ai)

for finite or countable families. For finite families the proof is achieved by induction
and for countable ones one can use the lower semicontinuity of the perimeter with
respect to the local convergence in measure.

Now we extend our analysis to finite or countable families of sets; this extension
is necessary in view of the treatment of the family of indecomposable components
of a set. A more comprehensive treatment of the properties of partitions in finitely
or countably many sets of finite perimeter (the so-called Caccioppoli partitions) is
given in the paper [13] by G. Congedo and I. Tamanini (see also Chapter 4 of [5]
and [39]); here we only prove the properties that will be needed in the following.

Proposition 3. Let I be a finite or countable set, let {Ai}i∈I be a family of sets of
finite perimeter and let A be their union. Then, assuming that Ai #= IRN for any
i ∈ I and

∑
i P(Ai) <∞, the following conditions are equivalent:

(i) P(A) ≥∑i P(Ai);
(ii) P(A) =∑i P(Ai);
(iii) for any i #= j we have |Ai ∩ A j | = 0 andHN−1(∂M Ai ∩ ∂M A j) = 0;
(iv) for any i #= j we have |Ai ∩ A j | = 0 and ∪i∂

M Ai ⊂ ∂M A (modHN−1).
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If these conditions are fulfilled we have also ∂M A = ∪i∂
M Ai (modHN−1) and

HN−1

(
ÅM \
⋃
i∈I

ÅM
i

)
= 0. (8)

Proof. The equivalence between (i) and (ii) follows by the subadditivity of perime-
ter.
(ii)+⇒(iii) For any pair of indexes i, j ∈ I , i #= j , we have

P(A) ≤ P(Ai ∪ A j)+ P


 ⋃

k∈I\{i, j}
Ak


 ≤ P(Ai)+ P(A j)+ P


 ⋃

k∈I\{i, j}
Ak




≤
∑
k∈I

P(Ak) = P(A).

Thus P(Ai ∪ A j ) = P(Ai)+ P(A j ). From Proposition 1 we get |Ai ∩ A j | = 0 and

∂M Ai ∩ ∂M A j = ∅ (modHN−1).

(iii)+⇒(iv) We know that HN−1-a.e. x ∈ ∂M Ai belongs to A1/2
i and to ∩ j #=i IRN \

∂M A j , hence is a point of density 0 for all sets A j with j #= i. Let us fix a point x
with these properties and assume, in addition, that

lim
r→0+

HN−1
(∪ j #=i∂

M A j ∩ B(x, r)
)

r N−1 = 0.

By (4) with B = ∪ j #=i∂
M A j we know that also this additional condition is fulfilled

HN−1-a.e. in ∂M Ai . The relative isoperimetric inequality (7) easily implies the
existence of a constant c such that

|E ∩ B(x, r)| ≤ crHN−1(∂M E ∩ B(x, r)) whenever |B(x, r) \ E| ≥ |B(x, r)|
4

.

Hence
|A j ∩ B(x, r)| ≤ crHN−1(∂M A j ∩ B(x, r)

) ∀ j #= i

for any r > 0 sufficiently small, such that |Ai ∩ B(x, r)| ≥ |B(x, r)|/4. Adding
with respect to j we obtain

lim
r→0+

|(A \ Ai) ∩ B(x, r)|
r N

≤ c lim
r→0+

HN−1
(∪ j #=i∂

M A j ∩ B(x, r)
)

r N−1 = 0.

Hence x ∈ A1/2 ⊂ ∂M A.
(iv)+⇒(i) Since (Ai)

1/2 ∩ (A j)
1/2 ⊂ ÅM whenever i #= j (because the sets Ai are

pairwise disjoint), we obtain that

HN−1(∂M Ai ∩ ∂M A j
) = HN−1(∂M A ∩ (Ai)

1/2 ∩ (A j)
1/2) = 0

hence
∑

i P(Ai) =∑i H
N−1(∂M Ai) ≤ HN−1(∂M A) = P(A).
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The identity ∂M A = ∪i∂
M Ai (modHN−1) follows by (ii). Since ÅM∩∂M A = ∅,

(4) again with B = ∂M A gives that HN−1
(
B(x, r) ∩ ∂M A

)
/r N−1 tends to 0 as

r → 0+ forHN−1-a.e. x ∈ ÅM, Thus, in order to prove (8) we prove the inclusion

ÅM \
⋃
i∈I

ÅM
i ⊂
{

x ∈ IRN : lim sup
r→0+

HN−1(B(x, r) ∩ ∂M A)

r N−1 > 0

}
. (9)

Let x ∈ ÅM be such that HN−1
(
B(x, r) ∩ ∂M A

)
/r N−1 tends to 0 as r → 0+. Let

r0 > 0 and σ ∈ (0, 1/2) such thatHN−1(B(x, r) ∩ ∂M A) ≤ σωNr N−1/ηN for any
r ∈ (0, r0]. By the relative isoperimetric inequality (7) we infer

min {|B(x, r) ∩ Ai |, |B(x, r) \ Ai |} ≤ σ |B(x, r)| ∀i ∈ I, r ∈ (0, r0].
Since the sets Ai are pairwise disjoint, the family

Ri := {r ∈ (0, r0] : |B(x, r) ∩ Ai | ≥ (1− σ)|B(x, r)|} ,
R∞ := {r ∈ (0, r0] : |B(x, r) ∩ Ai | ≤ σ |B(x, r)| ∀i ∈ I}

is a partition of (0, r0] in relatively closed sets. Being (0, r0] connected, one of these
sets coincides with (0, r0]. If (0, r0] = R∞ the relative isoperimetric inequality (7)
gives

|B(x, r)∩ A| =
∑
i∈I

|B(x, r)∩ Ai | ≤ rηN

∑
i∈I

HN−1(B(x, r)∩ ∂M Ai
) ≤ σ |B(x, r)|

for any r ∈ (0, r0], which is a contradiction. If (0, r0] = Ri for some i ∈ I , then
we have that D(Ai, x) ≥ 1 − σ . Choose a sequence σn → 0+ and in ∈ IN such
that D(Ain , x) ≥ 1− σn . Then, in is constant for n large enough, say in = i for n
large enough. Thus we conclude that D(Ai , x) = 1, i.e, x ∈ ÅM

i . ()
Remark 1 (Additional properties of partitions). Under the assumptions of the pre-
vious proposition, we remark that if |A| = ∞, due to the fact that the series of
perimeters is convergent, there is exactly one set Ai with infinite measure; indeed,
if all of them have finite measure, from the isoperimetric inequality we get∑

i:|Ai |≤1

|Ai| N−1
N +

∑
i:|Ai |≥1

|Ai | N−1
N ≤ γN

∑
i∈I

P(Ai) <∞

and we obtain that |Ai | ≥ 1 only for finitely many i. Thus

∞ =
∑

i:|Ai |≤1

|Ai | ≤
∑

i:|Ai |≤1

|Ai | N−1
N ≤ γN

∑
i∈I

P(Ai) <∞.

This contradiction proves that at least one set has infinite measure. Suppose that at
least two of them, say Ai0 , Ai1 , have infinite measure. Again by the isoperimetric
inequality we would get

min
{
|Ai0 |

N−1
N ,
∣∣IRN \ Ai0

∣∣ N−1
N

}
≤ P(Ai0 ) ≤

∑
j #=i0

P(A j) <∞.

However, the quantity on the left hand side is infinite since Ai1 ⊆ IRN \ Ai0 .
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We notice also that the argument used in the proof of (ii)+⇒(iii) gives

P


 ⋃

i∈I1∪I2

Ai


 = P


⋃

i∈I1

Ai


+ P


⋃

i∈I2

Ai


 (10)

whenever I1, I2 ⊆ I are disjoint.

As a consequence of Proposition 3 with A = E, A1 = F and A2 = E \ F, we
obtain that characteristic functions of sets of finite perimeter F are constant inside
an indecomposable set E, provided χF has no “derivative” in E. This is expressed
by saying that ∂M(E ∩ F) ⊂ ∂M E, or equivalently that ∂M(E ∩ F) ∩ E̊M = ∅
(modHN−1). A more general statement is presented in Remark 2.

Proposition 4. Let E be an indecomposable set and let F ⊆ E be a set with finite
perimeter, such that ∂M F ⊆ ∂M E (modHN−1). Then either |F| = 0 or |E\F| = 0.

Remark 2 (Constancy theorem). Since F ⊆ E, the assumption ∂M F ⊆ ∂M E
(modHN−1) in Proposition 4 is equivalent to HN−1(∂M F ∩ E̊M

) = 0. Propo-
sition 4 is a particular case of the following result, proved by G. Dolzmann and
S. Müller in [21]: if u ∈ BVloc(IRN) satisfies |Du|(IRN) < ∞ and E is indecom-
posable, then

|Du|(E̊M
) = 0 +⇒ ∃c ∈ IR : u(x) = c for a.e. x ∈ E.

The proof follows by the coarea formula

|Du|(E̊M
) =
∫ ∞

−∞
HN−1(∂M{u > λ} ∩ E̊M) dλ

noticing that Proposition 4 applies to a.e. level set Fλ = {u > λ}.
The main result of this section is the following decomposition theorem; a simi-

lar (see Remark 4) decomposition result for integer currents is stated in 4.2.25
of [24]. This result has also been used in G. Dolzmann and S. Müller [21] and
B. Kirchheim [36] to prove Liouville type theorems for a class of partial differen-
tial inclusions; the second paper contains also an explicit proof of the decomposition
theorem, based on Lyapunov convexity theorem (see also Theorem 1 in §3.4 of
Chap. 4 of [28]). The proof that we present here is new and based on a simple
variational argument.

Theorem 1 (Decomposition theorem). Let E be a set with finite perimeter in IRN.
Then there exists a unique finite or countable family of pairwise disjoint indecom-
posable sets {Ei}i∈I such that |Ei | > 0 and P(E) =∑i P(Ei). Moreover

HN−1

(
E̊M \
⋃
i∈I

E̊M
i

)
= 0 (11)

and the Ei’s are maximal indecomposable sets, i.e. any indecomposable set F ⊆ E
is contained (modHN ) in some set Ei.
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Proof. (Existence) Let α ∈ (1, N/(N − 1)), let us define

µ(E) :=
(∫

E
exp(−|x|2) dx

)1/α

for any measurable set E ⊆ IRN and let P be the collection of all partitions
{Ei}i∈IN of E such that |Ei | ≥ |E j | for i ≤ j and

∑
i P(Ei) ≤ P(E). Recall

that the condition
∑

i P(Ei) < ∞ implies that at most one set Ei (namely E0)
has infinite measure (see Remark 1). The class P is not empty, since it contains
{E,∅,∅, . . . }.

We will prove that the problem

max

{∑
i∈IN

µ(Ei) : {Ei}i∈IN ∈ P
}

has a (essentially unique) solution. Indeed, let {En
i }i∈IN be a maximizing sequence

indexed by n; since P(En
i ) ≤ P(E) by the compactness properties of sets of finite

perimeter (see Sect. 2) we can assume, possibly extracting a subsequence, that En
i

locally converge in measure in IRN to suitable sets Ei as n → ∞. The sets Ei

are pairwise disjoint (modHN), and the lower semicontinuity of perimeter with
respect to local convergence in measure gives

∑
i P(Ei) ≤ P(E). In order to show

that {Ei}i∈IN ∈ P we have to prove that |E \ ∪i Ei | = 0. To this aim, we first prove
that

lim
p→∞ lim sup

n→∞

∞∑
i=p

µ
(
En

i

) = 0. (12)

First, we notice that the isoperimetric inequality and the subadditivity of perimeter
give

p
N−1

N
∣∣En

p

∣∣ N−1
N ≤
∣∣∣∣∣

p⋃
i=1

En
i

∣∣∣∣∣
N−1

N

≤ γN

p∑
i=1

P(En
i ) ≤ γN P(E)

for any p ≥ 1 because i �→ |En
i | is decreasing. Therefore

∞∑
i=p

µ
(
En

i

) ≤ ∞∑
i=p

∣∣En
i

∣∣1/α ≤ [γN P(E)] N
α(N−1)−1

p
1
α− (N−1)

N

∞∑
i=p

∣∣En
i

∣∣ N−1
N

≤ [γN P(E)] N
α(N−1)

p
1
α− (N−1)

N

proving (12).
Since α > 1, (12) also holds with [µ(Ei)]α in place of µ(Ei), and since

µ(En
i )→ µ(Ei) as n →∞ for any i ∈ IN, this implies∑

i∈IN

[µ(Ei)]α = lim
n→∞
∑
i∈IN

[
µ
(
En

i

)]α = [µ(E)]α.
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By the definition of µ, this proves that∫
E\∪i Ei

exp(−|x|2) dx = 0

and hence that |E \ ∪i Ei | = 0. Moreover, using (12) again we obtain

lim
n→∞
∑
i∈IN

µ
(
En

i

) =∑
i∈IN

µ(Ei)

hence {Ei}i∈IN is maximizing. If {Ei}i∈IN is any maximizing partition, then any Ei

is clearly indecomposable, becauseµ(A)+µ(B) > µ(A∪ B)wheneverµ(A) and
µ(B) are strictly positive.

(Uniqueness) Let (Ei) be a maximizing partition and let F be an indecomposable
set with |F| > 0. Since F ⊆ E there exists i ∈ I such that |F ∩ Ei | > 0. We will
prove that F ⊆ Ei (modHN ). Since F is indecomposable, to this aim it suffices
to prove that P(F \ Ei)+ P(F ∩ Ei) = P(F), or equivalently that

(F ∩ Ei)
1/2 ∩ (F \ Ei)

1/2 = ∅ (modHN−1). (13)

Using Proposition 3 we obtain that ∂M Ei ⊂ ∂M E (modHN−1) and P(E) =
P(E \ Ei) + P(Ei). In turn, by Proposition 1, this gives ∂M Ei ∩ ∂M(E \ Ei) = ∅
(modHN−1). Hence, (13) would be proved by the inclusion

(F ∩ Ei)
1/2 ∩ (F \ Ei)

1/2 ⊂ E1/2
i ∩ (E \ Ei)

1/2. (14)

Any point x in the set on the left side clearly belongs to F̊M and hence to E̊M; taking
this fact into account, it suffices to prove that x ∈ E1/2

i , and since x ∈ (F ∩ Ei)
1/2

this easily follows by the fact that Ei \ (F ∩ Ei) is contained in the complement
of F. This proves the maximal character of Ei .

Finally, if {Ei}i∈I and {Fj } j∈J are two maximizing partitions, we know that
any Ei is contained in one (and only one) Fj and any Fj is contained in one (and
only one) Ei . Equation (11) follows by (8). ()
Definition 1 (M-connected components). In view of the previous theorem, we call
the sets Ei the M-connected components of E and denote this family by CCM(E);
we always choose the index set I as an interval of IN, with 0 ∈ I.

Notice that CCM(E) = ∅whenever E is Lebesgue negligible and that Proposition 3
gives

∂M F ⊂ ∂M E (modHN−1) for any F ∈ CCM(E). (15)

By (8), for HN−1-a.e. x ∈ E̊M it also makes sense to talk about the M-connected
component of E containing x, namely the unique set F ∈ CCM(E) such that
x ∈ F̊M. The necessity to exclude an exceptionalHN−1-negligible set is shown by
the following example.
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Example 1. Let K ⊆ {x2 = 0} ⊆ IR2 be a compact and H1-negligible set and let
φ(x1) = dist2(x1, K ). Then, the set

E := {x = (x1, x2) ∈ IR2 : x2 < 0 or x2 > φ(x1)
}

has two M-connected components E1, E2 and it is easy to check that K ⊂ E̊M \
(E̊1

M ∪ E̊2
M
).

In the following theorem we prove that CCM(A) coincides with the family of
connected components of A for any sufficiently regular open set A; we prove in
Remark 3 that for any Lipschitz function u : IRN → IR almost every upper level
set {u > λ} has this (weak) regularity property. In general an open indecomposable
set needs not be connected: for instance a disk without a diameter is disconnected
but indecomposable. Example 2 shows in addition that an indecomposable set need
not be equivalent (modHN ) to an open connected set.

Theorem 2. Let A ⊆ IRN be an open set such that HN−1(∂A) = HN−1(∂M A).
Then CCM(A) coincides with the family of connected components of A.

Proof. The connected components {Ai}i∈I of A are pairwise disjoint, indecom-
posable by Proposition 2 and satisfy

∂M Ai ⊆ ∂A ⊆ ∂M A (modHN−1) ∀i ∈ I.

By Proposition 3 we obtain that
∑

i P(Ai) ≤ P(A). Hence, Theorem 1 implies that
Ai are the M-connected components of A. ()
Example 2. Let K ⊂ (0, 1) be a compact set with empty interior and strictly
positive measure and let Ii = (ai, bi) be the connected components of (0, 1) \ K ,
indexed by i ∈ I , and let ci be the central point of Ii . We define

A = (0, 1)×
(
− 1

2
,

1

2

)
\
⋃
i∈I

Bi ⊆ IR2,

where Bi are closed balls centered at (ci, 0) with radius bi − ci (see Fig. 1). Then,
since K has empty interior it is easy to check that

⋃
i∈I

Bi =
⋃
i∈I

Bi ∪ [0, 1] × {0},

hence A is disconnected by the two open sets A1 = A ∩ {x2 > 0} and A2 =
A∩{x2 < 0}. On the other hand, we claim that A is indecomposable: indeed, since
Ai are connected open sets, they are also indecomposable and hence are contained
in M-connected components of A. Thus, if A were decomposable we would get
CCM(A) = {A1, A2}, and this contradicts the fact that ∂M A1 and ∂M A2 intersect on
K × {0}, a set with strictly positiveH1 measure.
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Fig. 1. An example illustrating the fact that the M-connected components of an open set do
not coincide in general with the classical connected components

Remark 3. For any Lipschitz function u : IRN → IR the set {u > λ} satisfies the
assumption of Theorem 2 for a.e. λ ∈ IR. Indeed, let � ⊆ IRN be a bounded open
set; by applying both the coarea formula for BV functions (see Sect. 3) and the
coarea formula for Lipschitz functions (see for instance [22]) we get∫ +∞

−∞
HN−1 (� ∩ {u = λ}) dλ =

∫
�

|∇u| dx

=
∫ +∞

−∞
HN−1 (� ∩ ∂M{u > λ}) dλ <∞.

Since ∂{u > λ} ⊂ {u = λ} for any λ ∈ IR, this proves that

HN−1 (� ∩ ∂M{u > λ}) = HN−1 (� ∩ ∂{u > λ}) for a.e. λ ∈ IR.

Taking a countable family of open sets �h whose union is IRN our statement
follows.

Using the decomposition theorem we can easily prove that indecomposable
sets have the same stability properties of connected sets.

Proposition 5 (Stability of indecomposable sets).

(i) If E1, E2 are indecomposable and either |E1 ∩ E2| > 0 or HN−1(∂M E1 ∩
∂M E2) > 0, then E1 ∪ E2 is indecomposable.

(ii) If (Eh) is an increasing sequence of indecomposable sets with equibounded
perimeters, then ∪h Eh is indecomposable.

Proof. (i) Let {Gi}i∈I be the components of E1 ∪ E2 and let j1, j2 ∈ I such that
Ei ⊆ G ji . If |E1 ∩ E2| > 0, since the Gi’s are pairwise disjoint, we conclude that
j1 = j2, hence CCM(E1∪E2) = {G j1}. Otherwise we conclude that CCM(E1∪E2)

= {E1, E2}, hence Proposition 1 gives HN−1(∂M E1 ∩ ∂M E2) = 0. The proof of
(ii) is analogous. ()
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We conclude this section with the analysis of the relation between indecompos-
ability of a set and the indecomposability of its boundary, in the sense of H. Federer.
To do this, we will adopt the notations of [24]; since this comparison is not re-
ally needed in the following, the reader unfamiliar with the theory of currents can
simply skip this part.

Remark 4 (Indecomposability in the sense of Federer). Let us consider the collec-
tion of all k-dimensional normal integer currents T , denoted by Ik(IRN). A current
T ∈ Ik(IRN) is said to be indecomposable if T = T1+T2, M(T ) = M(T1)+M(T2)

and M(∂T ) = M(∂T1) + M(∂T2) with Ti ∈ Ik(IRN) implies that either T1 or T2
are zero (here M denotes the mass, i.e. the area with multiplicities). Using Propo-
sition 1, it is easy to show that the canonical N-current [[E]] ∈ IN (IRN) associated
to a set of finite perimeter E is indecomposable if and only if E is indecom-
posable; however, notice that the indecomposability of E is not equivalent to the
indecomposability of its boundary (it suffices to consider as E an annulus).

In 4.2.25 of [24] it is stated that any T ∈ Ik(IRN) admits a decomposition in
finitely or countably many indecomposable components; the proof (suggested and
not explicitly given) again relies on the isoperimetric inequality and could be ob-
tained mimicking our one, i.e. maximizing

∑
i [M(Ti)]1/α, with α ∈ (1, k/(k − 1)),

among all possible decompositions Ti . However, no uniqueness theorem for the
decomposition holds for k < N.

5. Holes, saturation, simple sets

In this section we see how the decomposition theorem leads to reasonably good
definitions of “hole” and “saturation” for a set of finite perimeter. These concepts
will be used in the next section to recover a canonical decomposition of the measure
theoretic boundary.

Definition 2 (Holes, saturation). Let E be an indecomposable set. We call hole
of E any M-connected component of IRN \ E with finite measure. We define the
saturation of E, denoted by sat(E), as the union of E and its holes. In the general
case when E has finite perimeter, we define

sat(E) :=
⋃
i∈I

sat(Ei) where CCM(E) = {Ei}i∈I .

We call E saturated if sat(E) = E.

We first investigate the saturation operator on indecomposable sets and later
we extend this analysis to any set of finite perimeter.

Proposition 6. Let E ⊆ IRN be an indecomposable set.

(i) Any hole of E is saturated.
(ii) sat(E) is indecomposable, saturated, ∂M sat(E) ⊂ ∂M E (modHN−1) and

sat(E) has finite measure if |E| <∞. In particular P(sat(E)) ≤ P(E).
(iii) If E ⊂ sat(F) then sat(E) ⊂ sat(F).
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(iv) If F is indecomposable and |F ∩ E| = 0, then the sets sat(E), sat(F) are
either one a subset of the other, or are disjoint.

Proof. (i) Let Y be an hole of E and let CCM(IRN \ E) = {Y} ∪ {Y j } j∈J . Then

IRN \ Y = E ∪
⋃
j∈J

Y j .

Since by (15) ∂MY j ⊂ ∂M E (modHN−1), Proposition 5(i) gives that E ∪∪ j∈J ′Y j ′
is indecomposable for any finite set J ′ ⊆ J . By Proposition 5(ii) we conclude that
IRN \ Y is indecomposable, i.e. Y has no hole.

(ii) We can assume with no loss of generality that |E| < ∞ (otherwise sat(E) =
IRN) and denote by Y0 the M-connected component of IRN\E with infinite measure.
The proof that sat(E) is indecomposable relies, as the one of (i), on Proposition 5.
Since sat(E) = IRN\Y0, sat(E) is saturated. Finally, the inclusion ∂M sat(E) ⊂ ∂M E
(modHN−1) follows by (15).

(iii) Without loss of generality we can assume that |F| < ∞. Then IRN \ sat(F),
being indecomposable, is contained in a M-connected component of IRN \ E; since
|IRN \ sat(F)| = ∞ we conclude that IRN \ sat(F) ⊆ IRN \ sat(E).

(iv) We may assume that both sets are nontrivial and that their saturations are not
IRN; we denote by E0, F0 the M-connected components with infinite measure of
IRN \ E, IRN \ F respectively. Since |E ∩ F| = 0, we know that E is contained
either in a hole of F or in F0. If E is contained in a hole of F, then E ⊆ sat(F) and
therefore sat(E) ⊆ sat(F). Analogously, if E ⊆ F0 and F is contained in a hole
of E, then sat(F) ⊆ sat(E). Thus we may assume that E ⊆ F0 and F ⊆ E0, hence

|E ∩ sat(F)| = 0 and |F ∩ sat(E)| = 0. (16)

Under this assumption, let us prove that | sat(E)∩sat(F)| = 0. To this aim, by (16),
it suffices to show that |Y ∩ sat(F)| = 0 for any hole Y of E. Since, by (16) again,
Y ⊂ IRN \ F, Y is contained in a M-connected component of IRN \ F. If Y ⊆ F0
the proof is finished, otherwise Y ⊆ Y ′ for some hole Y ′ of F which, in turn, is
contained in some M-connected component Y ′′ of IRN \ E. But then Y ′′ = Y and
therefore Y ′ = Y . Since by (15) ∂MY ⊂ (∂M E ∩ ∂M F) (modHN−1), if we choose
x ∈ Y1/2 ∩ E1/2 ∩ F1/2 we find that |E ∩ F ∩ B(x, r)| > 0 for r > 0 sufficiently
small; this contradiction proves that Y ⊆ F0. ()
Definition 3 (Simple sets). Any indecomposable and saturated subset of IRN will
be called simple.

Notice that the only simple set with infinite measure is IRN and that, according to
Proposition 6, the saturation of any indecomposable set E is simple (actually, the
smallest simple set containing E). In order to show coincidence with simple sets
we will often use the following proposition.

Proposition 7. Let E be a simple set and let F ⊆ IRN be a set with finite perimeter,
such that ∂M F ⊆ ∂M E (modHN−1) and |F| ∈ (0,∞). Then F = E.
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Proof. It suffices to apply Proposition 4 to E and F ∩ E and to IRN \ E and F \ E.
()

The property stated in Proposition 7 actually characterizes simple sets with
finite measure; we also give another nice characterization of these sets due to
W.H. Fleming.

Proposition 8 (Characterizations of simple sets). Let E ⊆ IRN be a set with finite
perimeter such that |E| ∈ (0,∞). Then, the following conditions are equivalent:

(i) E is simple;
(ii) E satisfies the property stated in Proposition 7;
(iii) χE/P(E) is an extreme point of the convex set{

u ∈ BV(IRN) : |Du|(IRN) ≤ 1
}
.

Proof. The implication (i)+⇒(ii) is Proposition 7. The converse implication can
be proved by noticing that any hole Y of E satisfies ∂MY ⊂ ∂M E (modHN−1)

and hence coincides with E. This contradiction proves that E has no hole, i.e.
sat(E) = E. The equivalence of (ii) and (iii) is proved (in a slightly different
setting, since a bound on the supports of the functions is required) in [25]. ()
We close this section with the following result, showing that the M-connected
components of sat(E) are contained in the family of saturations of M-connected
components of E.

Theorem 3 (M-connected components and saturation). Let E ⊆ IRN be a set
of finite perimeter. Then

CCM (sat(E)) ⊂ {sat(Ei)}i∈I where CCM(E) = {Ei}i∈I .

In particular ∂M sat(E) ⊂ ∂M E (modHN−1) and the operator sat is idempotent,
i.e. sat(sat(E)) = sat(E).

Proof. Let CCM(E) = {Ei}i∈I and assume with no loss of generality that |E| <∞;
we know by Proposition 6 and the isoperimetric inequality that sat(Ei) are inde-
composable sets satisfying the conditions of Lemma 2 below. Hence, {sat(E j)} j∈J

provides a disjoint partition of sat(E) in indecomposable sets.
Finally, (15) and Proposition 6(ii) give

∂M sat(E) ⊂
⋃
j∈J

∂M sat(E j) ⊂
⋃
i∈I

∂M Ei ⊂ ∂M E

where all inclusions are understood (modHN−1). ()
Lemma 2. Let I ⊂ IN and let {Fi}i∈I be a family of sets such that for any i, j ∈ I
either Fi ⊆ Fj or Fj ⊆ Fi or Fi ∩ Fj = ∅ (modHN). Then, assuming that
|Fi | → 0 as i → ∞ if I is countable, there exists J ⊆ I such that {Fj } j∈J are
pairwise disjoint (modHN ) and | ∪i Fi \ ∪ j Fj | = 0.

Proof. It suffices to consider the partial order i . j if |Fj \ Fi | = 0 and to take
its maximal elements. If I is countable, the existence of maximal elements follows
easily by the assumption that |Fi | → 0 as i →∞. ()
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6. Description of sets of finite perimeter in terms of their boundary

In general a decomposition in M-connected components does not lead directly to
a canonical decomposition of the boundary. The aim of this section is to show
that this goal can be achieved by looking to the saturations and to the holes of all
M-connected components of E.

Definition 4 (Exterior). If E ⊆ IRN has finite perimeter and |E| < ∞, we call
exterior of E the unique (modHN ) M-component of IRN \ E with infinite measure.
The exterior of E will be denoted by ext(E).

Notice that the notion of exterior makes sense only if |E| <∞, due to the fact that
IRN \ E has finite measure if P(E) <∞ and |E| = ∞.

Definition 5 (Jordan boundary). We say that a set J is a Jordan boundary if
there is a simple set E such that J = ∂M E (modHN−1).

By Proposition 7, the simple set E associated to a Jordan boundary J is unique.
In this sense, J can also be thought as an oriented set, with the orientation induced
by the generalized inner normal to E. Our terminology is motivated by the results
of the following section concerning sets in the plane, see in particular Theorem 7.
We shall write int(J ) = E and ext(J ) = IRN \ E; notice that ext(J ) = ext(E).

Proposition 9. Let E be indecomposable and let {Yi}i∈I be its holes. Then

E = sat(E) \
⋃
i∈I

Yi = sat(E) ∩
⋂
i∈I

ext(Yi) (17)

and

P(E) = P(sat(E))+
∑
i∈I

P(Yi). (18)

Conversely, let F be simple and let {Gi}i∈I be indecomposable sets such that

E = F \
⋃
i∈I

Gi (19)

and

P(E) = P(F)+
∑
i∈I

P(Gi). (20)

Then F = sat(E) and {Gi}i∈I are the holes of E.

Proof. The first equality in (17) is a consequence of Definition 2. The second
identity is a consequence of Proposition 6(i). In order to prove (18) we recall that
the perimeter and the measure theoretic boundary are invariant under complement
and notice that

IRN \ E = (IRN \ sat(E)
) ∪⋃

i∈I

Yi .
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Since both ∂M sat(E) and ∂MYi are contained in ∂M E up to HN−1-negligible sets,
by Proposition 3 we infer (18).

Let us now prove the uniqueness of the decomposition given in (17). For that,
let F be simple and let {Gi}i∈I be indecomposable sets satisfying (19) and (20).
Assume first that |E| <∞, set G∞ = IRN \ F and observe that

IRN \ E =
⋃
i∈I ′

Gi

with I ′ = I ∪ {∞}. Then, Proposition 3 gives that {Gi}i∈I ′ are pairwise disjoint
and ∂MGi ∩ ∂MG j = ∅ (modHN−1) whenever i #= j .

Note that G∞ is indecomposable, since F is a simple set. Thus {Gi}i∈I ′ is
a partition of IRN \ E into indecomposable sets satisfying (20). By the uniqueness
of the decomposition of IRN \ E in M-connected components we conclude that
G∞ = IRN \ sat(E) (i.e. F = sat(E)) and {Gi}i∈I coincides with the family of
holes of E. In case that E has infinite measure, IRN = sat(E) ⊆ sat(F) = F, i.e.
F = IRN and the proof follows the same steps of the previous one. ()

In order to simplify the following statements we enlarge the class of Jordan
boundaries by introducing a formal Jordan boundary J∞ whose interior is IRN and
a formal Jordan boundary Jo whose interior is empty; we also set HN−1(J∞) =
HN−1(Jo) = 0 and denote by S this extended class of Jordan boundaries. In this
way we are able to consider at the same time sets with finite and infinite measure
and we can always assume that the list of components (or holes of the components)
is infinite, possibly adding to it infinitely many int(Jo).

In the following theorem we describe ∂M E by a collection of “external Jordan
boundaries” J+i and “internal Jordan boundaries” J−i satisfying some inclusion
properties; these properties provide an axiomatic characterization of them. How-
ever, we emphasize (see Fig. 2 in Sect. 7) that in general this description is not
invariant under complementation, i.e. the external (internal) boundaries of a set are
not the internal (external) boundaries of the complement; for this reason we give
a different definition of these concepts the next section.

Theorem 4 (Decomposition of ∂M E in Jordan boundaries). Let E ⊆ IRN be
a set of finite perimeter. Then, there is a unique decomposition of ∂M E into Jordan
boundaries

{
J+i , J−k : i, k ∈ IN

} ⊆ S, such that

(i) Given int(J+i ), int(J+k ), i #= k, they are either disjoint or one is contained
in the other; given int(J−i ), int(J−k ), i #= k, they are either disjoint or one is
contained in the other. Each int(J−i ) is contained in one of the int(J+k ).

(ii) P(E) =∑i H
N−1(J+i )+

∑
kH

N−1(J−k ).
(iii) If int(J+i ) ⊆ int(J+j ), i #= j , then there is some Jordan boundary J−k such that

int(J+i ) ⊆ int(J−k ) ⊆ int(J+j ). Similarly, if int(J−i ) ⊆ int(J−j ), i #= j , then

there is some Jordan boundary J+k such that int(J−i ) ⊆ int(J+k ) ⊆ int(J−j ).
(iv) Setting L j = {i : int(J−i ) ⊆ int(J+j )}, the sets Y j = int(J+j ) \ ∪i∈L j int(J−i )

are pairwise disjoint, indecomposable and E = ∪ j Y j .
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Proof. (Existence) Let Yi be the M-connected components of E. According to
Proposition 9, let J+i = ∂M sat(Yi) be the external Jordan boundary of Yi and let
J−i,n , n = 1, 2, . . . , be the family of the internal Jordan boundaries of Yi , given by
the boundaries of the holes of Yi . Taking into account Proposition 6 and the fact
that holes are saturated, we obtain that (i) is satisfied.

Using (18) we immediately obtain (ii). To prove (iii), suppose that int(J+i ) ⊆
int(J+j ), with i #= j . Since |Yi ∩Y j | = 0, Yi is contained in a hole of Y j . Then there

is some Jordan boundary J−j,k such that int(J+i ) ⊆ int(J−j,k) ⊆ int(J+j ). The other

statement included in (iii) follows from the observation that two different holes of
the same M-connected component are disjoint. To prove (iv) we observe that

Y j = int
(

J+j
) \ { int

(
J−j,n
) : n ∈ IN

}
= int
(

J+j
) \ { int

(
J−i,n
) : int
(

J−i,n
) ⊆ int

(
J+j
)}

because any hole int(J−i,n) of Yi contained in int(J+j ), being disjoint with Y j , is
contained in a hole of Y j .

(Uniqueness) Let C+
i , C−

k , i, k ∈ IN, be a family of Jordan boundaries satisfying
(i), (ii), (iii), (iv). Let K j = int(C+

j ) \ ∪i∈L j int(C−
i ), j ≥ 0. By assumption, the

sets K j are indecomposable and E = ∪ j K j . Let us prove that

P(E) =
∞∑
j=0

P(K j ).

We say that an index i is j-maximal if int(C−
i ) ⊆ int(C+

j ) and there is no other

int(C−
k ) such that int(C−

i ) ⊆ int(C−
k ) ⊆ int(C+

j ). Analogously, we say that an

index j is i-minimal if int(C−
i ) ⊆ int(C+

j ) and there is no other int(C+
k ) such that

int(C−
i ) ⊆ int(C+

k ) ⊆ int(C+
j ).

Let � j = {i : i is j-maximal}; we observe that if int(C−
l ) ⊆ int(C+

j ), then

there exist a j-maximal index i such that int(C−
l ) ⊆ int(C−

i ) and a l-minimal index
k such that int(C+

k ) ⊆ int(C+
j ). Indeed, if there were an increasing chain of sets

int(C−
i ), then, by the isoperimetric inequality we would get that the sum of their

perimeters is infinite, a contradiction with (ii). Similarly, there is no decreasing
sequence of sets int(C+

k ) containing int(C−
l ). As a consequence, we obtain

K j = int
(
C+

j

) \ ⋃
i∈� j

int
(
C−

i

)
. (21)

Now, observe that the sets � j are a partition of IN. First we observe that they
are disjoint. Indeed, let i ∈ � j ∩ �k, j #= k. Then int(C−

i ) ⊆ int(C+
j ) and

int(C−
i ) ⊆ int(C+

k ). Thus, either int(C+
j ) ⊆ int(C+

k ), or int(C+
k ) ⊆ int(C+

j ). If we

are in the first case, then (iii) proves that the index i cannot be k-maximal. If we
are in the second case, then (iii) proves that the index i cannot be j-maximal. Next,
let i ∈ IN and let j such that j is i-minimal. Then, using (iii), we have that i is
j-maximal, i.e. i ∈ � j .
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By Theorem 5 below we know that

P(K j) = HN−1(C+
j

)+∑
i∈� j

HN−1(C−
i )

Adding both sides with respect to j we obtain that P(E) =∑ j P(K j ).
By the uniqueness of the decomposition of E into M-connected components

we obtain that, up to a permutation of indexes, K j = Y j for all j ∈ IN. Now, the
uniqueness result of Proposition 9 proves that int(C+

j ) = int(J+j ) and that int(C−
i ),

i ∈ � j , coincide with the system of holes of Y j . ()
Theorem 5. Let {J+i , J−k : i, k ∈ IN} ⊂ S be satisfying the conditions (i), (iii) of
Theorem 4 and

(ii′) Each two different Jordan boundaries of the system {J+i , J−k : i, k ≥ 0} are
disjoint (modHN−1).

(iv′)
∑

i P(J+i )+∑k P(J−k ) <∞.

Let E = ∪ j Y j , where

Y j := int
(

J+j
) \ ⋃

i∈L j

int
(

J−i
)
.

Then E is a set of finite perimeter and ∂M E = ∪i J+i ∪ ∪k J−k (modHN−1).

Proof. Let

� j :=
{
i : int
(

J+j
)

is the minimal set int
(
J+k
)

containing int
(
J−i
)}
.

By definition the sets � j are pairwise disjoint and the axiom (i) provides for any i
a minimal set int(J+j ) containing int(J−i ), so that ∪ j� j = IN. We also notice that

Y j = int
(

J+j
) \ ⋃

i∈� j

int
(

J−i
)
.

because, whenever int(J−i ) ⊆ int(J+j ), the maximal set int(J−k ) containing int(J−i )

and contained in int(J+j ) satisfies k ∈ � j , by the axiom (iii).

Finally, the sets Yj are pairwise disjoint because if int(J+j ) and int(J+k ) have
a nonempty intersection, then one (say the first) is contained in the other; since there
exists i ∈ Lk such that int(J+j ) ⊆ int(J−i )we obtain that Y j ⊂ int(J−i ) ⊂ IRN \Yk ,
a contradiction.

In view of Proposition 3 and (ii’), (iv’), the proof will be complete if we show
that

∂MY j = J+j ∪
⋃

i∈� j

J−i (modHN−1)

for any j ∈ IN. To this aim, we notice that IRN \ Y j is the disjoint union of ext(J+j )
and int(J−i ), i ∈ � j ; in fact, if | int(J−i ) ∩ int(J−l )| > 0 for i, l ∈ � j , i #= j ,
then one set (say the first) is contained in the other, hence there is a set int(J+k )

contained in int(J−l ) and containing int(J−i ), contradicting the fact that i ∈ � j .
By applying Proposition 3 and (ii’) again the identity above follows. ()
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7. Topographic function and internal/external boundaries of sets

The representation of the boundary of a set of finite perimeter by a family of nested
Jordan boundaries J±i has the advantage of being easily obtained by the family of
saturations and holes of the M-connected components of E, but has the drawback
of being not invariant under complementation, as Fig. 2 shows. Another drawback
of the J±i representation is the absence of a natural order structure on them, despite
conditions (i) and (iii) in Theorem 4.

Fig. 2. The set E (in grey), its boundaries J± and the boundaries of its complement. The last
figure illustrates as well the internal and external boundaries obtained by the topographic
function

In this section we prove the existence of a family of nested boundaries which is
invariant under complementation; the family is given by ∂M{u ≤ k} (k even for the
external boundaries, k odd for the internal ones), where u : IRN → IN is the BVloc
function characterized by the following theorem. Heuristically, u(x)measures how
“deep” is x inside E, i.e., it counts how many boundaries must be crossed to reach
the exterior of E. This is illustrated in Fig. 3 where E is the gray set.

Fig. 3. The topographic function associated with the gray set E counts how many boundaries
must be crossed to reach the exterior of E

Theorem 6. Let E ⊆ IRN be a set of finite perimeter. Then there exists a unique
map u ∈ BVloc(IRN, IN) such that

(i) u = χE mod 2 and all sets {u ≤ k} are indecomposable;
(ii) |Du| = HN−1 ∂M E;
(iii) u = χE in the M-connected component of E or IRN \ E with infinite measure.

Proof. We denote by {Ei}i∈I the M-connected components of E and by {F j} j∈J

the M-connected components of IRN \ E. Being the statement invariant under
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complementation we can assume that |E| < ∞ and denote by j0 the index in J
such that |Fj0 | = ∞. Recall that Proposition 3 gives

∂M


⋃

i∈I1

Ei


 =
⋃
i∈I1

∂M Ei, ∂M


⋃

j∈J1

Fj


 = ⋃

j∈J1

∂M Fj (modHN−1)

whenever I1 ⊆ I , J1 ⊆ J .

(Existence) We define recursively sets Uk ⊆ IRN and subsets �k ⊂ I , for k odd,
and �k ⊂ J for k even as follows: first we set U0 = Fj0 and �0 = { j0} and then,
assuming that all sets Ul and �l have been defined for l < k, we define:

�k :=
{
i ∈ I : HN−1(∂MUk−1 ∩ ∂M Ei

)
> 0
}
, Uk := Uk−1 ∪

⋃
i∈�k

Ei if k is odd

and

�k :=
{

j ∈ J : HN−1(∂MUk−1∩∂M Fj
)
> 0
}
, Uk := Uk−1∪

⋃
j∈�k

Fj if k is even.

Let us prove by induction that all sets Uk are indecomposable. This property is
clearly satisfied for k = 0, so let us assume it true for k − 1 ≥ 0 and let us prove it
for k. Assuming, to fix the ideas, that k is odd, for any finite set R ⊂ �k and any
i ∈ �k \ R we have

∂M Ei ∩ ∂M

(
Uk−1 ∪

⋃
i∈R

Ei

)
⊇ ∂M Ei ∩ ∂MUk−1 #= ∅ (modHN−1)

because ∂M Ei are pairwise disjoint (modHN−1). Hence, by applying inductively
Proposition 5(i), we obtain that Uk−1∪⋃i∈R Ei is indecomposable for any finite set
R ⊆ �k. By Proposition 5(ii) we obtain that Uk is indecomposable. An analogous
argument also proves that

∂MUk ⊆ ∂M E (modHN−1) ∀k ∈ IN. (22)

Denoting by I ′ (respectively J ′) the subset of I (resp. of J) obtained by taking
the union of all sets �2k+1 (resp. �2k), let us prove the following two upper and
lower bounds on ∂MUk, which both will be useful in the following:

∂MU2k ∪ ∂MU2k+1 ⊆
⋃

i∈�2k+1

∂M Ei, ∂MU2k−1 ∪ ∂MU2k

⊆
⋃

j∈�2k

∂M Fj (modHN−1) (23)

and ⋃
i∈�2k+1

∂M Ei \ ∂MU2k+1 ⊆
⋃
j∈J ′

∂M Fj ,
⋃

j∈�2k

∂M Fj \ ∂MU2k

⊆
⋃
i∈I ′

∂M Ei (modHN−1). (24)
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The first inclusion in (23) follows by

∂MU2k+1 ⊂ ∂MU2k ∪ ∂M


 ⋃

i∈�2k+1

Ei




using (22) and the definition of �2k+1; the second inclusion can be proved in
a similar way. The first inclusion in (24) follows by the second one in (23), noticing
that

∂M


 ⋃

i∈�2k+1

Ei


 ⊂ ∂MU2k+1 ∪ ∂MU2k. (25)

The proof of the second inclusions in (24) is analogous.
Now we prove that � = ∪kUk is IRN (modHN ) (hence I ′ = I and J ′ = J).

To this aim, we argue by contradiction: since

∂M� ⊂ ∂M

(⋃
i∈I ′

Ei

)
∪ ∂M


⋃

j∈J ′
Fj


 =⋃

i∈I ′
∂M Ei ∪

⋃
j∈J ′

∂M Fj (modHN−1)

and an analogous property holds for IRN \� and I \ I ′, J \ J ′, taking into account
that ∀i ∈ I \ I ′, ∀ j ∈ J \ J ′, ∂M Ei and ∂M Fj are pairwise disjoint (modHN−1),
assuming that P(�) > 0 we can find either i ∈ I \ I ′ and j ∈ J ′ or i ∈ I ′ and
j ∈ J \ J ′ such that ∂M Ei ∩ ∂M Fj #= ∅ (modHN−1). Assume, to fix the ideas, that
i ∈ I \ I ′ and j ∈ J ′ and let k such that j ∈ �2k. Then, by (23) and (24) we obtain
that

∂MU2k ∩ ∂M Ei #= ∅ (modHN−1).

This proves that i ∈ �2k+1 ⊆ I ′ and gives a contradiction.
Finally, we define u equal to k on Uk \Uk−1 (with U−1 = ∅). By construction

{u ≤ k} = Uk is indecomposable and u = χE mod 2. Let us prove that condition
(ii) holds; to this aim, we first prove that all sets�2k+1 are pairwise disjoint. Assume
by contradiction that i ∈ �2l+1 ∩�2k+1 with l < k; then Ei ⊆ U2l+1 ⊆ U2k and
the inclusions

∂MU2k ∩ ∂M Ei #= ∅, ∂MU2k ⊆
⋃

j∈�2k

∂M Fj (modHN−1)

imply the existence of j ∈ �2k and x ∈ (Ei)
1/2 ∩ ∂MU2k ∩ (Fj)

1/2. Since U2k

contains both Ei and Fj we obtain that x ∈ ŮM
2k and this is a contradiction.

Now, since the sets �2k+1 are pairwise disjoint, the first inclusion in (23)
implies that HN−1(∂MUk ∩ ∂MUl ) = 0 whenever k #= l. Moreover, (22) and (25)
imply that ∪k∂

MUk = ∂M E (modHN−1). Since u =∑k χIRN\Uk
we obtain

|Du| = |
∑

k

DχIRN\Uk
| = |
∑

k

DχUk | = HN−1 ∪k∂
MUk = HN−1 ∂M E.
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(Uniqueness) Let v be satisfying (i), (ii), (iii) and let us prove that v coincides with
the function u constructed above. First of all, notice that condition (ii) implies that
v is (equivalent to) a constant in any M-connected component of E or IRN \ E,
by the constancy theorem (see Remark 2). Moreover, ∂M E coincides (modHN−1)

with the jump set of v and |v+ − v−| (i.e., the width of the jump) is 1 HN−1-a.e.
in IRN (see Sect. 3).

By condition (iii) the two functions are both 0 on Fj0 . Let i ∈ �1; since

∂M E ⊇ ∂M Ei ∩ ∂M Fj0 #= ∅ (modHN−1)

we obtain that v must be equal to 1 on Ei . Being i arbitrary, this proves that v
coincides with u on U1. Consider now j ∈ �2; the same argument exploited before
proves that either v is a.e. equal to 2 or v is a.e. equal to 0 in Fj . The second
possibility can be excluded noticing that in this case the set {v ≤ 0} would be
decomposable: indeed, by (23) we get

∂MU0 ⊆
⋃

i∈�1

∂M Ei ∩ ∂MU0 ⊆ ∂M{v ≤ 0} (modHN−1)

and, passing to the complementary sets ∂M({v ≤ 0}\U0)⊂∂M{v ≤ 0} (modHN−1),
so that Proposition 3(iv) gives

P({v ≤ 0}) = P(U0)+ P({v ≤ 0} \U0).

Continuing by induction in this way and using the inclusions (modHN−1) (the first
for k even, the second for k odd, coming from (23) and the inductive assumption)

∂MUk−2 ⊆
⋃

i∈�k−1

∂M Ei ∩ ∂MUk−2 ⊆ ∂M{v ≤ k − 2},

∂MUk−2 ⊆
⋃

j∈�k−1

∂M Fj ∩ ∂MUk−2 ⊆ ∂M{v ≤ k − 2}

we obtain that v coincides with u on Uk. Since k is arbitrary, this proves that v = u.
()

Definition 6 (Topographic function). We call the function given by the previous
theorem the topographic function of E, and denote it by u E. We also call the sets

∂M{uE ≤ 2k}, ∂M{uE ≤ 2k + 1} k ∈ IN

respectively the external and the internal boundaries of E.

Notice that
uE + 1 = uIRN\E whenever |E| <∞

because it is easy to check that uE + 1 fulfils (i), (ii), (iii) with IRN \ E in place
of E. As a consequence, complementation maps internal (external) boundaries
into external (internal) boundaries. Passing to the complementary sets, the identity
above can also be written as u E = uIRN\E + 1 whenever |E| = ∞. In particular,
in this case the topographic function achieves its minimum, equal to 1, on the
component of E with infinite measure (if |E| <∞ the minimum is 0, by condition
(iii)).
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8. Indecomposability and Jordan curves in the plane

The aim of this section is a closer characterization of the M-connected components
and of the essential boundary for plane sets of finite perimeter. In particular we
prove that ∂M E can be represented (modH1) as a disjoint union of rectifiable
Jordan curves; this result has been proved first for simple sets by W.H. Fleming
in [25] (see also [26]) and later extended to the general case by H. Federer (see [24],
4.2.25). We also prove that membership to the same M-connected component can
be characterized in terms of existence of arcs joining the points and not touching
(in a suitable sense) the boundary.

We say that � ⊆ IR2 is a Jordan curve if � = γ([a, b]) for some a, b ∈ IR
(with a < b) and some continuous map γ , one-to-one on [a, b) and such that
γ(a) = γ(b). In a more geometric language, � can be viewed as the image of
a continuous and one-to-one map defined on the unit circle S1. According to the
celebrated Jordan curve theorem (see for instance [35]), any Jordan curve � splits
IR2 \ � in exactly two connected components, a bounded one and an unbounded
one, whose common boundary is �. As for Jordan boundaries, these components
will be respectively denoted by int(�) and ext(�). We will also use the signed
distance function sdist(x, �), defined by

sdist(x, �) :=


−dist(x, �) if x ∈ int(�) ∪ �;

dist(x, �) if x ∈ ext(�) ∪ �.

(26)

In our context, we are more interested in Lipschitz parameterizations rather
than continuous ones; the main tool for providing them is the following well
known lemma.

Lemma 3 (Connectedness by arcs). Let C ⊂ IRN be a compact connected set
with H1(C) < ∞. Then for any pair of distinct points x, y ∈ C there exists
a Lipschitz one-to-one map γ : [0, 1] → C such that γ(0) = x and γ(1) = y.

Proof. The existence of a Lipschitz map (not necessarily one-to-one) joining x
to y is proved in [23]. In order to obtain a one-to-one map it suffices to look for
solutions of the problem

min

{∫ b

a
|γ ′(t)| dt : [a, b] ⊆ IR, γ ∈ Lip([a, b],C), γ(a) = x, γ(b) = y

}
.

Existence of minimizers is a straightforward consequence of Ascoli–Arzelá theo-
rem and of a classical reparameterization argument. Clearly any minimizer γ0,
when parameterized by arc length, is one-to-one. A final reparameterization gives
γ : [0, 1] → C. ()

A first consequence of Lemma 3 is the fact that any Jordan curve � with
H1(�) < ∞ admits a Lipschitz reparameterization. In fact, let x, y ∈ � with
x #= y, let γ : [0, 1] → � be given by Lemma 3 and let �̃ = � \ γ ((0, 1)).
Since �̃ is homeomorphic to a closed segment, Lemma 3 again gives a Lipschitz
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homeomorphism γ̃ : [1, 2] → �̃ with γ̃(1) = y and γ̃(2) = x. Joining γ and γ̃

we obtain the desired Lipschitz parameterization of �. In the following we call
rectifiable the Jordan curves such that H1(�) < ∞. More generally, any � =
γ([a, b]) with γ Lipschitz function in [a, b] will be called rectifiable curve.

In the following lemma we point out some mild regularity properties of recti-
fiable Jordan curves which will be used in the following.

Lemma 4. Let � ⊂ IR2 be a rectifiable Jordan curve. Then

H1 (� ∩ B(x, r/2)) ≥ r ∀x ∈ �, r ∈ (0, diam(�)) , (27)

H1(�) = P (int(�)) = P (ext(�)) (28)

and

lim inf
r→0±

H1({x ∈ IR2 : sdist(x, �) = r}) = H1(�). (29)

Proof. The first property can be easily proved by a projection argument, see for
instance Lemma 3.4 of [23], taking into account that � intersects at least twice
∂B(x, r/2).

In order to prove the second one, let us represent�as γ([0, 1])with γ : [0, 1] →
IR2 satisfying |γ ′(t)| = 1 for a.e. t ∈ [0, 1] and let x0 ∈ � such that

lim sup
ρ→0+

H1(� ∩ Bρ(x0))

2ρ
≤ 1

and, for t0 = γ−1(x0), γ is differentiable at t0 and |γ ′(t0)| = 1; notice thatH1-a.e.
x0 ∈ � has these properties. The coarea formula (see 3.2.3 of [24]) gives∫ ρ

0
card (� ∩ ∂Br(x0)) dr ≤ H1(� ∩ Bρ(x0)) ∀ρ > 0

and hence we can find arbitrarily small r > 0 such that � ∩ ∂Br(x0) contains two
points xr , yr ; by the differentiability of γ at t0 we have also that |xr − yr |/2r tends
to 1 as r → 0+. Denoting by J±r ⊂ ∂Br(x0) the circular arcs joining xr and yr , we
obtain that J±r ∪ (�∩ Br(x0)) are Jordan curves, whose interiors are the connected
components of Br(x0) \ �. It follows that one of these components is contained in
int(�) and the other one in ext(�), and since the angle between xr and yr tends to
π as r → 0+ we obtain that x0 is a point of density 1/2 for int(�) and ext(�). This
proves that

H1(�) ≤ H1 (∂M int(�)
) = P (int(�)) , H1(�) ≤ H1 (∂M ext(�)

) = P (ext(�)) .

The opposite inequalities follow by the inclusions ∂ int(�) ⊂ �, ∂ ext(�) ⊂ �.
In order to prove the third property we set φ(x) = sdist(x, �) and recall (see for

instance [24], 3.2.11, 3.2.34) that |∇φ| = 1 a.e. in IR2, so that the coarea formula
gives

|φ−1(−r, r)| =
∫
φ−1(−r,r)

|∇φ| dx =
∫ r

−r
H1({x ∈ IR2 : φ(x) = t}) dt ∀r > 0.
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On the other hand, it can be proved (see 3.2.39 of [24] or Theorem 2.106 of [5]) that
|φ−1(−r, r)|/(2r) tends to H1(�) as r → 0+. Hence we can find an infinitesimal
sequence of positive numbers ri such that

lim sup
i→∞

H1({x ∈ IR2 : |φ(x)| = ri}
) ≤ 2H1(�).

On the other hand, the lower semicontinuity of perimeter and (28) give

lim inf
i→∞ H

1({x ∈ IR2 : φ(x) = ri}
) ≥ lim inf

i→∞ P({φ < ri}) ≥ P(φ < 0}) = H1(�)

and, analogously, lim inf i H1
({x ∈ IR2 : φ(x) = −ri}

) ≥ H1(�). These inequal-
ities imply that both H1({φ = ri}) and H1({φ = −ri}) converge to H1(�) as
i →∞. ()

In order to represent the essential boundary of a simple set by a rectifiable
Jordan curve we need the following lemma.

Lemma 5. Let γ : [0, L] → IR2 be a Lipschitz map, let C = γ([0, L]) and assume
that γ(0) = γ(L) and

∫ L
0 |γ ′| dt = H1(C) > 0. Then C contains a rectifiable

Jordan curve �.

Proof. After reparameterization we can assume with no loss of generality that
L = H1(C) and |γ ′| = 1 a.e. in [0, L]. By the area formula (see for instance [22])

|γ−1(A)| =
∫
γ−1(A)

|γ ′(t)| dt =
∫

A
card(γ−1(x)) dH1(x) ∀A ⊆ C, A Borel

with A = C we obtain∫
C

(
card(γ−1(x))− 1

)
dH1(x) =

∫ 1

0
|γ ′(t)| dt −H1(C) = 0

hence the set B = {x : card(γ−1(x)) > 1
}

is H1-negligible, and so is (again by
the area formula with A = B) the set S = γ−1(B).

We now claim that S is still Lebesgue negligible. In fact, let (th) ⊆ S be
converging to t and let sh #= th such that γ(th) = γ(sh); assuming with no loss of
generality that sh converge to s, if s #= t we conclude that t ∈ S, otherwise if s = t
we obtain that either γ is not differentiable at t or γ ′(t) = 0. This proves that S is
Lebesgue negligible.

Take now a connected component (a, b) of (0, 1)\S and consider the simple arc
C′ = γ ((a, b)). Since C \ C′ is connected (being γ a closed curve), by Lemma 3
we can connect γ(b) to γ(a) by a simple path η : [b, c] → C \ C ′. If γ(a) = γ(b),
then C′ is a Jordan curve. If γ(a) #= γ(b), then a Jordan curve contained in C can
be obtained joining the paths γ |[a,b] and η|[b,c]. ()
Theorem 7 (Boundary of simple plane sets). Let E ⊂ IR2 be a simple set with
|E| ∈ (0,∞). Then E is (essentially) bounded and ∂M E is equivalent (modH1)

to a rectifiable Jordan curve. Conversely, int(�) is a simple set for any rectifiable
Jordan curve �.
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Proof. By a rescaling argument we also assume that P(E) < 1. Let (Eh) be
a sequence of bounded open sets with smooth boundary locally converging in
measure to E and such that P(Eh)→ P(E) as h →∞. Since ∂Eh is smooth and
compact, we can represent it by a disjoint union of Jordan curves �i,h , for 1 ≤ i ≤
N(h), whose length decreases as i increases; we parameterize �i,h = γi,h([0, 1])
for some 1-Lipschitz maps γi,h , one-to-one on [0, 1), and notice that

N(h)∑
i=1

∫ 1

0
|γ ′i,h(t)| dt =

N(h)∑
i=1

H1(�i,h ) = P(Eh) < 1 (30)

for h large enough. In the following we assume, to fix the ideas, that N(h) →∞
as h →∞, the proof being much simpler if N(h) ≤ C for infinitely many h. We
assume, possibly extracting a subsequence, that for any i ∈ IN either γi,h uniformly
converge in [0, 1] to γi or max |γi,h | → ∞. In the latter case we set γi ≡ 0. Setting
�i = γi([0, 1]) and �∞ = ∪i�i , we will prove that there exists i such that �i is
a Jordan curve and � j are points for any j #= i.

Step 1. We claim that ∂M E ⊂ �∞ (modH1). Given an integer p ≥ 1, we denote
by E p

h the sets obtained from Eh by removing from it the connected components
with area smaller than 1/p and adding to it all holes with area smaller than 1/p.
By the isoperimetric inequality, the perimeter of any connected component of E p

h
is at least

√
4π/p, hence ∂E p

h is contained in the first Mp = [√p/(4π)]+ 1 curves
�i,h . Moreover, we have

∣∣E p
h�Eh

∣∣ ≤∑
j∈J

|Y j | ≤ 1√
p

∑
j∈J

|Y j |1/2 ≤ 1√
4πp

∑
j∈J

P(Y j ) ≤ 1√
4πp

where {Y j } j∈J are the components added or removed. We assume, without loss
of generality, that E p

h locally converge in measure in IRN to suitable sets E p as
h →∞ such that |E p�E| ≤ 1/

√
4πp. Since

∂E p
h ⊂

Mp⋃
i=1

�i,h

and since DχE p
h

weakly converge as measures to DχE p , by the definition of �i we
easily obtain that

|DχE p | ≤ H1
Mp⋃
i=1

�i

because any closed ball disjoint from the set in the right side does not intersect�i,h ,
1 ≤ i ≤ Mp, for h large enough. Hence, |DχE p | ≤ H1 �∞ for any p. Letting
p → ∞ and using the weak convergence of E p to E we get |DχE | ≤ H1 �∞.
The claim follows by evaluating both measures at ∂M E \ �∞.
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Step 2. Passing to the limit as h →∞ in (30) we get

∞∑
i=1

H1(�i) ≤
∞∑

i=1

∫ 1

0

∣∣γ ′i ∣∣ dt ≤ P(E) = H1(∂M E).

On the other hand, Step 1 gives

H1(∂M E) ≤ H1 (∪i�i) ≤
∞∑

i=1

H1(�i)

Hence, we conclude that
∫ 1

0 |γ ′i (t)| dt = H1(�i) for any i ≥ 1 andH1(�i∩� j ) = 0
whenever i #= j .

Step 3. Let i ≥ 1 such thatH1(�i) > 0 and let � ⊂ �i be a Jordan curve given by
Lemma 5. Then, F = int� satisfies

∂M F ⊂ � ⊂ �i ⊂ ∂M E (modH1)

so that, being E simple, we conclude from Proposition 7 that E = F and ∂M E =
� = �i (modH1). This also proves that H1(� j) = 0 for any j #= i. Since
diam� ≤ H1(�) for any rectifiable Jordan curve � we obtain that E is bounded.

Finally, the fact that any rectifiable Jordan curve induces a simple set follows
by Proposition 2 and by the Jordan curve theorem. ()

By Theorem 4, since Jordan boundaries essentially coincide with rectifiable
Jordan curves, we obtain the following decomposition result for the boundary of
a set of finite perimeter in the plane. As in Theorem 4 we allow the Jordan curves
to be also J∞ and Jo to simplify the statement and to allow sets E with infinite
measure.

Corollary 1. Let E be a subset of IR2 of finite perimeter. Then, there is a unique
decomposition of ∂M E into rectifiable Jordan curves

{
C+

i ,C−
k : i, k ∈ IN

} ⊂ S,
such that

(i) Given int(C+
i ), int(C+

k ), i #= k, they are either disjoint or one is contained
in the other; given int(C−

i ), int(C−
k ), i #= k, they are either disjoint or one is

contained in the other. Each int(C−
i ) is contained in one of the int(C+

k ).
(ii) P(E) =∑i H

1(C+
i )+
∑

kH
1(C−

k ).
(iii) If int(C+

i ) ⊆ int(C+
j ), i #= j , then there is some rectifiable Jordan curve C−

k

such that int(C+
i ) ⊆ int(C−

k ) ⊆ int(C+
j ). Similarly, if int(C−

i ) ⊆ int(C−
j ),

i #= j , then there is some rectifiable Jordan curve C+
k such that int(C−

i ) ⊆
int(C+

k ) ⊆ int(C−
j ).

(iv) Setting L j = {i : int(C−
i ) ⊆ int(C+

j )}, the sets Y j = int(C+
j )\∪i∈L j int(C−

i )

are pairwise disjoint, indecomposable and E = ∪ j Y j .
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In the remaining part of this section we want to characterize the M-connected
components (or, better, suitable representatives in the equivalence class (modH2)),
by the classical topological property of connectedness by arcs.

To this aim, we need another definition of boundary which, more than ∂M,
is suitable for the analysis of connected components. For any set E with finite
perimeter in IRN we define

∂S E :=
{

x ∈ IRN : lim sup
r→0+

HN−1(∂M E ∩ B(x, r))

r N−1 > 0

}
.

Notice that the relative isoperimetric inequality, together with a continuity ar-
gument, easily gives (see (9)) that ∂M E ⊂ ∂S E; however (4) guarantees that
HN−1(∂S E \ ∂M E) = 0, hence P(E) = HN−1(∂S E) still holds.

With this notation we can prove the following result:

Theorem 8 (Indecomposability and connectedness by arcs). Let E ⊂ IR2 be
a set of finite perimeter and let {Ei}i∈I = CCM(E). Then E̊M \ ∂S E is the disjoint
union of E̊M

i \∂S E and x, y ∈ E̊M\∂S E belong to the same M-connected component
Ei of E if and only if there exists a rectifiable curve � joining x to y contained in
E̊M \ ∂S E. Moreover, for any δ > 0, � can be chosen so that

H1(�) ≤ |x − y| + P(Ei)+ δ.

In particular the sets E̊M
i \ ∂S E are connected.

Our proof of this result actually gives a slightly stronger statement: the sets
E̊M

i \(∂S Ei∪L) are connected by arcs for anyH1-negligible set L ⊆ IR2; Theorem 8
is a particular case with L = E̊M

i ∩∂S E. In order to show this result, our first lemma
proves that points in the same M-connected component can be joined by curves
lying in E̊M ∪ ∂S E.

Lemma 6. Let E ⊆ IR2 be an indecomposable set and let x, y ∈ E̊M \ ∂S E. Then
there exists a rectifiable curve � joining x to y contained in E̊M ∪ ∂S E. Moreover,
the curve can be chosen so that � ⊂ ∂S E ∪ L, where L is the segment joining x
to y.

Proof. Let J0 be the rectifiable Jordan curve corresponding to the simple set
sat(E) and let Ji , 1 ≤ i < p with p ∈ [2,∞], be the rectifiable Jordan curves
corresponding to the holes of E. Since x, y /∈ ∂S E and ∪i Ji ⊂ ∂M E (modH1), by
(27) we obtain that x and y belong to int(J0), the topological interior of J0, and
to ext(Ji), the topological exterior of Ji , for i ≥ 1. If L crosses an hole int(Ji) we
can replace, using Lemma 3, L ∩ int(Ji) by a curve contained in Ji , and similarly
we can argue if L crosses ext(J0). In this way we obtain a rectifiable curve � fully
contained in E̊M ∪ ∪i≥1 Ji ⊂ E̊M ∪ ∂S E. ()

In order to improve Lemma 6, proving existence of curves contained in E̊M \
∂S E, the natural idea is to enlarge a little bit the holes of E and to shrink a little
bit the boundary of sat(E), to produce a new set whose boundary is “inside” E.
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However, this perturbation could not preserve the property that x and y are in the
same M-connected component, unless we assume that small balls centered at x
and y are contained in E.

Lemma 7. Let E ⊆ IR2 be an indecomposable set, let x, y ∈ IR2 and assume that
B(x, r) ∪ B(y, r) ⊆ E (modH2) for some r > 0. Then, for anyH1-negligible set
N ⊆ IR2 \ (B(x, r) ∪ B(y, r)) there exists an open set A ⊆ E with finite perimeter
such that N ∪ ∂S E ⊆ A and x, y belong to the same M-connected component of
E \ A. Moreover, given any δ > 0 and any open set S such thatH1(∂M E∩∂S) = 0,
we can choose A so that

P(E \ A, S) ≤ P(E, S) + δ.

Proof. Assuming with no loss of generality that r < |x − y|, we will first build
a sequence of open sets Ah not intersecting B(x, r/2) ∪ B(y, r/2), such that
|E ∩ Ah| → 0, P(E \ Ah)→ P(E) and N ∪ ∂S E ⊆ Ah .

Let J0, Ji be as in Lemma 6 and let us denote by L the H1-negligible set
N ∪ ∂S E \ ∪i Ji . Given ε > 0, by (29) we can find r0 < 0 and positive numbers ri
such that∣∣∣H1({x ∈ IR2 : sdist(x, J0) = r0

})−H1(J0)

∣∣∣ ≤ ε∣∣∣H1({x ∈ IR2 : sdist(x, Ji) = ri
})−H1(Ji)

∣∣∣ ≤ 2−iε ∀i ∈ [1, p).

We also choose balls B(x j, η j ) such that their union contains L and
∑

j η j < ε.
Choosing ε = 1/h, we define

Ah :=
{
x ∈ IR2 : sdist(x, J0) > r0

} ∪ ⋃
1≤i<p

{
x ∈ IR2 : sdist(x, Ji) < ri

}

∪
∞⋃
j=1

B(x j, η j ).

By construction Ah contains ∂S E and does not intersect B(x, r/2) ∪ B(y, r/2) for
h large enough. Moreover, since

∑
j πη

2
j ≤ πε2 and

E ∩ Ah ⊆
⋃

0≤i<p

{
x ∈ IR2 : |sdist(x, Ji)| ≤ |ri |

} ∪ ∞⋃
j=0

B(x j , η j)

choosing smaller ri if necessary (again, this is possible due to (29)) we obtain that
|E ∩ Ah | → 0. In order to prove that P(E \ Ah) converge to P(E) it suffices, by
the lower semicontinuity of perimeter, to estimate P(E \ Ah) from above. Since
∂M(E \ Ah) ⊂ ∂M E ∪ ∂M Ah and ∂M E ⊂ ∂S E ⊆ Ah we obtain

P(E \ Ah) ≤ H1(∂M Ah
) = P(Ah)

≤
∑

0≤i<p

H1({x ∈ IR2 : sdist(x, Ji) = ri
})+ ∞∑

j=0

2πη j

≤
∑

0≤i<p

H1(Ji)+ 2π + 2

h
= P(E)+ 2π + 2

h
.
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Now we claim that for h large enough both x and y belong to the same M-
connected component of E \ Ah ; indeed, if this is not true we can find partitions
(A1

h, A2
h) of E \ Ah (union of suitable M-connected components of E \ Ah , see

(10)) such that B(x, r/2) ⊆ A1
h , B(y, r/2) ⊆ A2

h , P(E \ Ah) ≥ P(A1
h)+ P(A2

h) and
|A1

h ∩ A2
h | = 0. Possibly passing to a subsequence, we can assume that Ai

h locally
converge in measure to disjoint sets Ai whose union is E; the lower semicontinuity
of perimeter gives

P(E) ≥ P(A1)+ P(A2)

and, since both A1 and A2 contain a ball and E is indecomposable, this gives
a contradiction.

The final claim follows noticing that the convergence of perimeters implies
that P(E \ Ah, S) converge to P(E \ A, S) as h → ∞ (see for instance [29],
Appendix A). ()

Finally, we need the following lemma, showing that many circles centered at
points in E̊M \ ∂S E are fully contained in E̊M.

Lemma 8. Let E be a set of finite perimeter, let x ∈ E̊M \ ∂S E and define

R := {t > 0 : ∂B(x, t) ⊂ E̊M}
.

Then |R ∩ (0, r)|/r tends to 1 as r → 0+.

Proof. Let us define φ equal to 1 on E̊M, equal to 1/2 on E1/2 and equal to 0 on
˚︷ ︷

IR2 \ E
M

. Notice that φ is undefined only on the H1-negligible set ∂M E \ E1/2,
and hence is everywhere defined on almost every circle ∂B(x, t).

Since x ∈ E̊M , a simple application of Fubini theorem shows that the set

R1 :=
{
t > 0 : H1(∂B(x, t) ∩ E̊M)

> 0
}

satisfies |R1 ∩ (0, r)|/r → 1 as r → 0+.
Letφt(θ) = φ(x1+t cos θ, x2+t sin θ) and let Var(φt) be its pointwise variation.

The statement would be proved if we show that also the set

R2 := {t > 0 : Var(φt) = 0}
satisfies |R2 ∩ (0, r)|/r → 1 as r → 0+, because any t ∈ R1 ∩ R2 belongs to R.
To this aim, notice that Var(φt) ≥ 1/2 for any t ∈ (0,∞) \ R2, hence the density
property of R2 follows by the inequality

1

2
|(0, r) \ R2| ≤

∫ r

0
Var(φt) dt

if we prove that
∫ r

0 Var(φt) dt/r is infinitesimal as r → 0+. Eventually, this fact
follows by the assumption that x /∈ ∂S E and the inequality∫ r

0
Var(φt) dt ≤ H1 (∂M E ∩ B(x, r)

) ∀r > 0. (31)
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In order to prove (31) we first notice that a polar change of coordinates gives∫ r

0
Var(ϕt) dt =

∫ r

0

∫ 2π

0

∣∣∣∣∂ϕt

∂θ

∣∣∣∣ dθdt ≤
∫

B(x,r)
|∇ϕ| dy

for any ϕ ∈ C∞(IRN). Now we choose a radial convolution kernel ρ and apply the
identity above to the mollified functions ϕε = φ ∗ ρε; taking into account that ϕε
pointwise converge to φ in its domain (see for instance Theorem 4.5.9(24) in [24]),
the lower semicontinuity of the variation under pointwise convergence and the
inequality (see for instance Proposition 1.15 in [29])

lim sup
ε→0+

∫
B(x,r)

|∇ϕε| dx ≤ P
(
E, B(x, r)

) = H1 (∂M E ∩ B(x, r)
)

we obtain∫ r

0
Var(φt) dt ≤

∫ r

0
lim inf
ε→0+

Var(ϕεt) dt ≤ lim inf
ε→0+

∫ r

0
Var(ϕεt) dt

≤ lim inf
ε→0+

∫
B(x,r)

|∇ϕε| dy ≤ H1 (∂M E ∩ B(x, r)
)
.

This proves (31) and the lemma. ()
Proof of Theorem 8. We have proved in (9) that any x ∈ E̊M \ ∂S E is a point of
density 1 for some set Ei .

Let now x ∈ E̊M
i \ ∂S E, y ∈ E̊M

j \ ∂S E, with i #= j . By (27) we obtain that x
does not belong neither to the Jordan curve J0 corresponding to sat(Ei) nor to the
Jordan curves Jk corresponding to the holes of Ei , and the same holds for y. Hence,
if sat(Ei) and sat(E j) are disjoint, we conclude that x ∈ int(J0) and y ∈ ext(J0), so
that they cannot be connected by a continuous curve not intersecting J0 ⊂ ∂S E. If
sat(E j) ⊂ sat(Ei) then E j is contained in some hole of Ei and the same argument
applies for some curve Jk. If sat(Ei) ⊂ sat(E j) the argument is similar, reversing
the roles of i and j .

Conversely, given a M-connected component Ei of E, we will prove that any
pair of points x, y ∈ E̊M

i \∂S E can be connected by a rectifiable curve contained in
E̊M

i ∪ ∂S E. To this aim, we first choose, according to Lemma 8, strictly decreasing
sequences of positive numbers ηh , γh such that ∂B(x, ηh)∪∂B(y, γh) ⊂ E̊M

i \ ∂S E
(recall that E̊M

i ∩ ∂S E is H1-negligible), and 2π
∑

h(ηh + γh) < δ/2. For any
integer h ≥ 1 we define

Sh :=
[
B(x, ηh−1) \ B(x, ηh)

] ∪ [B(y, γh−1) \ B(y, γh)
]
,

and
S0 = IR2 \ (B(x, η0) ∪ B(x, γ0)).

Setting Fh = Ei ∪ B(x, ηh) ∪ B(y, γh), the sets Fh are still indecomposable
(see Proposition 5(i)), hence we can apply Lemma 7 with Nh = (∂S E ∩ E̊M

i ) \
(B(x, ηh) ∪ B(y, γh)) to obtain open sets Ah ⊃ Nh ∪ ∂S Fh such that x, y belong
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to the same M-connected component Gh of Fh \ Ah . Moreover, since ∂Sh ⊂ F̊M
h ,

we can also assume that

P(Fh \ Ah, Sh) < P(Fh , Sh)+ 2−h−2δ. (32)

Finally, we can apply Lemma 6 to Gh to obtain a rectifiable curve �h joining x
to y, contained in G̊M

h ∪∂SGh and also in L ∪∂SGh , where L is the segment joining
x to y. Since ∂SGh ⊂ ∂S(Fh \ Ah) we have

�h ∩ Sh ⊂ (L ∩ Sh) ∪
(
∂SGh ∩ Sh

) ⊂ (L ∩ Sh) ∪
(
∂S(Fh \ Ah) ∩ Sh

)
.

Since ∂S Fh ⊂ ∂S Ei , using (32), we obtain

H1(�h ∩ Sh) ≤ H1 (∂M(Fh \ Ah) ∩ Sh
)+ (ηh−1 − ηh)+ (γh−1 − γh)

≤ H1(∂M Ei ∩ Sh
)+ (ηh−1 − ηh)+ (γh−1 − γh)+ 2−h−2δ (33)

for any h ≥ 1. For h = 0, we have

H1(�0 ∩ S0) ≤ H1(∂M(F0 \ A0) ∩ S0
)+H1(L ∩ S0)

≤ H1(∂M Ei ∩ S0)+ |x − y| − (η0 + γ0)+ 1

22 δ. (34)

Since ∂S E ∩ E̊M
i ⊆ Ah and ∂SGh ⊂ ∂S(Fh \ Ah) ⊂ IR2 \ Ah , we have ∂SGh ⊂

IR2 \ (∂S E ∩ E̊M
i ), and by our choice of ηh and γh the curves �h are contained in

F̊M
h \(∂S E∩ E̊M

i ) and hence in E̊M
i \∂S E out of B(x, ηh)∪B(y, γh). Using again our

choice of ηh and γh we can build from �h a locally rectifiable curve � contained
in E̊M

i \ ∂S E as in Fig. 4 (we have drawn for simplicity the construction only near
to x).

Fig. 4. Recursive construction of � near to x

The estimate onH1(�) follows by (33), (34) and by the inclusion

� \ {x, y} ⊂
∞⋃

h=0

(�h ∩ Sh) ∪
∞⋃

h=0

∂B(x, ηh) ∪ ∂B(y, γh).

()
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9. Connected operators for image denoising

We call “connected operator” any contrast-invariant operator acting on the con-
nected components of level sets. These operators could be defined on BV but we
actually do not need neither the finiteness of the total variation nor the summability
property. We need only to know that almost every level set has finite perimeter,
so that its M-connected components can be defined. We therefore introduce a new
space of functions that we shall call functions of weakly bounded variation.

Definition 7. We say that a Borel function u : � → [−∞,+∞] has weakly
bounded variation in � if

P({u > t},�) <∞ for a.e. t ∈ IR.

The space of such functions will be denoted by WBV(�). We call total variation
of u and denote by |Du| the measure defined on every Borel subset B ⊆ � as

|Du|(B) :=
∫ +∞

−∞
P({u > t}, B) dt.

It follows from the properties of the perimeter that |Du| is a σ-additive measure on
B(�). Remark that, by Lemma 1, BV(�) ⊆ GBV(�) ⊆ WBV(�) as soon as � is
bounded. Furthermore, if � is bounded, connected and with Lipschitz boundary,
u ∈ WBV(�) and |Du|(�) < ∞ then, by Lemma 1, u ∈ BV(�) and, by the
coarea formula, |Du| coincides with the total variation of u.

It must be emphasized that WBV is a lattice (because sets of finite perimeter
are closed under union and intersection) but is not a vector space. Take indeed the
two functions u(x) = 1/x and v(x) = 1/x − sin(1/x) defined on (−1, 1). Then,
clearly, u, v ∈ WBV(−1, 1)whereas u−v #∈ WBV(−1, 1) since sin(1/x) assumes
infinitely many times any value t ∈ [−1, 1]. However, a strong motivation for the
introduction of WBV(�) is the following result, showing that WBV(�) is the
smallest space containing BV(�) and invariant under any continuous and strictly
increasing contrast change; notice that, by Vol’pert chain rule for distributional
derivatives, BV(�) is stable only under Lipschitz contrast changes.

Theorem 9. Assume that � is bounded, connected and with Lipschitz boundary.
For any u ∈ WBV(�) there exists a bounded, continuous and strictly increasing
function φ : [−∞,+∞] → IR such that φ ◦ u ∈ BV(�).

Proof. Let φ be the primitive of exp(−s2)/(1 + mu(s)) such that φ(−∞) = 0.
Then, since φ ◦ u is bounded and takes its values in [0, φ(+∞)],∫ +∞

−∞
mφ◦u(t) dt =

∫ φ(+∞)

0
mφ◦u(t) dt =

∫ +∞

−∞
mu(s)φ

′(s) ds

≤
∫ +∞

−∞
exp(−s2) ds <∞,

hence φ ◦ u ∈ BV(�) by Lemma 1(ii). ()



Connected components of sets and applications 83

Notice that Theorem 9 could be used to extend to WBV(�) many results
of Sect. 3, as for instance the existence of the approximate differential ∇u, the
rectifiability of the approximate discontinuity set Su , the fact thatHN−1-a.e. x ∈ Su
is an approximate jump point, the structure of Du and so on. However, this analysis
goes beyond the main goals of this paper and it will not be pursued here.

The space WBV(�) can be endowed with the following distance (identifying as
usual the functions which coincide almost everywhere in �):

d(u1, u2) :=
∫

IR
e−t2 | arctan mu1 − arctan mu2 | dt

+
∫
�

e−|x|2| arctan u1 − arctan u2| dx.

Since arctan is a homeomorphism between [−∞,+∞] and [−π/2, π/2], it is easy
to prove that the convergence with respect to d is equivalent to local convergence
in measure of both u and mu , hence (WBV(�), d) is a complete metric space.

L. Vincent’s filters

Luc Vincent introduced in [64] a class of connected operators for denoising an
image corrupted by a noise that creates small spots, like for instance impulse noise.
Our motivation for the study of such filters is, in addition to the fact that they may
be considered as the reference connected operators, their great ability to remove
impulse noise. The key idea is to remove connected components of level sets
whose Lebesgue measure does not exceed some threshold θ . Luc Vincent defined
his filters as operators acting on the space of upper semicontinuous functions, in
the framework of Mathematical Morphology. We shall now propose a definition
adapted to the space WBV which involves the notion of M-connected components.
We shall derive new properties of Vincent’s filters, regarding in particular the
behavior of the total variation. In addition, we shall prove that these filters map
SBV onto SBV, Sobolev spaces onto Sobolev spaces and Lipschitz functions onto
Lipschitz functions.

First remark that we shall from now assume � bounded with Lipschitz bound-
ary. This is motivated by the fact that an image is generally given on a bounded
domain. However, all the definitions and results stated above remain valid since
any set E ⊂ � of finite perimeter in � has finite perimeter in IRN (see for instance
Remark 2.14 in [29]). For the sake of simplicity, we shall write ∂M E instead of
∂M E ∩�. We start now by defining the action of Vincent’s filters on sets of finite
perimeter.

Definition 8. Let E ⊂ � be a set of finite perimeter in � and θ ≥ 0. We define
Tθ E as the union of the M-connected components Ei of E such that |Ei | > θ .

Note that T0 E = E and that Tθ E is well defined up to Lebesgue negligible sets.
Moreover, by Proposition 3, it follows that

P(Tθ E,�) ≤ P(E,�) (35)

with equality only if Tθ E = E (modHN ).
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Proposition 10. Let E, F ⊂ � be two sets of finite perimeter in �. If E ⊆ F
(modHN ), then Tθ E ⊆ Tθ F (modHN).

Proof. If Ei is a M-connected component of E with |Ei | > θ , then by Theorem 1
there is a M-connected component Fj of F such that Ei ⊆ Fj (mod H N ). Since
|Fj | > θ , we conclude that Tθ E ⊆ Tθ F (modHN ). ()
Now we want to extend Tθ to WBV functions; to this aim, the following lemma
will be useful.

Lemma 9. For any monotone family of sets Xλ, λ ∈ IR, there exists a countable
set D ⊆ IR such that

lim
µ→λ

Xµ = Xλ for all λ ∈ IR \ D,

where convergence means convergence with respect to the finite measure µ =
e−|x|2LN (or, equivalently, local convergence in measure in IRN).

Proof. First remark that the map λ → µ(Xλ) is real-valued since µ(�) =∫
�

e−|x|2dx < ∞. Then it is enough to note that this map is monotone, thus

has at most countably many discontinuity points, and to choose D as the set of
those discontinuity points. We call D the set of discontinuity points of Xλ. ()
Theorem 10. Let u ∈ WBV(�) and θ ≥ 0. Then there exists a function Sθu ∈
WBV(�) (resp. Iθu ∈ WBV(�)) such that

{Sθu > λ} = Tθ{u > λ} (resp. {Iθu < λ} = Tθ{u < λ}) (mod H N)

with at most countably many exceptions. Any other measurable function v with the
same property coincides with Sθu (resp. Iθu) almost everywhere in �. In addition,

|DSθu|(B) ≤ |Du|(B) and |DIθu|(B) ≤ |Du|(B) for any Borel set B ⊂ �

Proof. Let Xλ = {u > λ}. By definition of WBV, for almost every λ ∈ IR, Xλ

has finite perimeter and we can define Yλ = Tθ Xλ. Since λ < λ
′

implies that
Xλ ⊇ X

λ
′ , we infer from Proposition 10 that (Yλ) is a decreasing family. Let D

be the set of discontinuity points of Yλ. Let D∗ ⊆ IR be countable and dense and
define

Sθu(x) = sup{λ ∈ D∗ : x ∈ Yλ}.
We now prove that {Sθu > λ} = Yλ (mod H N ) for any λ #∈ D. In fact, we clearly
have

Yη ⊆ {Sθu > λ} ⊆ Yρ

for any η, ρ ∈ D∗, ρ < λ < η. If we choose sequences ηk → λ and ρk → λ

in D∗, Lemma 9 proves that Yλ coincides with {Sθu > λ} (mod H N ). In particular,
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{Sθu > λ} is measurable for any λ #∈ D. By approximation, the same is true for
any λ ∈ IR. Hence, Sθu is measurable.

The uniqueness of Sθu can be proved by checking, with a similar argument, that
if u1, u2 are two measurable functions such that {u1 > λ} = {u2 > λ} (mod H N )
for a dense set of λ, then u1 = u2 almost everywhere in �.

Remark now that, by assumption, {u > λ} is a set of finite perimeter in � for
almost every λ ∈ IR, thus P({u > λ}, B) < +∞ for any Borel set B ⊆ �. Since
CCM {Sθu > λ} ⊆ CCM {u > λ} we deduce by Proposition 3 that ∂M{Sθu > λ} ⊆
∂M{u > λ} (modHN−1). Recalling that P(E, B) = HN−1(B ∩ ∂M E) whenever E
has finite perimeter in B, it follows that P({Sθu > λ}, B) ≤ P({u > λ}, B) < ∞
for every Borel subset B ⊆ � and for almost every λ ∈ IR. Thus Sθu ∈ WBV(�)
and |DSθu|(B) ≤ |Du|(B) for any Borel set B ⊆ �.

The proof of the existence and the uniqueness of Iθu is analogous to the one
for Sθu, by noting that the sets Xλ = {u < λ}, hence also Yλ = Tθ Xλ, form an
increasing family and defining Iθu(x) = inf{λ ∈ D∗ : x ∈ Yλ}. Remark now that
{u > λ} = {−u < −λ}, thus

Sθu = −Iθ(−u) a.e. in �. (36)

and it follows that Iθu ∈ WBV(�) and |DIθu|(B) ≤ |Du|(B) for any Borel set
B ⊆ �. ()
Remark 11. Recall that, since u, Sθu and Iθu are measurable, it is equivalent in the
previous theorem to deal with upper level sets instead of strictly upper level sets
for both essentially coincide except for at most countably many exceptions.

Since Tθ{u > λ} ⊂ {u > λ} and Tθ{u < λ} ⊂ {u < λ} we infer that {Sθu > λ} ⊂
{u > λ} and {Iθu < λ} ⊂ {u < λ} for almost every λ, hence

Sθu ≤ u ≤ Iθu a.e. in �. (37)

In order to study the properties of Sθ and Iθ in the classical functions spaces BV
and W1,p the following lemma will be useful.

Lemma 10. Let u, v ∈ BV(�) such that |Du|(B) ≤ |Dv|(B) for every Borel set
B ⊂ �. Then

(i) |∇u| ≤ |∇v| a.e. in �;

(ii) Su ⊆ Sv (modHN−1);

(iii) |u+ − u−| ≤ |v+ − v−| HN−1-a.e. in �;

(iv) |Dcu| ≤ |Dcv|.
Proof. Recall that |Du| = |∇u|LN+|u+−u−|HN−1 Ju+|Dcu|. More precisely,
setting

Nu :=
{
x ∈ � : lim

r↓0
r−N |Du|(Br(x)) = ∞}

and !u :=
{

x ∈ � : lim inf
r↓0

r1−N |Du|(Br(x)) > 0
}
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then (see for instance [5]) !u ⊆ Nu , |Nu | = 0, !u is σ-finite with respect to
HN−1 and

Dau = Du (�\Nu), D j u = Du Su = Du !u and Dcu = Du (Nu\!u).

LetN = Nu ∪Nv. Then |N | = 0 and for every Borel set B ⊂ � \N , |Du|(B) =
|Dau|(B) and |Dv|(B) = |Dav|(B). Therefore

|Dau|(B) =
∫

B
|∇u|dx ≤ |Dav|(B) =

∫
B
|∇v|dx

and (i) follows since the inequality is true for every Borel set B ⊂ � \N .

(ii) Let B = Su \ Sv. Then |Du|(B) ≤ |Dv|(B), |B| = 0 and B ⊂ � \ Sv is σ-finite
with respect to HN−1 so that Dav|(B) = 0 and |Dcv|(B) = 0 (see [5]). Thus
|Du|(B) = |Dv|(B) = 0 and, therefore,∫

B
|u+ − u−|dHN−1 = 0.

Since |u+− u−| > 0 on Ju andHN−1(Su \ Ju) = 0 we deduce thatHN−1(B) = 0
thus

Su ⊆ Sv (modHN−1)

(iii) For every Borel set B ⊆ Ju∫
B
|u+ − u−|dHN−1 ≤

∫
B
|v+ − v−|dHN−1

and we deduce that

|u+ − u−| ≤ |v+ − v−| HN−1-a.e. in Ju .

The result follows by simply remarking that |u+ − u−| = 0 for HN−1-a.e. x ∈
� \ Ju .

(iv) Let Ñ = Nu \ (!u ∪ !v). Since !v is σ-finite with respect to HN−1 we
deduce that Dcu = Du Ñ . It is a straightforward consequence of the definitions
thatNu ⊂ Nv thus Dv Ñ = Dcv Ñ . For every Borel subset B ⊂ Ñ we get

|Dcu|(B) = |Du|(B) ≤ |Dv|(B) = |Dcv|(B)
and (iv) follows. ()
The following proposition is a straightforward consequence of the previous lemma
and Theorem 10.

Proposition 11. Let u ∈ BV(�) and θ ≥ 0. Let Tθ denote any of the operator Sθ
or Iθ . Then

(i) |∇Tθu| ≤ |∇u| a.e. in �;

(ii) STθu ⊆ Su (modHN−1);

(iii) |Tθu+ − Tθu−| ≤ |u+ − u−|HN−1-a.e. in �;

(iv) |DcTθu| ≤ |Dcu|.
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Remark 6. An interesting consequence of this proposition is that Sθ and Iθ map
SBV(�) onto itself in such a way that the jump set is reduced as well as the
“height” of the jumps. It is therefore easily seen that any Sobolev space W1,p(�),
1 ≤ p ≤ ∞, is mapped onto itself by Iθ and Sθ with a decay of the gradient
norm at almost every point. Analogously, any Lipschitz function is mapped onto
a Lipschitz function with the same Lipschitz constant.

Finally, we conclude this section with some additional properties of the filters Sθ
and Iθ .

Proposition 12. Let θ ≥ 0. Then Sθ , Iθ , IθSθ , SθIθ are monotone and idempotent
operators acting on WBV(�). Moreover, they are covariant with respect to any
real continuous and strictly increasing contrast change.

Proof. The monotonicity of the operators is a simple application of the mono-
tonicity of Tθ on level sets. Observe that if E is a set of finite perimeter in �,
then Tθ(Tθ E) = Tθ E. Therefore, if u ∈ WBV(�), then, for almost every λ ∈ IR,
{u > λ} has finite perimeter in � and we have Tθ(Tθ{u > λ}) = Tθ{u > λ}.
By the uniqueness property stated in Theorem 10, we deduce that Sθ (Sθu) = Sθu
almost everywhere in �. Equation (36) implies that Iθ is idempotent as well. Now,
let us prove that

SθIθSθu = IθSθu. (38)

Indeed, let λ ∈ IR be such that {u > λ} is a set of finite perimeter in�, {Sθu ≤ λ} =
{Sθu < λ}, and {IθSθu ≤ λ} = {IθSθu < λ} (mod H N). By Theorem 10, {Sθu > λ}
= Tθ{u > λ}, {IθSθu < λ} = Tθ{Sθu < λ}, {SθIθSθu > λ} = Tθ{IθSθu > λ}
(mod H N ). Then we prove that

{SθIθSθu > λ} = {IθSθu > λ} (mod H N). (39)

Otherwise, there exists a M-connected component Q of {IθSθu > λ} with 0 <

|Q| ≤ θ . Thus Q is a M-connected component of IRN \ {IθSθu ≤ λ} = IRN \
{IθSθu < λ} = IRN\Tθ{Sθ < λ} = IRN\Tθ{Sθ ≤ λ} and, according to Theorem 1,
we may write

∂M Q = ∪p
k=1∂

M Fk (mod H N−1),

where Fk , k = 1, . . . , p, denote the M-connected components of Tθ{Sθu ≤ λ}
such that ∂M Fk ∩ ∂M Q #= ∅ (mod H N−1). In particular, Fk , k = 1, . . . , p, are
M-connected components of {Sθu ≤ λ} such that |Fk| > θ . It follows that Q
cannot be contained in {Sθu ≤ λ}. Hence, Q contains at least a M-connected
component of {Sθu > λ} and, therefore, |Q| ≥ θ . This contradiction proves (39)
and, as a consequence, (38). Since Iθ is idempotent, we obtain

IθSθ IθSθu = IθIθSθu = IθSθu.

Let us prove the covariance of Sθ with respect to any real continuous increasing
contrast change. This is due to the fact the family of level sets is globally invariant by
such a contrast change. Let u ∈ WBV(�) and let g : IR → IR be a real continuous
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increasing function. Then, for almost every λ ∈ IR, {g(u) > g(λ)} = {u > λ},
hence, Tθ{g(u) > g(λ)} = Tθ{u > λ} and, by definition, {Sθg(u) > g(λ)} =
{Sθu > λ}. Thus {g−1Sθg(u) > λ} = {Sθu > λ}. From the uniqueness statement
of Theorem 10, we conclude that Sθg(u) = g(Sθu) a.e. in �. The corresponding
statements for Iθ , IθSθ , SθIθ are proved in the same way. The monotonicity assertion
is straightforward and we shall omit the details. ()

Experiments

First recall that an image can be naturally represented as a piecewise constant
function, each pixel being considered as a square with measure one. We have
illustrated in Fig. 5 the internal and external boundaries of some level sets of
an image (see Sect. 7). For the sake of simplicity, we shall also use the terms
topographic map to refer to this representation. It is a straightforward consequence
of Theorem 6 and the reconstruction formula u(x) = sup{t : x ∈ {u > t}} =
inf{t : x ∈ {u < t}} that the topographic map is a complete and contrast-invariant
representation of the image. Remark that, for the sake of readability, we have
actually illustrated in Fig. 5 the partial topographic map obtained by taking into
account only those level sets separated by at least 10 grey levels.

Fig. 5. An image and its partial topographic map (grey level step = 10)

Figure 6 illustrates the ability of the Vincent’s filter IθSθ to remove impulse
noise in an image. Recall that impulse noise replaces the value of a prescribed
number of pixels, uniformly distributed in the image, by a random value taken
between 0 and 255, according to a uniform distribution law. The algorithm for
computing the action of Iθ is the following: let x0 be a pixel where the image,
denoted by u, assumes a local minimum and λ = u(x0). Adding progressively
pixels in the neighborhood of x0, one can construct the connected component I(λ)
containing x0 of the set {x, u(x) ≤ λ}. Then, setting λ := λ + 1, the process is
iterated until |I(λ)| ≥ θ . Finally, each pixel in I(λ) is given the value λ. The whole
process is performed for each local minimum of u.

The algorithm for Sθ is stricly analogous, starting from a local maximum
and computing iteratively the connected component S(λ) containing x 0 of the set
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Fig. 6. An image corrupted by an impulse noise with frequency 15% and the result of the
denoising performed by I10S10

{x, u(x) ≥ λ}, where λ is initially given the value u(x0) and is lowered until
|S(λ)| ≥ θ . Again, each pixel in the ultimate S(λ) is given the value λ.

We shall not address here the problem of the consistency of these algorithms,
that is the question whether they converge to the operator IθSθ as defined for
functions, when the discrete grid tends to the continuous plane. This question is
obviously far beyond the scope of this paper.

Three properties of IθSθ are particularly relevant in view of an automated
denoising: the idempotence, which prevents from caring about the number of
iterations, the dependence on a single parameter θ , which makes the filter much
easier to handle with and, finally, the ability of IθSθ to preserve the unnoisy parts
of the image (see Fig. 7) which ensures that only noise is processed.

Fig. 7. An uncorrupted image and the result of the filtering by I10S10. This experiment
illustrates the ability of Vincent’s filter to preserve uncorrupted parts of an image

Acknowledgements. We all acknowledge partial support by the TMR European project
“Viscosity solutions and their applications”, reference FMRX-CT98-0234. The first author
acknowledges partial support from the MURST project “Equazioni Differenziali e Calcolo
delle Variazioni”, reference 9701226040. The second, third and fourth authors acknowledge



90 Luigi Ambrosio et al.

partial support of CNRS through a PICS project. The second author acknowledges partial
support by EC Project PAVR, reference ERB FMRX-CT96-0036.

References

1. Alvarez, L., Gousseau, Y., Morel, J.M.: The size of objects in natural and artificial
images. Adv. Imaging Electr. Phys. 111 (1999)

2. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations
of image processing. Arch. Rat. Mech. Anal. 16, 200–257 (1993)

3. Ambrosio, L.: A compactness theorem for a new class of functions of bounded variation.
Boll. Un. Mat. Ital. B(7) 3, 857–881 (1989)

4. Ambrosio, L.: Existence theory for a new class of variational problems. Arch. Rat.
Mech. Anal. 111, 291–322 (1990)

5. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discon-
tinuity Problems. Oxford University Press, 2000

6. Ballester, C., Cubero-Castan, E., Gonzalez, M., Morel, J.M.: Image intersection and
applications to satellite imaging. Preprint, C.M.L.A., Ecole Normale Supérieure de
Cachan, 1998

7. Brady, M.: Criteria for representation of shape. Chapter in: Human and Machine Vision.
Beck et al. eds., New York-Orlando, FL: Academic Press, 1983

8. Brice, C., Fennema, C.: Scene analysis using regions. Artificial Intelligence 1, 205–226
(1970)

9. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Patt. Anal.
Machine Intel. 8, 769–798 (1986)

10. Carriero, M., De Giorgi, E., Leaci, A.: Existence theorem for a minimum problem with
free discontinuity set. Arch. Rat. Mech. Anal. 108, 195–218 (1989)

11. Caselles, V., Coll, B., Morel, J.M.: A Kanizsa programme. Preprint Ceremade, Univ.
Paris–Dauphine, 1995

12. Caselles, V., Coll, B., Morel, J.M.: Topographic maps. Int. J. Comp. Vision (to appear)
13. Congedo, G., Tamanini, I.: Problemi di partizioni ottimali con dati illimitati. Atti Accad.

Naz. Lincei Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat. Appl. 4, 103–108 (1993)
14. Davis, L.: A survey of edge detection techniques. Comput. Graph. Image Proc. 4,

248–270 (1975)
15. De Giorgi, E.: Su una teoria generale della misura (r − 1)-dimensionale in uno spazio

ad r dimensioni. Ann. Mat. Pura Appl., IV. Ser. 36, 191–213 (1954)
16. De Giorgi, E.: Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi

aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis.
Mat. Nat. Sez. I, (8) 5, 33–44 (1958)

17. De Giorgi, E., Ambrosio, L.: Un nuovo tipo di funzionale del Calcolo delle Variazioni.
Atti Accad. Naz. Lincei, s. 8 82, 199–210 (1988)

18. De Giorgi, E.: Introduzione ai problemi di discontinuità libera. In: Symmetry in Nature.
A volume in honour of Luigi A. Radicati di Brozolo, I, Scuola Norm. Sup. Pisa,
265–285, 1989

19. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage:
asymptopia? J. R. Statist. Soc. B 57, 301–369 (1995)

20. Durand, S., Malgouyres, F., Rougé, B.: Image deblurring, spectrum interpolation and
application to satellite imaging. Submitted to Math. Model. Num. Anal., 1999

21. Dolzmann, G., Müller, S.: Microstructures with finite surface energy: the two-well
problem. Arch. Rat. Mech. Anal. 132, 101–141 (1995)

22. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies
in Advanced Math., CRC Press 1992

23. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge: Cambridge University Press
1985

24. Federer, H.: Geometric Measure Theory. Berlin, Heidelberg, New York: Springer 1969



Connected components of sets and applications 91

25. Fleming, W.H.: Functions with generalized gradient and generalized surfaces. Ann.
Matematica 44, 93–103 (1957)

26. Fleming, W.H.: Functions whose partial derivatives are measures. Ill. J. Math. 4, 452–
478 (1960)

27. Froment, J.: A functional analysis model for natural images permitting structured com-
pression. COCV 4, 473–495 (1999)
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