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Abstract. This paper contains a systematic analysis of a natural measure theoretic notion
of connectedness for sets of finite perimeter in IRV, introduced by H. Federer in the more
general framework of the theory of currents. We provide a new and simpler proof of the
existence and uniqueness of the decomposition into the so-called M-connected components.
Moreover, we study carefully the structure of the essential boundary of these components
and give in particular a reconstruction formula of a set of finite perimeter from the family
of the boundaries of its components. In the two dimensional case we show that this notion
of connectedness is comparable with the topological one, modulo the choice of a suitable
representativein the equival ence class. Our strong motivation for thisstudy isamathematical
justification of all those operations in image processing that involve connectedness and
boundaries. Asan application, we usethisweak notion of connectednessto providearigorous
mathematical basis to a large class of denoising filters acting on connected components of
level sets. We introduce a natural domain for these filters, the space WBV (£2) of functions
of weakly bounded variation in €2, and show that these filters are aso well behaved in the
classical Sobolev and BV spaces.

1. Introduction

Recently, and from different points of view, there has been a renewed interest
in measure theoretic notions of connectedness [21,71] (see also [36]). For the
case of BV functions and sets of finite perimeter, we shall present here a theory
as much complete as possible, giving at the same time new and simpler proofs
of some classical results. We are strongly motivated by the use of such objects
as “connected components of level sets’, “Jordan curves’, etc. in digital image
technology. One of our aims will be to give a well founded mathematical model
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for the well-spread use, in image processing and image analysis, of connectedness
properties to create regions or “shapes’ in an image. Also, the description of the
regions boundaries in terms of “curves’ and the existence of “level lines’ in an
image will be justified.

The extraction of shapes from images

Imageanalysistheory admitsthe existenceof “shapes’ inanimage. Thereare many
theoriesand algorithmsfor the extraction of such objectsfromadigital image. Some
theories propose asegmentation of theimageinto connected regionsby avariational
principle [52,53]. Other theories assume that the discontinuity set of the image
provides curves which, in some way or another, can be closed by an algorithm
(see [8,50] and the discussion in [7]). Canny’s filter [9], for instance, computes
a set of discontinuity points in the image which must be thereafter connected by
some variational principle. The obtained curves are supposed to be the boundaries
of the “shapes’ of the image. Many pattern recognition theories directly assume
the existence of Jordan curves in the image (without explaining how such shapes
should be extracted) and focus on subsequent recognition algorithms[ 33,40, 41].

To summarize, most shape analysis methods deal with connected regions and
their surrounding curves, and the curves surrounding their holes as well. Now,
the ways such regions and curves are extracted are rather diverse and uncertain.
Indeed, this extraction is often based on “edge detection theory”, awide galaxy of
heuristic algorithms finding boundariesin an image. See [14] for asurvey of these
techniquesand al so the book [51] for an attempt of mathematical classification. We
shall see, however, that in most practical cases shapes can and should be extracted
as connected components of level sets of the image, and Jordan curves as their
boundaries.

Why scalar images and not vector (colour) images ?

Let us first define the digital image as raw object. We shall then discuss what the
alternativesfor the extraction of shapesare. Animage can berealistically modelled
as area function u(x) where x represents an arbitrary point of IRN (N = 2 for
usua snapshots, 3 for medical images or movies, 4 for moving medical images)
and u(x) denotes the grey level, or colour, at x. In general, the image domain is
finite (a hyperrectangle) but there will be no loss of generality in assuming that it
is defined on the whole euclidean space. An image may be panchromatic; in that
case u(x) represents the photonic flux over a wide band of wavelengths and we
have a proper grey level image. Now, u(x) may also represent a colour intensity,
when the photonic flux is subjected to a colour selective filter. In the following,
we aways consider scalar images, that is, images with a single channel, be it
colour or grey level. When several channels have been captured simultaneously,
we obtain naturally vector images, with e.g. three channels (Red, Green, Blue). It
may appear at first as arestriction not to consider vector images, but only scalar
ones. Indeed, the use of colour images is well-spread in human communication
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and most image processing and analysis operators must therefore be defined on
vector images. Now, the redundancy of the colour images (from the perceptua
viewpoint) is high. It is well admitted that the essential geometric features of any
natural image are contained in its panchromatic (grey level) representation. Given
a colour image, this panchromatic version is ssmply given as a linear positive
combination of the three colour channels. As a consequence of this empiric obser-
vation, most image processing operators are defined separately for each channel
and most image analysis operators are expected to give essentially the same result
no matter whether applied to each one of the colour channel or to the panchromatic
(grey level) version of the image. Thisfact, that geometric information essentially
be contained in the grey level representation, can be checked by numerical ex-
perimental procedures[11]. These proceduresinvolve discrete implementations of
operators computing connected components of level sets, so that they are part of
our motivationsfor investigating connectedness.

Image formation

From now on, and for the reasons just developed, we shall limit ourselves to
the problem of connectedness in scalar images. We sketch in the following some
aspects of image formation which will be relevant to our discussion. The process of
image formation is, in afirst approximation, given by the following formula [70]:

u= Q{gk* O +n}-d, (1

where O represents the photonic flux (in a given wavelength band), k is the point
spread function of the optical-captor joint apparatus, * denotes the convolution
operator, I is a sampling operator, i.e. a Dirac comb supported by the centers
of the matrix of digital sensors, g is a nonlinear contrast change characterizing
the nonlinear response of the sensors, n represents a random perturbation due to
photonic or electronic noise, Q is a uniform quantization operator mapping IR to
adiscrete interval of values, typically [0, 255], and d represents an impulse noise
dueto transmission. Each one of the operationsinvolvedin (1) isat the basis of one
of the main theories of signal processing. For instance, Shannon theory fixes the
conditions under which we can recover k « O from the sampled signal (k x O)I1,
assuming that k= O isabandlimited function, i.e., its frequency range has compact
support.

Nonlinear contrast changes and level sets

Let us focus on the consequences of the nonlinear contrast change g for image
processing. In human communication, none of the camera parameters is known
to the observer; in most cases this information is lost when the image u is used.
This loss is rather the rule for the contrast change g. The informations about g
are inasmuch neglected as they are generally irrelevant: indeed, the contrast of an
image widely depends on the sensor’s properties but also on the lighting conditions
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and finally on the objects’ temporary reflection properties. these conditions are
anyway unknown! Thisled the physicist and gestaltist M. Wertheimer [68] to state
asaprinciplethat the grey level is not an observable. Images are observed up to an
arbitrary and unknown contrast change.

An image analysis doctrine, the so called Mathematical Morphology, has rec-
ognized contrast invariance as a basic invariance requirement and proposed that
image analysis operations should take into account this invariance principle [60].
With thisprinciple, animage u isarepresentative of an equivalence class of images
v obtained from u via a contrast change, i.e.,, v = g(u) where g, for simplicity,
will be a continuous strictly increasing function. Under this assumption, an image
is characterized by its upper (or lower) level sets X; = {x : u(x) > A} (resp.
X = {X:u(x) > 1}). Moreover, theimage can be recovered fromits level sets by
the reconstruction formula

u(x) = sup{r : x e X, }.

Asit is easily seen, the family of the level sets (upper or lower) of u is invariant
under continuous strictly increasing contrast changes. An image operator T is
contrast invariant if

T(g(w) = g(T(w),

for any continuousstrictly increasing contrast change g and any imageu. In particu-
lar, many efficient denoising operators respect this principle. See a classification
of contrast invariant image multiscale smoothing operatorsin [2].

Connected components of level sets

Level sets aretherefore basic objectsfor image processing and analysis. They have
been acknowledged as such in several shape analysis theories, where thresholding
is the basic image analysis operator [34]. Very early in image processing, authors
noticed that to find a single and the right threshold in an image was enough to
deliver a binary image with most of the relevant shape information. Theories of
the “optimal threshold” were even developed [69]. In order to have a more local
description of the basic objects of an image, several authors ([12,60]) proposed
to consider the connected components of (upper or lower) level sets as the basic
objects of the image. They argue that contrast changes are local and depend upon
the reflectance properties of objects. Thus, not only global contrast, but also local
contrast is irrelevant. In [12], a notion of local contrast change is defined and it
is proved that only connected components of level sets are invariant under such
contrast changes. This approach was generalized in [6] where the authors compare
different satellite images of the same landscape, taken at different times or in
different channels. They show that these images have many connected components
of bilevel sets in common (we call bilevel set any set {x,a < u(x) < b}). This
same technique has been recently extended in [48] to image registration, one
of the most basic tools in multiimage processing. Image registration based on
connected components of level sets is shown to work efficiently where classical
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correlation techniques fail: when both registered images do not correspond to
almost simultaneous snapshots. If u belongs to a function space such that each
connected component of a level set is bounded by a countable or finite number
of oriented Jordan curves, we call topographic map the family of these Jordan
curves [12]. In [44], a disocclusion method is developed, which restores images
with spots or missing parts. This method computes Jordan curves in the image as
boundaries of level sets and interpolates them in the missing parts.

A nested Jordan curves representation

Following[12], P. Monasse and F. Guichard [49] proposed, in adiscrete framework,
afast and consi stent discrete al gorithm to compute atopographic map: they consider
connected components of level sets, then they define a tree, ordered by inclusion,
in the following way: they construct (in a discrete framework) a uniquely defined
Jordan curve surrounding each connected component of each upper level set. Inthe
sameway, they consider all external Jordan curves of al connected components of
lower level sets of the same image. Provided connectedness is adequately defined
inthe discrete grid (this definition is different for the upper level sets and the lower
level sets!) they show that both systems of Jordan curves fuse into one, such that
no pair of Jordan curves crosses. In this way, they obtain a topographic map, i.e.
a system of Jordan lines organized by inclusion as a tree. They call this digital
representation “fast level set transform” and it provides a fast numerical access
to any connected region of the image and any “shape”, understood as a Jordan
curve surrounding a region. They let notice by some examples, however, that the
inclusion trees of u and —u are not necessarily identical.

WBV: Functionswhose level sets have finite perimeter

One of the main purposes of this paper is to justify the assumptions underlying
the above mentioned methods. We shall define a functional model for u where
it is possible to define a notion of connected components for the level sets of u.
Boundary of these connected components must consist of a countable or finite
number of oriented Jordan curvesfrom which we can recover the set by the obvious
filling algorithm. This functional model, called WBV, is a variant of the space of
functions of bounded variation. Indeed, WBYV functions are BV functions modulo
a change of contrast, i.e. for any u € WBV there exists a bounded, continuous
and strictly increasing contrast change g such that g(u) is a function of bounded
variation. The space of functionsof bounded variation is asound model for images
which have discontinuities and it has been frequently used as a functional model
for the purposes of image denoising, edge detection, etc. [56]. L. Rudin [55]
proposed that images should be handled as functions with bounded variation.
He used the classical result of geometric measure theory [29] that the essential
discontinuity set of a BV function is rectifiable and argued that the “edge set”
sought in edge detection theory [42,43], was nothing but this discontinuity set. An
indirect confirmation of thisthesisis given by the variational image segmentation



44 Luigi Ambrosio et al.

theory. Indeed, a paradigmatic variational model proposed by Mumford-Shah [52]
finds naturally its minimain a class of functions with bounded variation, SBV [3,
4,17,18]. A full account can be found in the book [5].

As a consequence of the results discussed in this paper, we shall show that
all of the mentioned approaches, Mathematical Morphology, BV model, shapes
described by Jordan curves or by connected regions, fast level set transform are
compatiblewithasingleunderlying functional model, WBV. Weshall introducethe
“M-connectedness’ astheright notion of connectednessfor sets of finite perimeter.
We shall develop this formalismin full generality for sets of finite perimeter in IRN.
For sets of finite perimeter in IR? a more precise description is possible, since in
this case, the essential boundary of each M-connected component can be described
asacountableor finite union of rectifiable Jordan curves. Since almost all level sets
of functionsin WBV are sets of finite perimeter, then level sets of WBV functions
can be described in terms of rectifiable Jordan curves and we get a description of
the shapes in an image which is both compl ete and well-founded.

Image denoising or segmentation operators based on connected components

The use of connected components of level sets has become recently very relevant
in a series of image filters introduced in Mathematical Morphology. Motivated
by the study of a family of filters by reconstruction [37,38,57,64,65], J. Serra
and Ph. Salembier [58,62] introduced the notion of connected operators. To be
precise, Serra and Salembier call connected an operator i on sets if, for each
family of sets A, the partition of the image domain associated to y(A) (i.e., the
partition of the image domain made of the connected components of v(A) and the
connected components of its complement) is | ess fine than the partition associated
to A (i.e., the partition of the image domain made of the connected components of
A and the connected components of its complement). Such operators simplify the
topographic map of the image. These filters have become very popular because,
on an experimental basis, they have been claimed to simplify the image while
preserving contours. This property hasmadethem very attractivefor alarge number
of applications such as noise cancellation [64,65] or segmentation [47,66]. More
recently, they have become the basis of a morphological approach to image and
video compression (see [59] and references therein, and more recently [27]).

Application to connected operators

As an application of the theory of M-connected components for sets of finite
perimeter developed here, we study the L. Vincent filters (filters which, when
defined on sets, remove the connected components of small measure). We show
that these filters can be defined on functions of bounded variation and, more
generally, in WBYV. We prove that they define contrast invariant filtering operators
which are well behaved also in the classical Sobolev and BV spaces and simplify
the connected components of the upper and/or lower level sets of the image (see
also [44]).
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An objection to the BV model

Before closing with this introduction, it may be useful to answer to an obvious
objection: according to the classical model given by (1), the raw image O may be
BV, but the digital image g(k x O) ismoreregular, at least, say, Ct if gisandif the
image formation follows Shannon conditions. Thus, we might aswell have worked
in aspace of continuous functions. In this framework, connected components can
be defined in the classical way and Jordan curves obtained in the image by Sard
Lemma and the Implicit Functions theorem. To take this assumption would save
all of the effort spent here. The answer to this objection comes from technology.
Thereis no evidence in all of the works dedicated to image processing in favour
of any advantage taken of a regularity assumption for the images. Because of
the three noises present in image caption (transmission impulse noise, gaussian
guantum noise of sensors, quantization noise), the image cannot be considered as
acontinuousfunction. In many cases, Shannon conditionsareimperfectly satisfied.
In addition, the BV model makes sense for the subjacent “real” image O, which
presents rectifiabl e discontinuity linesalong all apparent contours of objects. Thus,
O is at least as discontinuous as a BV function, and probably more. In fact, an
experimental procedure can be defined [1] to check whether the subjacent image
isin BV or not: the results seem to indicate that most images are too oscillating to
belongto BV. We mentioned that both restorati on and segmentation model stry with
successto project back in somemoreor less nonlinear way theimageonto BV [56].
Thisisalsotruefor therecent “wavel et shrinkage” method for imagedenoising[19]
or image deconvolution [20]. Last but not least, the discrete representations used
in Mathematical Morphology [60] are not more regular than BV and the recent
image compression standards aim at the delivery of a BV compressed image. To
summarize, the BV model is probably too smooth for the “real” subjacent image
(i.e. the photonic flux), but seems to be on the way to be acknowledged as the
right model to describe the digital images handled in technology. We may add the
results of the present work as one more argument in favour of the BV model (and
the variant WBV we propose) as a common denominator to image analysis and
restoration.

Plan of this paper

This paper is organized as follows. Sections 2 and 3 introduce some basic facts
about Caccioppoli sets and BV functions. In Sect. 4 we study in detail a definition
of M-connectedness for sets with finite perimeter, first proposed by H. Federer in
the more general framework of the theory of currents. We compare this concept
with the conventional topological one and give a new proof, based on a sim-
ple variational argument, of the existence and uniqueness of the decomposition
into M-connected components. Section 5 explains how to “fill the holes’, or to
“saturate”, an indecomposable set. Section 6 defines Jordan boundaries (which
correspond in dimension 2 to Jordan curves) and gives a unique decomposition
theorem (Theorem 4) of the essential boundary into Jordan boundaries, with their
structure. Theorem 5 gives a converse statement and a reconstruction formula of
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a Caccioppoli set from its set of Jordan boundaries. In Sect. 7 we construct for
any Caccioppoli set E a “topographic function”, an integer valued BV function
whose boundaries of upper level setsyield all Jordan boundariesof E. In thisway,
the Jordan boundaries of E benefit of the obviousinclusion structure of the upper
level sets of u and are numbered in odd and even levels of u, following their level
of inclusion and their classification into set, versus hole, boundaries. In Sect. 8,
we give the two dimensional interpretation of these results and show that in this
case the link with conventional topology is much stronger: indeed, we show that
the essential boundary of any simple set E (i.e. such that both E and IR? \ E are
indecomposable) is equivalent, modulo H *-negligible sets, to a Jordan curve (this
result was first proved by W.H. Fleming in [25]) and also that for any indecom-
posable set E there exists acanonical set F equivalent to E which is connected by
rectifiable arcs. Section 9 is devoted, as an illustration, to a case study in image
denoising. We show the good definition and properties of the above mentioned
Vincent-Serra“ connected operators’ in WBYV and in the classical Sobolev and BV
spaces. In particular, we prove that these operators, notwithstanding their nonlocal
nature, map W% P in WL P for any p € [1, co] and do not increase a.e. the modulus
of the gradient. In this respect, quite surprisingly, they behave as the usual local
truncation operators.

2. Notation and main facts about sets of finite perimeter

We consider a N-dimensional euclidean space IRN, with N > 2. The Lebesgue
measure of a Lebesgue measurable set E < IRN will be denoted by |E|. For
a Lebesgue measurable subset E € IRN and apoint x € IRV, the upper and lower
densities of E at x are respectively defined by

_ , [EN B, 1| . |[ENB(X 1)l
D E,X = limsu _—, D E,X =liminf —————=
(5% r—>o+p IB(X, 1] BEx r—0t  |B(X,1)]

If the upper and lower densities are equal, their common value will be called
the density of E at x and it will be denoted by D(E, x). We shall use the word
measurable to mean Lebesgue measurable.

Using densities we can define the essential interior EV, the essential closure
E" and the essential boundary oM E of ameasurable set E asfollows:

={x:D(E,x =1, E :={x:D(E x >0 )
ME=E"NRV\E ={x:D(E x>0 DIRN\E x>0} (3

Notl ce also that by the L ebesgue differentiation theorem the symmetric d|fference
EVAE is Leb@gue negligible, hence the measure theoretic interior of EY is E
(inthissense EM is essentially open), and also that

ME=RV\(E"URT\E").

We also use the notation EY/2 to indicate the set of points where the density of E
isl/2.
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Here and in what follows we shall denote by #* the Hausdorff measure of
dimensiona inIRN. Inparticular, %N~ denotesthe (N — 1)-dimensional Hausdorff
measureand # N, the N-dimensional Hausdorff measure, coincideswith the (outer)
Lebesgue measure in IRN. Given any Borel set B € IRN with H%(B) < oo, we
denote by H*L_ B the finite Borel measure xygH?*, i.e. H*L B(C) = H¥(BN C)
for any Borel set C € IRN. We recal| that

k
lim H'(BNBXN) _

n X 0 for #K-ae.x € RN\ B 4
r—

holdswhenever B € IR isaBorel set with finitek-dimensional Hausdorff measure
(seefor instance §2.3 of [22]).

Given A, B € IR, we shall write E; = E» (mod %) if H*(E1AE,) = 0,
where E1AE> = (E1 \ E2) U (E2 \ E1) isthe symmetric difference of E1 and Ea.
We will use an analogous notation for the inclusion and in some cases, in order
to simplify the notation, the equivalence or inclusion (mod #N) will be tacitly
understood.

We say that ameasurable set E C IRN has finite perimeter in IRV if there exist
a positive finite measure 1 in IRN and a Borel function ve : IRN — SN~ (called
generalized inner normal to E) such that the following generalized Gauss-Green
formula holds

/ dive dx = —/ (vE,¢)d V¢ e CLIRN, IRVY).
E RN

Hencethemeasurevg i isthedistributional derivativeof x g, whichwill bedenoted
by Dxg, while u = |Dyxg| isits total variation; the perimeter P(E, B) of E in
aBord set B C IRN isdefined by |Dyg|(B), and we use the notation P(E) in the
case B = IRN.

The main facts concerning sets of finite perimeter that we will use in the
following arelisted below, for the reader’s convenience (see for instance [5, 22, 24,
29,72)).

e Criteriafor the finiteness of perimeter
By Riesz theorem, ameasurable set E C IRN has finite perimeter if and only if

sup{/ divgdx: ¢ € CLIRV, IRY), || < 1} <00 (5)
E

and in this case the supremum equals the perimeter. A much deeper criterion is
due to Federer: E has finite perimeter in IRN if and only if HN-1(ME) < oo
(if #N-1(BE) < oo the proof is much simpler, see for instance Proposition 3.62
of [9]).
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e Structureof Dyg

According to the De Giorgi and Federer theorems, for any set with finite perimeter
thesets E1/2 and 9™ E havethesame 74N~ measure, sothat #N-1(3M E\EY/2) = 0
and

HN-L(RN\ (B" UEY2ZURN\E ) = 0. ©6)
So, at HN-1-a.e. point of IRN thedensity existsand belongsto {0, 1/2, 1}. Moreover
IDxel = HN L ME = HNTILEY2

e Lower semicontinuity, approximation and compactness

The functional E — P(E) (defined by (5), so that P(E) = oo if E has not finite
perimeter) islower semicontinuouswith respect to local convergencein measurein
IRN (i.e. Llloc convergence of the characteristic functions); moreover, for any set E
with P(E) < oo there exists a sequence of sets Ep, with smooth boundary locally
converging in measure to E and such that P(E) = limp P(Ep). Any sequence
of sets with equibounded perimeters admits subsequences locally converging in
measure.

o |soperimetric inequalities

If E C IRN has finite perimeter, then either E or IRN \ E have finite measure and
the isoperimetric inequality holds:

min{[EI'% IRV \ EI | <y P(E).

Denoting by wn the measure of the unit ball B(0, 1), the optimal isoperimetric
constant iSw;,l/ N /N (see[16]). A loca counterpart of thisinequality istherelative

isoperimetric inequality:

min{|B(x,r) N El, [Bx,1 \ E} < anr N1 (MEN B(x, ). 7

3. BV functionsand related spaces

In this section we recall some definitions and properties related to the space of
functions with bounded variation in €2, denoted by BV (£2).

Given a Borel functionu : Q — [—o0, +00], the approximate lower and
upper limitsu™, u* : Q — [—o0, +oo] areBorel functionsdefined at every point
X e 9sfollows: u~(x) is the supremum of all thoset € [—o0, +00] such that
X € {u > t}M whereas u™ (x) isthe infimum of al thoset e [—oco, +o0] such that
xeu<t]". Theset

S={xeQ: u (0 <utx]}
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is called the approximate discontinuity set of u and is negligiblewith respect to the
L ebesgue measure. The function u is said to be approximatively continuous at any
point x € 2\ §, and we shall denote

& limu(y) = u™(x) = ut(x)  ¥xeQ\S.

Let x € 1\ § such that aplimu(x) € IR. We say that u is approximatively
differentiable at x if there exists a vector Vu(x) such that the sets

[u(y) — aplimu(x) — (Vu(x), y — x)| - 6}

Q :
{ye Vi ly —X|

have 0 density in x for every € > 0.

Wedefine BV (Q) asthe space of all thosefunctionsu e L1(£2) whose distribu-
tional derivativeis representable as a IRN-valued measure Du = (D1u, . . ., Dnu)
with finite total variationin 2, i.e.

N
/udiv¢dx:—2/¢idDiu v e [cLe]".
Q i—1 Q

The total variation |Du| of a BV function u is defined as the total variation of
the vector measure Du. The space BV (R2) is endowed with the norm |ju|lgy =
||ull_1+ | Dul(£2). We shall denote by BV o¢(£2) the space of all those functionsthat
belong to BV () for every open set @ cC Q. Inview of Sect. 2, it is easily seen
that asubset E ¢ IRN hasfinite perimeter in € if and only if u = xg € BV|oc(R2)
and |Du|(2) < oco. Main properties of BV functions are the following (see for
instance [5,22,24,29,72]):

o Lower semicontinuity of the variation measure
Suppose {Un}nen C BV(Q) andup — uinLy () then

|Dul() < liminf | Dun|(S2).
n—oo

o Approximation by smooth functions
Assumeu € BV(2). Thereexist functionsup, € BV (22) N C*(2) such that

Un — uinLY(©) and |Dun|(R) — |Du|(R) asn — oco.
e Compactness
If {un} is a sequence in BV (2) satisfying sup, |unllay < oo, then there exist

asubsequence {up, } and afunctionu € BV (£2) such that

Up, — UinLi ().



50 Luigi Ambrosio et al.

e Poincaréinequality

If Q isbounded, connected and with Lipschitz boundary, thenthere existsaconstant
C such that

/ lu—T| < C|Du|(B(x, r)N) for al balls B(x,r) c RN and u € BV(R)
QNB(x,r)

wheret(x) = 7[ u(y) dy.
QNB(x,r)

e Coareaformula
Letu € BV(S). Then {u > t} hasfinite perimeterin Q for L1-ae.t € R and

+o0
IDUI(Q)=/ P({u > t}, Q) dt.

—00

400
Conversaly, if u € L1(Q) and/ P({u > t}, Q)dt < oo thenu € BV(Q).

In addition, notice that P({u > t_}?osz) = P({u < t}, Q) since the fact that u is
measurable is enough to ensure that |[{u = t}| > 0 for at most countably many
telR.

o Rectifiability of §, and approximate jump set J,

Letu € BV(Q2). Then S, is countably (N — 1)-rectifiable and —oo < u=(x) <
ut(x) < 4oo for HN-1-amost every x € . In addition, for #N~1-ae. x € S,
there exists a unique unit vector v, € SN~ such that, setting Bi (x, vy) := {y €
Br(X) : {y — X, vu) > 0 and B (X, v) :={y € Br(X) : (y—X, ) <O},

|im[7[ |u(y)—u+(X)|dy+][ |U(y)—U‘(X)|dy] =0.
110 |J B (x, ) By (x,v)

The set of pointswhere this equality occursis called the approximate jump set and
denoted as J,. Hence, #N-1(S, \ Jy) = 0 and Du vanisheson S, \ J.

e Decomposition of the derivative
Let u € BV(£2). Then Du can be decomposed into three parts:

Du = D% + DJu+ Du

where D2u isthe absol utely continuouspart of Du with respectto £N and, denoting
by DSu the singular part of Du with respect to £N, Diu := DSL_J, and D% :=
DSul(Q\Sy). Dluiscalledthejump part of the derivativeand D Cu the Cantor part
of thederivative. Then D2u = Vu £", Diu = Dul_J, = (ut —u™)uHN"1L g,
and DCu vanishes on sets which are o-finite with respect to N1,

Several functional spaceswereintroducedin[3] (seealso[54]) tooffer areliable
framework for some minimization problems issuing from image processing and
the mathematical theory of liquid crystals. We shall concentrate on the space of
generalized functions of bounded variation GBV (£2), which can be defined as
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follows: we say that u : @ — [—o0, +00] is a generalized function of bounded
variation if

uN:=(=N)VuAN €BV(Q) VNeN,
which means that all truncations of u have bounded variation. For the sake of
simplicity, we have chosen to work with BV (2) rather than BV oc(£2), whichisthe
definition adopted in [3]. Remark that GBV functionsare not summablein general.
Let us now definethe functionmy : IR — [0, oo] as

mu(®) := P{u > t}, Q).

Lemmal. Letu: Q — [—o0, +00] be a Bord function such that u # +o0 and
u # —oo up to Lebesgue negligible sets. Then the following propositions hold:

(i) if Qisboundedthenmy € Llloc(lR) if and only if u € GBV ().
(i) if © is bounded, connected and with Lipschitz boundary then my € L1(IR) if
andonlyif u € BV(R).

Proof. (i) («<) By definition, uN € BV(R) for every N e IN. Since, for any
N elN,{u>t}={uN >t} foreveryt € (—N, N) we get by the coareaformula
applied to the truncated function

N N
/ P({u > t}, Q) dt =/ PuN > t}, Q) dt < |DUN|(Q) < +oo
—N —N
forevery N € IN.

Therefore, my € L (IR).

loc
(=) First recall the well-known equality for Borel functions

+00 0
u(x) =/0 Xiust} (X) dt—/ 1—xustXdt  VxeQ.

Given ¢ € CL(Q; RN) with [|¢]lo0c < 1, we use Riesz Theorem applied to the

upper level sets, Fubini’s Theorem and the fact that the integral of div ¢ is zero to
get forevery N € IN

+N
/uNdivqsdx:// X(uN 1 dive dx dt
Q QJ—-N

+N
= / / X{u=tydive dx dt
-N JQ
+N

< / P(xust), ©) dt < 4-o00.
-N
By Riesz Theorem, thisimpliesthat uN € BV () for every N € IN.
(i) («) isastraightforward consequence of the coarea formula.

(=) It follows from (i) that u € GBV(£2). Using Poincaré inequality we get that
for every N € IN

_ +00
/|uN—uN|dX§C|DuN|(Q)§C/ P({u>t},Q)dt =Cy
Q —00
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with uN = ][ uN(y) dy. Now, let us prove that the sequence [uN| is bounded.
Q

Assume that for some sequence N; € IN, uN — +oo (the argument is analogous
if uNi - —oo) andlet Qum = {u € [—oo, M]}. Then, for i large enough

N — M)[Qu| s/ uN — UN|dx < Cy
Q

thus |Qm| = 0. It followsthat u = +oo which s contradictory to our assumptions.
Thus |uN| is bounded and, possibly by extracting a subsequence, uN — z. Finally,
letting N — oo, we get that

/|U—Z|dX§C1
Q

which impliesthat u € L1(2) and u is rea-valued. Thenu € BV($2) by asimple
application of the coareaformula. O

4. Decomposability of a set with finite perimeter

Let E C IRN beaset with finite perimeter. We say that E is decomposableif there
existsapartition (A, B) of E suchthat P(E) = P(A) + P(B) and both | A| and | B|
are strictly positive. We say that E is indecomposable if it is not decomposable;
notice that the properties of being decomposable or indecomposable are invariant
(mod #N) and that, according to our definition, any Lebesgue negligible set is
indecomposable.

It is natural to compare this definition with the topological one of connected-
ness. no implication is trivia in general, since on one hand in the definition of
indecomposability the sets A, B are not required to be relatively open, but on the
other hand they are required to be sets of finite perimeter. We will seethat in some
cases a comparison is possible, especially in the case of subsets of the plane, and
that in any case all formal properties satisfied by connected sets arefulfilled in this
dlightly different setting.

We start our investigation by analyzing the situations in which the equality
P(AU B) = P(A) + P(B) occurs.

Proposition 1. Let A, B be sets of finite perimeter. Then
P(AU B) + P(AN B) < P(A) + P(B)
and
P(A) + P(B) = P(AU B) + 2HN"1 (3" AN 3" B) whenever |[AN B| = 0.

Proof. Thefollowinginclusionsareastraightforward consequence of thedefinition
of g™:

MAUB)UM(ANB) c aMAUIVB, MAUB) NM(ANB) c M ANV B.
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Taking into account that P(E) = #N-1(3™E) for any set of finite perimeter E, the
first inequality follows. If |A N B| = 0 we denote by L the HN~1-negligible set
(MA\ A2) U (3MB \ BY2) and notice that

MAUB)\ L ca"AAMB,  IMAAVB C d“(AUB)

hence P(AU B) = #N-1(3™ AAV B). From this fact the second identity easily
follows. O

As an application of Proposition 1 we can prove that any open connected set
with finite perimeter is indecomposable. We will obtain a converse property in
Theorem 2 (see adso Theorem 8, for domainsin the plane).

Proposition 2 (Connectednessand indecomposability). Any connected open set
Q C RN satisfying HN-1(0MQ) < oo isindecomposable.

Proof. By Federer’'s theorem, we know that 2 has finite perimeter. Let (A, B) be
apartition of  such that P(2) = P(A) + P(B). Then, since

MACMBUIMQ
and, by Proposition 1, ?M AN aMB = ¢ (mod #N—1), we have
HNT@navA) < 1Nt @Nn V) =0

hence Dya = 0in Q. Thisprovesthat x a islocaly equivalent to a constant in 2,
and, being 2 connected, thisistrue globally. O

Another simple consequence of Proposition 1 is the subadditivity of perimeter

P (U Ai) <Y P(A)
iel iel

for finite or countablefamilies. For finite familiesthe proof isachieved by induction
and for countable ones one can use the lower semicontinuity of the perimeter with
respect to the local convergencein measure.

Now we extend our analysisto finite or countablefamilies of sets; thisextension
isnecessary in view of the treatment of the family of indecomposable components
of aset. A more comprehensive treatment of the properties of partitionsin finitely
or countably many sets of finite perimeter (the so-called Caccioppoli partitions) is
given in the paper [13] by G. Congedo and I. Tamanini (see also Chapter 4 of [5]
and [39]); here we only prove the propertiesthat will be needed in the following.

Proposition 3. Let | be afinite or countable set, let {Aj}ic| be afamily of sets of
finite perimeter and let A be their union. Then, assuming that A; # IRN for any
i eland); P(Ai) < oo, thefollowing conditions are equivalent:

(i) P(A) =3 P(AD;

(i) P(A) =3 P(A);

(iii) for anyi # j wehave|Aj N Aj| = 0and HN=1(@Y A NV Aj) = 0;
(iv) for anyi # j wehave|Ai N Aj| =0and Uid"A; 3™ A (mod HN-1).



54 Luigi Ambrosio et al.

If these conditions are fulfilled we have also 9™ A = U; 9™ A; (mod #N-1) and

yN-1 (AM U A?”) =0. ©)

iel

Proof. Theequivalencebetween (i) and (ii) follows by the subadditivity of perime-
ter.
(it)==(iii) For any pair of indexesi, j € I,i # |, we have

P(A)SP(AiUAj)-i-P( U Ak)SP(Ai)-l-P(A]‘)—i—P( U Ak)

kel\{i, j} kel\{i, j}
<) P(AD = P(A).

kel
Thus P(Aj U Aj) = P(Aj) + P(Aj). From Proposition 1 we get | Aj N Aj| = Oand
MA NMA; =0 (mod HN-D).
(iii))==(iv) We know that #N—1-a.e. x € 9" A; belongsto Ail/2 and to N IRN \
d“ Aj, henceisapoint of density O for all sets Aj with j #i. Let usfix apoint x
with these properties and assume, in addition, that

lim HN-1 (Uj#i BMAJ' N B(X, I’))

=0.
r—0t rN-1

By (4) with B = Uj ;8™ Aj we know that also this additional conditionisfulfilled
#N1-ae. in 9" A;. The relative isoperimetric inequality (7) easily implies the
existence of a constant ¢ such that

B
IEABM.N| <KV 1MEN B(x.r)) whenever [B(x.1)\ E| > | (Z, 2l

Hence
IA; N Bx, N <aHNHMA NBx,1)  Vj#i

for any r > 0 sufficiently small, such that |A; N B(x,r)| > |B(x,r)|/4. Adding
with respect to j we obtain

im I(A\ A) N B, 1) e lim HNTL(Uj2dMA; N B(X, 1)) 0
r—0t rN ~ oot rN-1 ’

Hencex € A2 c gV A. .
(iv)==>(i) Since (A2 N (Aj)Y/? ¢ A" wheneveri # j (becausethe sets Aj are
pairwise disjoint), we obtain that

HNTL (A N A)) = =N M AN (A2 N (ApYE) =0

hence " P(A) = 3 HN-L(@" A) < HN-L(0MA) = P(A).
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Theidentity 3" A = U;a™ A; (mod HN-1) followsby (ii). Since A" NaV A = ¢,

(4) again with B = 3" A gives that HN-1 (B(x,r) N a" A) /rN-1 tends to 0 as

r — 0t for HN-1-ae. x € A", Thus, in order to prove (8) we prove the inclusion
HN-L(B(x,r) N M A)

AV \UA c{xeRRN: Ilmﬁtip N1 >0}, (9
r—

iel

Let x € A" be such that HN-1 (Bx,r) N a"A) /rN-! tendstoOasr — O*. Let
ro > 0ando € (0,1/2) suchthat #N=1(B(x,r) N M A) < ownr N1/ for any
r € (0, ro]. By the relative isoperimetric inequality (7) we infer

min{|B(x,r) N Ail, [B(X, 1)\ Ail} <o|B(x,1)] Viel, re(0rol
Since the sets A; are pairwise digjoint, the family

R :={r e (0,ro]: |BX,nNNA>(1-0)BXxnl},

Ry :={r € (O,ro] : |BX,r)NAj| <o|B(x,r)|Viel}
isapartitionof (0, ro] inrelatively closed sets. Being (0, rg] connected, oneof these
sets coincideswith (0, ro]. If (0, ro] = Ry therelativeisoperimetricinequality (7)
gives
B, DNA =Y [Bx.NNA|<rn Y HN B NNMA) <olBx 1)

iel iel
forany r € (0O, ro], which isacontradiction. If (0,rg] = R for somei € I, then
we have that D(A;, X) > 1 — o. Choose a sequence o, — 0+ and i, € IN such
that D(Ai,, X) > 1 — on. Then, ip is constant for n Iargeenough sayip=1iforn
large enough. Thuswe concludethat D(A;j, X) = 1,i.e, X € A O

Remark 1 (Additional properties of partitions). Under the assumptions of the pre-
vious proposition, we remark that if |A] = oo, due to the fact that the series of
perimetersis convergent, thereis exactly one set A; with infinite measure; indeed,
if all of them have finite measure, from the isoperimetric inequality we get

-1
YA £ S AT <y DD PA) < oo
il|A <1 i:|A|>1 iel
and we obtain that | Aj| > 1 only for finitely many i. Thus
N—1
o= Y |Al< Y IAIT <yn) | PA) < oo
i:|Al<1 i:|A <1 iel

This contradiction provesthat at least one set hasinfinite measure. Suppose that at
least two of them, say Aj,, Aj;, haveinfinite measure. Again by the isoperimetric
inequality we would get

mln{|A.O| N

io W } < P(A,) < Z P(Aj) < oo.
i#o

However, the quantity on the left hand side is infinite since Aj; € IRN \ Ai,.
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We notice also that the argument used in the proof of (ii)==(iii) gives

(ol

whenever |1, 12 C | aredigoint.

As a consequence of Proposition3with A= E, A1 = Fand A, = E\ F,we
obtain that characteristic functions of sets of finite perimeter F are constant inside
an indecomposable set E, provided x ¢ has no “derivative” in E. Thisis expressed
by saying that 8"(E N F) c 9VE, or equivalently that 8™(EN F) N E" = ¢
(mod % N=1). A more general statement is presented in Remark 2.

Proposition 4. Let E be an indecomposableset and let F C E be a set with finite
perimeter, suchthat 3 F < 9" E (mod #N~—1). Theneither |F| = Oor |[E\F| = 0.

Remark 2 (Constancy theorem). Since F < E, the assumption d"F < oME
(mod #N-1) in Proposition 4 is equivalent to #N-1("F N EM) = 0. Propo-
sition 4 is a particular case of the following result, proved by G. Dolzmann and
S. Miillerin[21]: if u € BV oc(IRV) satisfies | Du|(IRN) < oo and E is indecom-
posable, then

IDU(E")=0 =  3celR: ux)=c forae x e E.

The proof follows by the coareaformula
o0
|Dul(E™) =/ HNH(3M{u > 2y N EY) da
—00

noticing that Proposition 4 appliesto a.e. level set F, = {u > A}.

The main result of this section is the following decomposition theorem; asimi-
lar (see Remark 4) decomposition result for integer currents is stated in 4.2.25
of [24]. This result has also been used in G. Dolzmann and S. Miller [21] and
B. Kirchheim [36] to prove Liouville type theorems for a class of partial differen-
tial inclusions; the second paper containsal so an explicit proof of the decomposition
theorem, based on Lyapunov convexity theorem (see also Theorem 1 in §3.4 of
Chap. 4 of [28]). The proof that we present here is new and based on a simple
variational argument.

Theorem 1 (Decomposition theorem). Let E bea set with finite perimeter in IRN.
Then there exists a unique finite or countable family of pairwise digjoint indecom-
posable sets {E; }ic| suchthat |Ej| > 0and P(E) = }_; P(E;). Moreover

N1 (é” \Ué?”) =0 (11)

iel
and the E;’ sare maximal indecomposabl e sets, i.e. any indecomposableset F C E
is contained (mod HN) in some set E;.
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Proof. (Existence) Let o € (1, N/(N — 1)), let usdefine

1/«
1(E) := ( /E exp(—|x|?) dx)

for any measurable set E € IRN and let P be the collection of al partitions
{Ei}ien Of E such that |Ej| > |Ej| fori < j and ) ; P(Ej) < P(E). Recall
that the condition ) ; P(Ei) < oo implies that at most one set E; (namely Ep)
has infinite measure (see Remark 1). The class P is not empty, since it contains
{E,%,0,...}.

We will provethat the problem

maXiZM(Ei) : {Eilien € P}

ielN

has a (essentially unique) solution. Indeed, let {E}icn be a maximizing sequence
indexed by n; since P(E{") < P(E) by the compactness properties of sets of finite
perimeter (see Sect. 2) we can assume, possibly extracting a subsequence, that E;!
locally converge in measure in IRN to suitable sets Ej asn — oo. The sets E;
are pairwise disjoint (mod #"N), and the lower semicontinuity of perimeter with
respect to local convergencein measure gives ) ; P(Ej) < P(E). Inorder to show
that {Ej}ien € P wehaveto provethat |E \ U; Ej| = 0. To thisaim, wefirst prove
that

lim I|msupz (EM = (12)

P—=0 nsoo 4

First, we notice that the isoperimetric inequality and the subadditivity of perimeter

give

N-1

N p

<yn Y PEN < ywP(E)
i=1

P R <

p
e
i=1

forany p > 1 becausei — |E]'| is decreasing. Therefore

00 -1 o0
1 (YN P(E)]‘“N D N1
Sou(ED) = 3 e < DUPEIT o™ ey
i=p i=p pe N i=p
N
N ) i
- 1_(N-1)
pa N

proving (12).
Since @ > 1, (12) adso holds with [w(Ej)]¥ in place of w(Ej), and since
n(E'") — w(Ej) asn — oo foranyi € IN, thisimplies

D [wEDN* = lim > [u(EN)]" = [u(E)*.

ielN |eIN
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By the definition of w, this provesthat
/ exp(—|x|?) dx = 0
E\Ui Ej

and hencethat |E \ U; Ej| = 0. Moreover, using (12) again we obtain

lim > w(EY) =) n(ED)

ielN ielN

hence {E;j }ien is maximizing. If {E;}icn 1S any maximizing partition, then any E;
isclearly indecomposable, because 1 (A) + 1 (B) > (AU B) whenever 1 (A) and
w(B) are strictly positive.

(Uniqueness) Let (E;j) be amaximizing partition and let F be an indecomposable
set with |F| > 0. Since F C E thereexistsi € | suchthat |F N E;| > 0. We will
provethat F € E; (mod #N). Since F is indecomposable, to this aim it suffices
to provethat P(F \ E;) + P(F N E;j) = P(F), or equivalently that

FNENY?Nn(F\ENDY?2=0 (mod#HN1). (13)

Using Proposition 3 we obtain that 9"E; ¢ 9ME (mod #N-1) and P(E) =
P(E\ Ej) + P(Ej). Inturn, by Proposition 1, thisgives 9ME; N dM(E\ Ej) = @
(mod #N-1). Hence, (13) would be proved by the inclusion

(FNENY2n (F\ENY2 c EV*n(E\ EnY2 (14)
Any point x in the set on the | eft side clearly belongsto F™ and henceto E™; taking
this fact into account, it suffices to provethat x € Eil/z, andsincex € (F N Ej)1/2
this easily follows by the fact that E; \ (F N E;) is contained in the complement
of F. This provesthe maximal character of E;.

Finaly, if {Ej}ic) and {Fj}jes are two maximizing partitions, we know that
any E; is contained in one (and only one) F; and any F; is contained in one (and
only one) E;. Equation (11) follows by (8). O

Definition 1 (M-connected components). Inview of the previoustheorem, wecall
the sets E; the M-connected components of E and denote this family by CC" (E);
we always choose theindex set | asaninterval of IN, with 0 € .

Noticethat CCV (E) = ¢ whenever E is L ebesgue negligibleand that Proposition 3
gives

MF co"E (modHNY)  forany F e CCM(E). (15)
By (8), for #N-1-ae. x € E™ it also makes sense to talk about the M-connected
component of E containing x, namely the unique set F € CC“(E) such that

x € F". The necessity to exclude an exceptional #N~1-negligible set is shown by
the following example.
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Examplel. Let K C {xo» = 0} C IR? be acompact and 71-negligible set and let
$(x1) = dist?(x1, K). Then, the set

E:={x=(x1x2) € IR?: X, <0 oOr X > P(x1)}

has two M-connected components E1, E2 and it is easy to check that K C EM \
(E1" UEM).

In the following theorem we prove that CC™ (A) coincides with the family of
connected components of A for any sufficiently regular open set A; we provein
Remark 3 that for any Lipschitz function u : IRN — IR amost every upper level
set {u > A} hasthis(weak) regularity property. In general an openindecomposable
set needs not be connected: for instance a disk without a diameter is disconnected
but indecomposable. Example 2 showsin addition that an indecomposabl e set need
not be equivalent (mod #N) to an open connected set.

Theorem 2. Let A € IRN be an open set such that HN-1(9A) = HN-1(BY A).
Then CCM (A) coincides with the family of connected components of A.

Proof. The connected components {A;}ic| of A are pairwise digoint, indecom-
posable by Proposition 2 and satisfy

MA CIAC MA (modHN D Vi el

By Proposition 3weobtainthat > ; P(Aj) < P(A). Hence, Theorem 1impliesthat
A; are the M-connected components of A. O

Example2. Let K c (0,1) be a compact set with empty interior and strictly
positive measure and let |; = (a;, bj) be the connected componentsof (0, 1) \ K,
indexed by i € I, andlet c; be the central point of I;. We define

where B; are closed balls centered at (¢;, 0) with radiusb; — ¢; (see Fig. 1). Then,
since K has empty interior it is easy to check that

B =JBiuIo.11 x {0}.

iel iel

hence A is disconnected by the two open sets A; = AN {x2 > 0} and Ay =
AN{xz < 0}. Ontheother hand, we claim that A isindecomposable: indeed, since
A; are connected open sets, they are also indecomposabl e and hence are contained
in M-connected components of A. Thus, if A were decomposable we would get
CCM(A) = {A1, Ay}, and this contradictsthe fact that 9™ A; and 9™ A, intersect on
K x {0}, aset with strictly positive #{* measure.
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e

=
T
1
B
=

| —

Fig. 1. An exampleillustrating the fact that the M-connected components of an open set do
not coincide in genera with the classical connected components

Remark 3. For any Lipschitz functionu : IRN — IR the set {u > 1} satisfies the
assumption of Theorem 2 for a.e. 1 € IR. Indeed, let @ < IRN be a bounded open
set; by applying both the coarea formula for BV functions (see Sect. 3) and the
coareaformulafor Lipschitz functions (see for instance [22]) we get

+o00
/ HNL@Nn{u=1}) dA:/ |Vul dx
Q

—00

+o0
= / HNH (@ aM{u > A}) di < oo,

—00

Since d{u > A} C {u = A} forany A € IR, thisprovesthat
HNL (@M > A)) = HNTH (@ N d{u > A)) forae A € R.

Taking a countable family of open sets €2, whose union is IRN our statement
follows.

Using the decomposition theorem we can easily prove that indecomposable
sets have the same stability properties of connected sets.

Proposition 5 (Stability of indecomposable sets).

(i) If E1, Es are indecomposable and either |E; N Eo| > 0 or HN-1(ME; N
IME2) > 0, then E1 U E» isindecomposable.

(i) If (En) is an increasing sequence of indecomposable sets with equibounded
perimeters, then Up Ep, isindecomposable.

Proof. (i) Let {Gj}ic| bethe componentsof E; U Ez and let ji, j2 € | such that
Ei € Gj;. If [E1N Ez| > 0, since the Gj’s are pairwise digoint, we conclude that
j1 = j2,henceCC" (E1U E3) = {Gj,}. Otherwisewe concludethat CCM (E1 U E»)
= {E1, E}, hence Proposition 1 gives XN-1(3ME1 N 8ME5) = 0. The proof of
(ii) isanalogous. O
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We concludethis section with the analysis of the relation between indecompos-
ability of aset and theindecomposability of itsboundary, inthe sense of H. Federer.
To do this, we will adopt the notations of [24]; since this comparison is not re-
ally needed in the following, the reader unfamiliar with the theory of currents can
simply skip this part.

Remark 4 (Indecomposability in the sense of Federer). Let us consider the collec-
tion of all k-dimensional normal integer currents T, denoted by 1X(IRN). A current
T € IX(IRV) issaid to beindecomposableif T = Ty + Tz, M(T) = M(T1) +M(To)
and M(3T) = M(3T1) + M(3T) with T; € IK(IRY) implies that either Ty or T,
are zero (here M denotes the mass, i.e. the area with multiplicities). Using Propo-
sition 1, it is easy to show that the canonical N-current [E] € I N(IRN) associated
to a set of finite perimeter E is indecomposable if and only if E is indecom-
posable; however, notice that the indecomposability of E is not equivalent to the
indecomposability of its boundary (it suffices to consider as E an annulus).

In 4.2.25 of [24] it is stated that any T e 1X(IRV) admits a decomposition in
finitely or countably many indecomposable components; the proof (suggested and
not explicitly given) again relies on the isoperimetric inequality and could be ob-
tained mimicking our one, i.e. maximizing > ; [M(T; Y witha e (1, k/(k— 1)),
among al possible decompositions T;. However, no uniqueness theorem for the
decomposition holdsfor k < N.

5. Holes, saturation, simple sets

In this section we see how the decomposition theorem leads to reasonably good
definitions of “hole” and “saturation” for a set of finite perimeter. These concepts
will be used inthe next section to recover acanonical decomposition of the measure
theoretic boundary.

Definition 2 (Holes, saturation). Let E be an indecomposable set. We call hole
of E any M-connected component of IRN \ E with finite measure. We define the
saturation of E, denoted by sat(E), asthe union of E and its holes. In the general
case when E has finite perimeter, we define

sat(E) := | Jsat(E))  where  CCY(E) = {Ei}icI.
iel
We call E saturated if sat(E) = E.
We first investigate the saturation operator on indecomposable sets and later
we extend this analysis to any set of finite perimeter.
Proposition 6. Let E C IRN be an indecomposable set.

(i) Anyholeof E is saturated.

(i) sat(E) is indecomposable, saturated, 9™ sat(E) ¢ d™E (mod #N-1) and
sat(E) hasfinite measureif |E| < oo. In particular P(sat(E)) < P(E).

(iii) If E C sat(F) then sat(E) C sat(F).
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(iv) If F isindecomposable and |F N E| = 0, then the sets sat(E), sat(F) are
either one a subset of the other, or are digoint.

Proof. (i) Let Y beanholeof E and let CCM (RN \ E) = {Y} U {Yj}jes. Then

RN\Y=Eul]JV;.
jed

Since by (15) 3"Y; c " E (mod #N-1), Proposition 5(i) givesthat EU UjcyYj/
isindecomposablefor any finite set J’ € J. By Proposition 5(ii) we conclude that
IRN \ Y isindecomposable, i.e. Y has no hole.

(ii) We can assume with no loss of generality that |E| < oo (otherwise sat(E) =
IRN) and denoteby Yo the M-connected component of IRN\ E withinfinitemeasure.
The proof that sat(E) isindecomposablerelies, as the one of (i), on Proposition 5.
Sincesat(E) = IRN\ Yo, sat(E) issaturated. Finally, theinclusion 9™ sat(E) c M E
(mod #N—1) follows by (15).

(iii) Without loss of generality we can assume that |F| < oco. Then IRN \ sat(F),
being indecomposable, is contained in a M-connected component of IRN\ E: since
IIRN \ sat(F)| = oo we concludethat IRN \ sat(F) < IRN \ sat(E).

(iv) We may assume that both sets are nontrivial and that their saturations are not
IRN; we denote by Eg, Fo the M-connected components with infinite measure of
IRN \ E, IRN \ F respectively. Since |E N F| = 0, we know that E is contained
eitherinaholeof F orin Fy. If Eiscontainedinaholeof F, then E C sat(F) and
therefore sat(E) C sat(F). Analogoudly, if E € Fg and F is contained in a hole
of E, thensat(F) C sat(E). Thuswe may assumethat E C Fgand F C Eg, hence

IENsat(F)|=0 and |FNsa(E)|=0. (16)

Under thisassumption, let usprovethat | sat(E) Nsat(F)| = 0. Tothisaim, by (16),
it suffices to show that |'Y N sat(F)| = 0 for any hole Y of E. Since, by (16) again,
Y c RN\ F, Y is contained in a M-connected component of RN\ F. If Y € Fo
the proof is finished, otherwise Y € Y’ for some hole Y’ of F which, in turn, is
contained in some M-connected component Y” of IRV \ E. But then Y/ = Y and
therefore Y’ = Y. Since by (15) a™Y c (3ME N 9" F) (mod #N-1), if we choose
x € Y20 EY2n FY2 wefind that |EN F N B(x,r)| > Oforr > 0 sufficiently
small; this contradiction provesthat Y C Fo. O

Definition 3 (Simple sets). Any indecomposable and saturated subset of IRN will
be called simple.

Notice that the only simple set with infinite measureis IRN and that, according to
Proposition 6, the saturation of any indecomposable set E is ssimple (actualy, the
smallest simple set containing E). In order to show coincidence with simple sets
we will often use the following proposition.

Proposition 7. Let E beasimplesetandlet F € IRN bea set with finite perimeter,
such that 8 F < 9ME (mod #N-1) and |F| € (0, 00). Then F = E.
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Proof. It sufficesto apply Proposition4to E and FNE andto RN\ E and F \ E.
O

The property stated in Proposition 7 actually characterizes simple sets with
finite measure; we also give another nice characterization of these sets due to
W.H. Fleming.

Proposition 8 (Characterizationsof simplesets). Let E C IRN beaset withfinite
perimeter such that |E| € (0, co). Then, the following conditions are equivalent:

(i) Eissimple
(if) E satisfiesthe property stated in Proposition 7;
(iii) xe/P(E) isan extreme point of the convex set

{ueBV(RY): [Dul(RY) < 1}.

Proof. The implication (i)==(ii) is Proposition 7. The converse implication can
be proved by noticing that any hole Y of E satisfies 9"Y c 9"E (mod HN-1)
and hence coincides with E. This contradiction proves that E has no hale, i.e.
sat(E) = E. The equivalence of (ii) and (iii) is proved (in a slightly different
setting, since a bound on the supports of the functionsis required) in [25]. O

We close this section with the following result, showing that the M-connected
components of sat(E) are contained in the family of saturations of M-connected
components of E.

Theorem 3 (M-connected components and saturation). Let E € IRN be a set
of finite perimeter. Then

ccM (sa(E)) C {sat(Ei)}ier  where  CCY(E) = {Eilicl-

In particular 3™ sat(E) ¢ 9" E (mod #N-1) and the operator sat is idempotent,
i.e sat(sat(E)) = sat(E).

Proof. LetCCM (E) = {Ei}ic) and assumewithnolossof generality that |E| < oo;
we know by Proposition 6 and the isoperimetric inequality that sat(E;) are inde-
composabl e sets satisfying the conditions of Lemma 2 below. Hence, {sat(Ej)}jey
providesadigoint partition of sat(E) in indecomposable sets.

Finally, (15) and Proposition 6(ii) give

Msat(E) c | J oM sat(Ej) ¢ | JMEi c ME
jed iel
where all inclusions are understood (mod 2 N-1). o

Lemma?2. Let| c INandlet {Fi}ic; beafamily of sets such that for anyi, j € |
éther Ff € Fjor Fj € For Ff N Fj = ¢ (modH#N). Then, assuming that
|Fil = Oasi — ooif | iscountable, there exists J C | such that {Fj}jc; are
pairwise digoint (mod #N) and | U F; \ UjFj| = 0.

Proof. It suffices to consider the partial order i < j if |Fj \ Fi| = 0 and to take
its maximal elements. If | is countable, the existence of maximal elementsfollows
easily by the assumption that |Fij| — O asi — oo. |
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6. Description of setsof finite perimeter in terms of their boundary

In general a decompositionin M-connected components does not lead directly to
a canonical decomposition of the boundary. The aim of this section is to show
that this goal can be achieved by looking to the saturations and to the holes of all
M-connected components of E.

Definition 4 (Exterior). If E C IR has finite perimeter and |E| < oo, we call
exterior of E the unique (mod #N) M-component of IRN \ E with infinite measure.
The exterior of E will be denoted by ext(E).

Notice that the notion of exterior makes senseonly if |E| < oo, dueto the fact that
IRN \ E has finite measureif P(E) < oo and |E| = oo.

Definition 5 (Jordan boundary). We say that a set J is a Jordan boundary if
thereisa simple set E suchthat J = 9ME (mod #N-1).

By Proposition 7, the simple set E associated to a Jordan boundary J isunique.
Inthissense, J can aso be thought as an oriented set, with the orientation induced
by the generalized inner normal to E. Our terminology is motivated by the results
of the following section concerning sets in the plane, seein particular Theorem 7.
We shall writeint(J) = E and ext(J) = IRN \ E; notice that ext(J) = ext(E).

Proposition 9. Let E beindecomposableand let {Y;}ic| beitsholes. Then

E=sat(E)\ [ JYi =sat(E) N[ ext(¥p) (17)
iel iel
and
P(E) = P(sat(E)) + Y _ P(Yi). (18)

el
Conversely, let F besimpleand let {Gj}i<| be indecomposable sets such that
E=F\|JGi (19)
icl
and
P(E) = P(F) + > P(G). (20)
icl
Then F = sat(E) and {G; }i<| arethe holesof E.

Proof. The first equality in (17) is a consequence of Definition 2. The second
identity is a consequence of Proposition 6(i). In order to prove (18) we recall that
the perimeter and the measure theoretic boundary are invariant under complement
and notice that

RN\ E = (RV\ sat(E)) U|_J¥i.

iel
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Since both 8" sat(E) and 9™Y; are contained in 9™ E up to HN~1-negligible sets,
by Proposition 3 weinfer (18).

Let us now prove the uniqueness of the decomposition givenin (17). For that,
let F besimple and let {Gj}ic; be indecomposable sets satisfying (19) and (20).
Assumefirst that |E| < oo, set Go, = IRY \ F and observe that

RN\E=|JGi

iel’

with I’ = | U {oo}. Then, Proposition 3 gives that {Gj}ic|- are pairwise digjoint
and MG N MG = ¥ (mod HN-1) wheneveri # |.

Note that G, is indecomposable, since F is a simple set. Thus {Gj}ic|’ IS
apartition of IRN \ E into indecomposable sets satisfying (20). By the uniqueness
of the decomposition of IRN \ E in M-connected components we conclude that
Goo = RN\ sat(E) (i.e. F = sat(E)) and {Gj}ie| coincides with the family of
holes of E. In case that E has infinite measure, RN = sat(E) € sat(F) = F, i.e.
F = IRN and the proof follows the same steps of the previous one. O

In order to simplify the following statements we enlarge the class of Jordan
boundaries by introducing aformal Jordan boundary Jo, whoseinterior is IRN and
a formal Jordan boundary Jo whose interior is empty; we aso set HN"1(Jy) =
#N-1(Jp) = 0 and denote by S this extended class of Jordan boundaries. In this
way we are able to consider at the same time sets with finite and infinite measure
and we can always assume that thelist of components (or holes of the components)
isinfinite, possibly adding to it infinitely many int(Jo).

In the following theorem we describe ™ E by a collection of “external Jordan
boundaries’ J* and “internal Jordan boundaries’ J;~ satisfying some inclusion
properties; these properties provide an axiomatic characterization of them. How-
ever, we emphasize (see Fig. 2 in Sect. 7) that in general this description is not
invariant under complementation, i.e. the external (interna) boundaries of aset are
not the internal (external) boundaries of the complement; for this reason we give
adifferent definition of these concepts the next section.

Theorem 4 (Decomposition of 3¥E in Jordan boundaries). Let E € IRN be
a set of finite perimeter. Then, there is a unique decomposition of 9" E into Jordan
boundaries { J*, 3 :i, k€ N} € S, such that

(i) Givenint(J"), int(J)), i # k, they are either disjoint or one is contained
in the other; givenint(J,), int(J, ), i # k, they are either digjoint or oneis
contained in the other. Eachint(J;”) is contained in one of the int(.J|:r ).

(i) PE) =3 HNHIH) + 2 HN (30

(i) 1fint(3") < int(Jj+),i # j, thenthereis some Jordan boundary J, such that
int(3") < int(J) < int(Jj+). Smilarly, if int(J7) < int(J;), i # |, then
there is some Jordan boundary JkJr suchthatint(J™) < int(.JkJr ) C int(Jj‘ ).

(iv) SettingLj = {i : int(37) < int(J;")}, thesets Yj = int(J;") \ Uier; int(J7)
are pairwise digoint, indecomposableand E = UjY;.
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Proof. (Existence) Let Y; be the M-connected components of E. According to
Proposition 9, let Ji+ = oM sat(Y;) be the external Jordan boundary of Y; and let
J.,n=12, ..., bethefamily of theinternal Jordan boundaries of Y;, given by

i,n?
the boundaries of the holes of Y;. Taking into account Proposition 6 and the fact

that holes are saturated, we obtain that (i) is satisfied.

Using (18) we immediately obtain (ii). To prove (iii), suppose that int(Ji+) c
int(JjJr),withi # j.SincelY; NYj| = 0, ] iscontainedinaholeof Y;. Thenthere
is some Jordan boundary J; such that int(3t) int(J; ) < int(Jj+). The other
statement included in (iii) follows from the observation that two different holes of
the same M-connected component are digjoint. To prove (iv) we observe that

Yj =int(3)\ {int(J;,) :ne N}
=int(JF)\{int(37) :int(37,) < int(3;")}
because any hole int(J;",) of Y; contained in int(Jj+), being disoint with Yj, is
contained in ahole of Y;j.
(Unigueness) Let Ci+, Cy . i, ke IN, beafamily of Jordan boundaries satisfying
(), (i), (iii), (iv). Let Kj = int(C;r) \ UieL; int(C;"), j > 0. By assumption, the
sets K areindecomposableand E = UK. Let us prove that

o0

P(E) = > P(Kj).
j=0

We say that an index i is j-maximal if int(C;") < int(CT) and there is no other
int(C,) such that int(C;") < int(C, ) < int(CJ*). Analogously, we say that an
index j isi-minimal if int(C;") < int(CJ*) and thereis no other int(C;") such that
int(C;") Cint(Cl) int(cj+).

Let Wj = {i :iisj-maximal}; we observe that if int(C;") < int(Cr), then
thereexist a j-maximal index i suchthat int(C,”) < int(C;”) and al-minimal index
k such that int(C,) < int(Cr). Indeed, if there were an increasing chain of sets

int(C;"), then, by the isoperimetric inequality we would get that the sum of their
perimeters is infinite, a contradiction with (ii). Similarly, there is no decreasing
sequence of setsi nt(C;r ) containing int(C,”). As aconsequence, we obtain

Kj =int(C)\ [ int(Cr). (21)
eV

Now, observe that the sets ¥; are a partition of IN. First we observe that they
are digoint. Indeed, let i € Wj N W, j # k. Thenint(C;) < int(CJf“) and
int(C;") < int(C/\). Thus, either int(cj) Cint(G)), orint(C}) < int(cj+). If we
are in the first case, then (iii) proves that the index i cannot be k-maximal. If we
arein the second case, then (iii) provesthat theindex i cannot be j-maximal. Next,
leti € IN and let j such that j isi-minimal. Then, using (iii), we have that i is
j-maximal,i.e.i € Wj.
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By Theorem 5 below we know that
P(Kp =HNHCH) + > HN e
eV
Adding both sides with respect to j we obtain that P(E) = Zi P(Kj).

By the uniqueness of the decomposition of E into M-connected components
we obtain that, up to a permutation of indexes, Kj = Y; for @l j € IN. Now, the
uniquenessresult of Proposition 9 provesthat int(C;r) = int(J]—+) andthat int(C;"),
i € ¥j, coincide with the system of holes of Y;. o
Theorem 5. Let {Ji+, Jo :i, ke IN} C S be satisfying the conditions (i), (iii) of
Theorem4 and
(ii") Each two different Jordan boundaries of the system {Ji+, Jo i, k=>0}are

disoint (mod #N-1).
(iV) 3 P + 3 P(J) < o0.
Let E = UjYj, where
Y =int(IH)\ [ int(3).
el

Then E isa set of finite perimeter and 9" E = Uj 3™ U Uk J (mod #N—1).
Proof. Let

@ := {i :int(J;) istheminimal setint (3,") containingint (J7)}.

By definition the sets @ are pairwise disjoint and the axiom (i) providesfor any i
aminimal set int(Jj+) containing int(J;~), so that Uj ®; = IN. We also notice that

Yi =int(3")\ [ int(37).
ied;j
because, wheneverint(J;") < int(JjJr),themaximaI setint(J, ) containingint(J;~)
and contained inint(J;") satisfiesk € @j, by the axiom (iii).

Finally, the sets Y are pairwise digoint because if int(JjJ“) and int(J;") have
anonempty intersection, then one (say thefirst) iscontainedin the other; sincethere
existsi € Ly suchthatint(J;") < int(J") weobtainthat Yj C int(J") C IRN\ Yg,
a contradiction.

Inview of Proposition 3 and (ii’), (iv'), the proof will be complete if we show
that

MYp=J3"u I (modnNh
iedj
forany j € IN. Tothisaim, we noticethat IRV \ Yj isthedisjoint union of ext(JjJ’)
and int(J7), 1 € @j; infact, if [int(J7) Nint(J7)| > Ofori, | € @,i # j,
then one set (say the first) is contained in the other, hence there is a set int( J;’ )
contained inint(J") and containing int(J;"), contradicting the fact that i € @j.
By applying Proposition 3 and (ii’) again the identity abovefollows. O
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7. Topographic function and inter nal/exter nal boundaries of sets

Therepresentation of the boundary of aset of finite perimeter by afamily of nested
Jordan boundaries Jii has the advantage of being easily obtained by the family of
saturations and holes of the M-connected components of E, but has the drawback
of being not invariant under complementation, as Fig. 2 shows. Another drawback
of the J* representation isthe absence of anatural order structure on them, despite
conditions (i) and (iii) in Theorem 4.

~v3 e —

Fig. 2. Theset E (ingrey), itsboundaries J* and the boundaries of itscomplement. The last
figure illustrates as well the internal and external boundaries obtained by the topographic
function

In this section we prove the existence of afamily of nested boundarieswhichis
invariant under complementation; the family is given by a™{u < k} (k even for the
external boundaries, k odd for the internal ones), whereu : IRN — IN isthe BV)qc
function characterized by the following theorem. Heuristically, u(x) measures how
“deep” isx inside E, i.e., it counts how many boundaries must be crossed to reach
the exterior of E. Thisisillustrated in Fig. 3 where E isthe gray set.

0

[

Fig. 3. Thetopographic function associated with the gray set E counts how many boundaries
must be crossed to reach the exterior of E

Theorem 6. Let E C IRN be a set of finite perimeter. Then there exists a unique
map u € BV oc(IRN, IN) such that

(i) u= xg mod2andall sets {u < k} areindecomposable;
(i) |Dul = HN-1LVE;
(iii) u = xE inthe M-connected component of E or IRN \ E with infinite measure.

Proof. We denote by {E;}ic the M-connected components of E and by {Fj}jeJ
the M-connected components of IRN \ E. Being the statement invariant under
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complementation we can assume that |[E| < oo and denote by jo theindex in J
such that |Fj,| = oco. Recall that Proposition 3 gives

MUE =M., M UFR|=U"F  moduNh
iely iely jedr jedr

whenever 11 C I, J; C J.

(Existence) We define recursively sets Uy < IRN and subsets &, c I, for k odd,
and & C J for k even asfollows: first we set Ug = Fj, and ®g = {jo} and then,
assuming that all sets U; and & have been defined for | < k, we define:

ok:= {i € 1 : HN"H(MUk_1 NVEi) > 0}, Uk:=Ux1U | J Ei ifkisodd

iedy
and
— i . a/N=1(qm ME. o I
Ok:={j € J: HNH(MUk-1nd"Fj) > 0}, Uk:=UkaU | Fj if kiseven.
jedk

Let us prove by induction that all sets Uy are indecomposable. This property is
clearly satisfied for k = 0, so let usassumeit truefor k — 1 > 0 and let us proveit
for k. Assuming, to fix the ideas, that k is odd, for any finite set R C @ and any
i € &\ Rwehave

ME; N M (uk_l iy Ei> DME NOMUk_1 # 0 (mod 1N 1)
ieR

because " E; are pairwise digjoint (mod #N=1). Hence, by applying inductively

Proposition5(i), we obtainthat Ux—1 U| ;g Ei isindecomposablefor any finite set

R C ®y. By Proposition 5(ii) we obtain that U is indecomposable. An analogous

argument also proves that

MU ME (modHN"1)  vkelN. (22)

Denoting by 1’ (respectively J’) the subset of | (resp. of J) obtained by taking
the union of all sets ®ok11 (resp. @), let us prove the following two upper and
lower bounds on Uy, which both will be useful in the following:

MUxUMUxic | 9MEi 9MUac1U0"Ux
ie®okt1
c U MFj (mod HN™h (23)
jedak
and
U MEj \ U1 C U M Fi, U M Fi \ aMUok
iedoki1 jed jedak
c | JME (modnNh. (24)

iel’
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Thefirst inclusion in (23) follows by

MUokp1 € aMUg U M ( U Ei)

iedoki1

using (22) and the definition of ®o1; the second inclusion can be proved in
asimilar way. Thefirst inclusionin (24) follows by the second onein (23), noticing
that

M ( U Ei) C MUokq1 U MU (25)

ie®okr1

The proof of the second inclusionsin (24) is analogous.
Now we prove that 2 = UxUg is IRN (mod #N) (hence I’ = | and J’ = J).
To this aim, we argue by contradiction: since

Mo c M (U Ei) U M (U Fj) = JMEuJa"F (modnNh

iel’ jed iel’ jed

and an anal ogous property holdsfor RN\ Q@ and | \ I/, J\ J/, taking into account
that Vi e I\ I',Vj e J\ J, 3"E; and 3" F; are pairwise digoint (mod #N-1),
assuming that P(Q2) > Owe canfindeitheri e [\ I’"and j € J' ori € |’ and
j € 3\ J suchthat 3" Ej N " Fj # @ (mod #N-1). Assume, to fix theideas, that
iel\l'andj e J andletksuchthat j € ®p. Then, by (23) and (24) we obtain
that

MUxNOVE ¢ (modHN™1).

Thisprovesthati € ®p.1 C |’ and gives a contradiction.

Finally, we define u equal to k on Uy \ Ux_1 (withU_; = ). By construction
{u < k} = Uy isindecomposable and u = xg mod 2. Let us prove that condition
(it) holds; to thisaim, wefirst provethat all sets ®oy1 are pairwisedigoint. Assume
by contradictionthat i € ®p41 N ®oxy1 Withl < k; then Ej € Ug 41 € Uy and
theinclusions

MU NVE £ 0, MUy C U M Fi (mod HN_l)

jedx

imply the existence of j € d and x € (E)Y2 N aMUx N (Fj)Y/2. Since Ux
containsboth E; and Fj we obtain that x € UY, and thisis a contradiction.

Now, since the sets &1 are pairwise digoint, the first inclusion in (23)
implies that #N~1(3"Ux N 8MU;) = 0 whenever k # |. Moreover, (22) and (25)
imply that Ugd"' Uk = 0" E (mod HN~1). Sinceu = 3, xjgnyy, We obtain

DUl =1 Dy, = 1Y Dxud = HN L UkdMUk = HN L OME.
k k
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(Uniqueness) Let v be satisfying (i), (i), (iii) and let us provethat v coincideswith
the function u constructed above. First of al, notice that condition (ii) implies that
v is (equivalent to) a constant in any M-connected component of E or IRN \ E,
by the constancy theorem (see Remark 2). Moreover, 3 E coincides (mod HN—1)
with the jump set of v and |[vT — v~ (i.e., the width of the jump) is1 HN-1-ae.
in IRN (see Sect. 3).

By condition (iii) the two functionsare both O on Fj,. Leti € ®4; since

MEDME N"Fj, #0 (modHN™1

we obtain that v must be equal to 1 on E;. Being i arbitrary, this proves that v
coincideswithu onU;1. Consider now j € ®5; the same argument exploited before
proves that either v is a.e. equal to 2 or v is a.e. equal to 0 in Fj. The second
possibility can be excluded noticing that in this case the set {v < 0} would be
decomposable: indeed, by (23) we get

MUoc | JMENMUp Vv <0} (modHN Y
iedq
and, passing to the complementary sets9"({v < 0}\Ug) C 3" {v < 0} (mod HN-1),
so that Proposition 3(iv) gives
P({v < 0}) = P(Uo) + P({v < 0} \ Uo).
Continuing by inductionin thisway and using theinclusions (mod # N—1) (thefirst
for k even, the second for k odd, coming from (23) and the inductive assumption)
Mu2c | MENMU2 S Mo <k—2),
iedy_1
MUy_o C U M Fin MUk_o» € M{v <k —2}
jedr-
we obtain that v coincideswith u on Uk. Sincek isarbitrary, this provesthat v = u.
]

Definition 6 (Topographic function). We call the function given by the previous
theorem the topographic function of E, and denoteit by ug. We also call the sets

Mug < 2k}, Mug < 2k + 1} kelN
respectively the external and the internal boundaries of E.

Notice that
Ue+1=Ugng  Whenever |E| < oo

because it is easy to check that ug + 1 fulfils (i), (ii), (i) with IRN \ E in place
of E. As a consequence, complementation maps internal (external) boundaries
into external (internal) boundaries. Passing to the complementary sets, the identity
above can also be written as Ue = Ugn, g + 1 whenever |E| = oco. In particular,
in this case the topographic function achieves its minimum, equal to 1, on the
component of E withinfinite measure (if |E| < oo the minimumis 0, by condition

(iii)).
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8. Indecomposability and Jordan curvesin the plane

Theaim of this sectionisacloser characterization of the M-connected components
and of the essential boundary for plane sets of finite perimeter. In particular we
prove that 9™ E can be represented (mod 1) as a digjoint union of rectifiable
Jordan curves; this result has been proved first for ssmple sets by W.H. Fleming
in[25] (seealso[26]) and later extended to the general caseby H. Federer (see[24],
4.2.25). We a so prove that membership to the same M-connected component can
be characterized in terms of existence of arcs joining the points and not touching
(in a suitable sense) the boundary.

We say that I' € IR? is a Jordan curve if I' = y([a, b]) for somea, b € R
(with a < b) and some continuous map y, one-to-one on [a, b) and such that
y(@ = y(b). In a more geometric language, I" can be viewed as the image of
a continuous and one-to-one map defined on the unit circle S*. According to the
celebrated Jordan curve theorem (see for instance [35]), any Jordan curve I' splits
IR? \ T in exactly two connected components, a bounded one and an unbounded
one, whose common boundary is I'. As for Jordan boundaries, these components
will be respectively denoted by int(I") and ext(I"). We will also use the signed
distance function sdist(x, I"), defined by

—dist(x, ) if X € int(l") UT;
sdist(x, ) := (26)
dist(x, I") if x € ext(l) UT.

In our context, we are more interested in Lipschitz parameterizations rather
than continuous ones; the main tool for providing them is the following well
known lemma.

Lemma 3 (Connectedness by arcs). Let C ¢ IRN be a compact connected set
with #1(C) < oo. Then for any pair of distinct points x, y € C there exists
a Lipschitz one-to-onemap y : [0, 1] — C suchthat y(0) = x and y(1) = .

Proof. The existence of a Lipschitz map (not necessarily one-to-one) joining x
to y is proved in [23]. In order to obtain a one-to-one map it suffices to look for
solutions of the problem

b
min{/ ly'(®]dt:[ab] € IR, y € Lip(a b],C), y@ =x, yb)= Y}-
a

Existence of minimizersis a straightforward consequence of Ascoli—Arzelatheo-
rem and of a classical reparameterization argument. Clearly any minimizer yyo,
when parameterized by arc length, is one-to-one. A final reparameterization gives
y :[0,1] — C. O

A first consequence of Lemma 3 is the fact that any Jordan curve I' with
HL(') < oo admits a Lipschitz reparameterization. In fact, let x, y € I' with
X # vy, lety : [0,1] — I begivenby Lemma3andlet I' = I' \ y ((0, 1)).
Since I is homeomorphic to a closed segment, Lemma 3 again gives a Lipschitz
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homeomorphism 7 : [1,2] — I with #(1) = y and #2) = x. Joining y and 7
we obtain the desired Lipschitz parameterization of T". In the following we call
rectifiable the Jordan curves such that H1(I") < co. More generally, any I’ =
y([a, b]) with y Lipschitz functionin [a, b] will be called rectifiable curve.

In the following lemma we point out some mild regularity properties of recti-
fiable Jordan curves which will be used in the following.

Lemmad4. Let T C IR? be a rectifiable Jordan curve. Then

HETNBX,r/2)>r  V¥xeTl, re (0 danT)), (27)
HLI) = P (int(I) = P (ext(I")) (28)

and
liminf H({x € IR?: sdist(x, ) =r}) = HX(D). (29)

Proof. The first property can be easily proved by a projection argument, see for
instance Lemma 3.4 of [23], taking into account that I intersects at least twice
aB(x,r/2).

In order to provethesecond one, let usrepresent I"as ([0, 1]) withy : [0, 1] —
IR? satisfying |/ (t)| = 1 forae. t € [0, 1] and let xg € I" such that

1
limsup 201 Bo0) )
p—0F 2)0

and, for to = y~L(xo), y isdifferentiableat to and |y’ (tp)| = 1; noticethat #1-ae.
Xo € I' hasthese properties. The coareaformula (see 3.2.3 of [24]) gives

/p card (I' N 8By (x0)) dr < HL(I' N B,(x0)) Vp>0
0

and hence we can find arbitrarily small r > 0 such that I N 9By (Xg) contains two
pointsx;, Yr; by thedifferentiability of y at to we have also that |x; — y|/2r tends
tolasr — O*. Denoting by Jri C 9By (Xp) thecircular arcsjoining X, and y;, we
obtain that JrjE U (I"' N By (X)) are Jordan curves, whose interiors are the connected
componentsof By (Xg) \ I'. It follows that one of these componentsis containedin
int(I") and the other onein ext(I"), and since the angle between x; and y; tends to
w asr — O weobtain that Xg isapoint of density 1/2 for int(I") and ext(I"). This
proves that

HED) < H (M int(D)) = P (nt(D)), HYD) < H (8" ext(D)) = P (ext(D)).

The opposite inequalities follow by theinclusionsd int(I'") c I', d ext(I") C T.

In order to provethethird property we set ¢(x) = sdist(x, I') and recall (seefor
instance [24], 3.2.11, 3.2.34) that |V¢| = 1 ae. in IR?, so that the coareaformula
gives

¢~ (=1, 1) =/¢ y )|V¢|dx=/r HY({x e IR?: p(x) =t})dt V¥r > 0.
(=T,

—r
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Onthe other hand, it can be proved (see 3.2.39 of [ 24] or Theorem 2.106 of [5]) that
lp~L(—r,1)|/(2r) tendsto #1(I") asr — OF. Hence we can find an infinitesimal
sequence of positive numbersr; such that

limsupH({x € IR? : [p(x)| =ri}) < 2HY (D).

i—o00
On the other hand, the lower semicontinuity of perimeter and (28) give

Iiiminf?tl({x eIR?: ¢p(x) =ri}) > liminf P((¢ < ri}) > P(¢ < 0)) = HY(I)

and, analogously, liminf; # ({x € IR? : ¢(x) = —ri}) > HX(I). These inequal-
ities imply that both #1({¢ = r;}) and H1({¢ = —ri}) converge to H1(I') as

i — oo. O

In order to represent the essential boundary of a simple set by a rectifiable
Jordan curve we need the following lemma.

Lemmab. Lety : [0, L] — IR? bea Lipschitzmap, let C = y([0, L]) and assume
that (0) = y(L) and fOL ly’|dt = #1(C) > 0. Then C contains a rectifiable
Jordan curverl.

Proof. After reparameterization we can assume with no loss of generality that
L =#1(C)and|y’| = 1ae.in[0, L]. By the areaformula (see for instance [22])

LAY = / /) dt = / card(y10)dHi  VACC, A Bore
y~ 1A A
with A = C weobtain
1
| feardty 200y~ ) a1t = [y wiek— 10 =0
C 0

hence the set B = {x scard(y ~1(x) > 1} is #1-negligible, and so is (again by
the areaformulawith A = B) theset S= y~%(B).

We now claim that Sis still Lebesgue negligible. In fact, let (th) < Sbe
convergingtot and let s, # ty such that y(th) = ¥(sh); assuming with no loss of
generality that s, convergeto s, if s # t we concludethat t € S otherwiseif s=t
we obtain that either y is not differentiableat t or y'(t) = 0. This provesthat Sis
Lebesgue negligible.

Take now aconnected component (a, b) of (0, 1)\ Sand consider thesimplearc
C' =y ((a, b)). Since C \ C’ isconnected (being y aclosed curve), by Lemma3
we can connect y(b) to y(a) by asimplepathn : [b, c] — C\ C'. If y(a) = y(b),
then C’ isa Jordan curve. If y(a) # y(b), then a Jordan curve contained in C can
be obtained joining the paths y | a5 and 1] b, ]

Theorem 7 (Boundary of simple plane sets). Let E C IR? be a simple set with
|E| € (0, 00). Then E is (essentially) bounded and 9V E is equivalent (mod #1)
to a rectifiable Jordan curve. Conversely, int(I") is a simple set for any rectifiable
Jordan curverl.
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Proof. By a rescaling argument we also assume that P(E) < 1. Let (Ep) be
a sequence of bounded open sets with smooth boundary locally converging in
measure to E and such that P(En) — P(E) ash — oo. Since 9Ep is smooth and
compact, we can represent it by adisjoint union of Jordan curvesTj p, for1 <i <
N(h), whose length decreases asi increases, we parameterize I'i h = yi.n ([0, 1])
for some 1-Lipschitz maps y;i h, one-to-oneon [0, 1), and notice that

N(h) .1 N(h)
> [ irnid = Y- #iain = PeEw <1 (30)
i=1 i=1

for h large enough. In the following we assume, to fix the ideas, that N(h) — oo
ash — oo, the proof being much simpler if N(h) < C for infinitely many h. We
assume, possibly extracting a subsequence, that for any i € IN either y; p uniformly
convergein [0, 1] to y; or max |yi.n| — oo. Inthelatter casewe set y; = 0. Setting
I = %([0,1]) and I'ss = U; T}, we will prove that there existsi such that ' is
aJordan curveand I'j are pointsfor any j #i.

Sep 1. Weclaimthat 9ME C I's, (mod H1). Given an integer p > 1, we denote
by Eﬁ the sets obtained from Ep by removing from it the connected components
with area smaller than 1/ p and adding to it al holes with area smaller than 1/ p.
By the isoperimetric inequality, the perimeter of any connected component of Eﬁ
isat least /47/ p, hence JE is contained in thefirst Mp, = [/p/(@m)] + 1 curves
i .h. Moreover, we have

1 1 1
EPAEN <Y 1Yjl< =) 1YY < P(Yj) < ——
A = 302 75 3N 2 3R <

where {Yj}jcy are the components added or removed. We assume, without loss
of generdity, that E! locally converge in measure in IRN to suitable sets EP as
h — oo suchthat |[EPAE| < 1/./4wp. Since

Mp
aEﬁ C U [i.h
i=1

and since DXEE weakly converge as measuresto Dy gp, by the definition of I'j we
easily obtain that

Mp

IDxee| < H'L T

i=1
because any closed ball disjoint fromthe set intheright sidedoesnot intersect T ,
1 <i < Mp, for h large enough. Hence, |[Dxep| < HL ' for any p. Letting
p — oo and using the weak convergenceof E, to E we get [Dyg| < H1L .
The claim follows by evaluating both measures at 9V E \ I'wo.
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Sep 2. Passing to thelimit ash — oo in (30) we get
0 o0 1
> oHNT) < Z/ W] dt < P(E) = HL(BVE).
i=1 i=1 70

On the other hand, Step 1 gives

HNOME) < HEUITH) < ) HAT)
i=1

Hence, we concludethat ]01 ly/ (D] dt = HL(Ty) foranyi > 1and H1(T Nrj) =0
wheneveri # j.

Sep 3. Leti > 1suchthat #1(I) > 0Oandlet I" T be aJordan curve given by
Lemmab. Then, F = intT" satisfies

MECTcCTco"E (mod#Hb)

so that, being E simple, we conclude from Proposition 7 that E = F and ME =
I' = I (mod#Y). This also proves that #X(I'j) = O for any j # i. Since
diamI" < H(I") for any rectifiable Jordan curve I" we obtain that E is bounded.

Finally, the fact that any rectifiable Jordan curve induces a simple set follows
by Proposition 2 and by the Jordan curve theorem. O

By Theorem 4, since Jordan boundaries essentially coincide with rectifiable
Jordan curves, we obtain the following decomposition result for the boundary of
aset of finite perimeter in the plane. Asin Theorem 4 we allow the Jordan curves
to be dso J and J, to ssimplify the statement and to allow sets E with infinite
measure.

Corollary 1. Let E be a subset of IR? of finite perimeter. Then, there is a unique
decomposition of 8" E into rectifiable Jordan curves {C;", C, :i, ke IN} C S,
such that

(i) Givenint(C), int(C)), i # k, they are either digoint or one is contained
in the other; givenint(C."), int(C,), i # k, they are either digoint or oneis
contained in the other. Eachint(C;") is contained in one of theint(C[[ ).

(i) PE) =Y HNCH) + X HHC).

(iii) 1fint(C") < int(C}"), i # |, then there is some rectifiable Jordan curve C;;
such that int(C;") < int(C,) < int(Cr). Smilarly, if int(C;") < int(C;),
i # |, then there is some rectifiable Jordan curve C;! such that int(C;”) <
int(CY) < int(C)).

(iv) SettingLj = {i : int(C[") € int(C{)}, thesetsYj = int(C}") \ UieL; int(C")
are pairwise digoint, indecomposableand E = UjY;.
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In the remaining part of this section we want to characterize the M-connected
components (or, better, suitable representativesin the equivalenceclass (mod 72)),
by the classical topological property of connectedness by arcs.

To this aim, we need another definition of boundary which, more than 9",
is suitable for the analysis of connected components. For any set E with finite
perimeter in IRN we define

35E:={x e RV : limsup
r—0t

HN-LOME N B(x, 1))
N1 >0!}.

Notice that the relative isoperimetric inequality, together with a continuity ar-
gument, easily gives (see (9)) that OME C 9°E; however (4) guarantees that
HN-LBSE \ OME) = 0, hence P(E) = #N-1(35E) till holds.

With this notation we can prove the following result:

Theorem 8 (Indecomposability and connectedness by arcs) Let E C IR? be
a set of f|n|teper|meter and Iet {E.}.E| = CCM(E). Then EV \ 95E isthe digoint
union of E \0°Eandx, y € = \ 0°E belong to the same M-connected component
EI of E if and only if there exists a rectifiable curve I" joining x to y contained in
EM \ 05E. Moreover, for any § > 0, I' can be chosen so that

HYD) < [x =y + P(E) + 6.
In particular the sets E" \ 9SE are connected.

Our proof of this result actually gives a slightly stronger statement: the sets
E \ (85E;j UL ) areconnected by arcsfor any H1-negligibleset L € IR?; Theorem8
|sapart|cular casewithL = E NOSE. In order to show thisresult, our first lemma
proves that points in the same M-connected component can be joined by curves
lyingin EM U 5SE.

Lemma6. Let E C IR? be an indecomposable set and let x, y c EV \ 9°E. Then
there exists a rectifiable curve I" joining X to y contained in E" U 95E. Moreover,
the curve can be chosen so that I' ¢ 95E U L, where L is the segment joining x
toy.

Proof. Let Jg be the rectifiable Jordan curve corresponding to the simple set
sat(E) and let J, 1 < i < pwith p € [2, oo], be the rectifiable Jordan curves
corresponding to the holes of E. Since x, y ¢ 9SE and U; J; ¢ M E (mod H1), by
(27) we obtain that x and y belong to int(Jo), the topological interior of Jg, and
to ext(J;), the topological exterior of J;, fori > 1. If L crossesan holeint(J;) we
can replace, using Lemma3, L Nint(J;) by acurve containedin J;, and similarly
we can arguelf L crosses ext(Jo) In thisway we obtain arectifiable curve T fully
contained in EV UUis1Ji C EV U 8SE. O

In order to improve Lemma 6, proving existence of curves contained in EM \
0SE, the natural idea is to enlarge a little bit the holes of E and to shrink a little
bit the boundary of sat(E), to produce a new set whose boundary is “inside” E.
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However, this perturbation could not preserve the property that x and y are in the
same M-connected component, unless we assume that small balls centered at x
and y are contained in E.

Lemma7. Let E C IR? beanindecomposableset, let x, y € IR? and assume that
B(x,r) U B(y,r) € E (mod #H?2) for somer > 0. Then, for any #1-negligible set
N C IR?\ (B(x,r) U B(y, r)) there exists an open set A C E with finite perimeter
suchthat N U 9SE € A and X, y belong to the same M-connected component of
E\ A. Moreover, givenany § > 0 and any open set Ssuch that #1(3MENaS) = 0,
we can choose A so that

PEE\A' S < P(E 9 +5.

Proof. Assuming with no loss of generality that r < |x — y|, we will first build
a seguence of open sets Ap not intersecting B(x,r/2) U B(y, r/2), such that
[EN Al — 0, P(E\ Ap) — P(E) and N U 9°E C Ay,.

Let Jo, J be asin Lemma 6 and let us denote by L the H1-negligible set
N U 9%E \ Uj J. Givene > 0, by (29) we canfindro < 0 and positive numbersr;
such that

‘Hl({x e R?: sdist(x, Jo) = ro}) — Hl(Jo)‘ <
‘Hl({x e R?: sdist(x, &) =ri}) —Hl(Ji)’ <27¢ Vie[lp).

We also choose balls B(xj, nj) such that their union contains L and Zj nj < e.
Choosing € = 1/h, we define

An = {x e IR?: sdist(x, Jo) > ro} U | {x e IR?: sdist(x, &) <ri}
1<i<p

o0
ulJ Bxj. np).
j=1
By construction Ay contains 95E and does not intersect B(x, r/2) U B(y, r/2) for
h large enough. Moreover, since ) ; m?JZ < 7€ and

EnAnc |J {xeR®: |sdistx. 3)| < Iril} UB(xJ n
O<i<p

choosing smaller r if necessary (again, thisis possible dueto (29)) we obtain that
|[EN An| — 0. Inorder to provethat P(E \ Ap) convergeto P(E) it suffices, by
the lower semicontinuity of perimeter, to estimate P(E \ An) from above. Since
OM(E\ Ap) C MEUIMA,L and aME C 9SE C A, weobtain

P(E\ An) < HY(3" An) = P(An)
< Z ’Hl({x € IR?: sdist(x, J) = I’i}) + ZZﬂnj
O<i<p j=0

27 +2 2 +2
< Y HI+ + — PE) + T2
O<i<p
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Now we claim that for h large enough both x and y belong to the same M-
connected component of E \ Ap; indeed, if thisis not true we can find partitions
(AL, Aﬁ) of E\ Ap (union of suitable M-connected components of E \ Ap, see
(10)) suchthat B(x,r/2) € AL, B(y,r/2) € A2, P(E\ An) > P(AL) + P(A?) and
| AL N AZ| = 0. Possibly passing to a subsequence, we can assume that Al locally
convergein measureto disjoint sets Al whose union is E; the lower semicontinuity
of perimeter gives

P(E) > P(AY) + P(A%)
and, since both Al and A? contain a ball and E is indecomposable, this gives
a contradiction.

The final claim follows noticing that the convergence of perimeters implies
that P(E \ An, S convergeto P(E \ A, S ash — oo (see for instance [29],
Appendix A). ]

Fi naIIy, we need the following lemma, shov\n ng that many circles centered at
pointsin EV \ 95E arefully containedin EV

Lemma 8. Let E be a set of finite perimeter, let x € eV \ 9°E and define
R:= {t> 0: aB(x,t) C éM}
Then |RN (0, r)|/r tendsto 1 asr — O™.

Proof. Let us define ¢ equal to 1 on EM, equal to 1/2 on EY/2 and equal to 0 on

IR?\ E" . Notice that ¢ is undefined only on the #1-negligible set 9 E \ EY/2,
and henceis everywhere defined on almost every circle 9B(x, t).
Since x € EV , asimple application of Fubini theorem shows that the set

Ri:={t>0: HY(3B(x,nH N E") > 0}

satisfies [Ry N (0, r)|/r — 1asr — OT.
Let p1(0) = p(X1+t coso, xo+t sinb) and let Var(¢t) beitspointwisevariation.
The statement would be proved if we show that also the set

Ry :={t>0: Var(¢r) =0}

satisfies |[Ro N (0, 1)|/r — lasr — 0T, becauseany t € Ry N Ry belongsto R.
To thisaim, notice that Var(¢t) > 1/2forany t € (0, o0) \ Rz, hence the density
property of R follows by the inequality

1 r
imn\ws/vmwm
0

if we prove that f; Var(¢y) dt/r isinfinitesimal asr — O*. Eventualy, this fact
follows by the assumption that x ¢ 9SE and the inequality

;
/ Var(¢y) dt < H! (MENB(x, 1)) vr > 0. (31)
0
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In order to prove (31) we first notice that a polar change of coordinates gives

2
[y [ [ ]2

for any ¢ € C*°(IRN). Now we choose aradial convolution kernel p and apply the
identity above to the mallified functions ¢ = ¢ * p.; taking into account that ¢,
pointwise convergeto ¢ in its domain (see for instance Theorem 4.5.9(24) in [24]),
the lower semicontinuity of the variation under pointwise convergence and the
inequality (see for instance Proposition 1.15 in [29])

dodt < / V| dy
B(x,r)

limsup |Veeldx < P (E, B(x,1)) = Ht (MENB(x,1))

e—0t JB(x,r)

we obtain
r r r
/Var(¢>t)dt§/ Iimianar(<p€t)dt§Iiminf/ Var(pet) dt
0 0 €—0F e—~0t Jo

< liminf IVoeldy < HY (MENB(X,T)).

e—0t B(X,I)
This proves (31) and the lemma. O

Proof of Theorem 8. We have proved in (9) that any x € EM \ 95E is apoint of
density 1 for some set E;.

Let now x € E \ O°E,y € E \ 9°E, withi # j. By (27) we obtain that x
does not belong ne|ther to the Jordan curve Jo corresponding to sat(E;) nor to the
Jordan curves Ji correspondingto the holes of E;, and the same holdsfor y. Hence,
if sat(E;j) and sat(E;) aredisjoint, we concludethat x € int(Jp) andy € ext(Jp), SO
that they cannot be connected by a continuous curve not intersecting Jo C 95E. If
sat(Ej) C sat(Ej) then Ej is contained in some hole of E; and the same argument
applies for some curve Ji. If sat(Ej) C sat(Ej) the argument is similar, reversing
therolesof i and j.

Conversely, given a M-connected component E; of E, we will provethat any
palr of pointsx, y € E \ 3°E can be connected by arectifiable curve containedin
E U 9SE. To thisaim, we first choose, according to Lemmas, strictly decreasing
%quencesof positive numbersnp, yh suchthat dB(x, nn) UaB(Y, yn) C EiM \ 35E
(recall that EiM N 3SE is H1-negligible), and 27 3" (nn + yn) < §/2. For any
integer h > 1 we define

S == [B(X, 7h-1) \ B(X, nn)] U [B(Y. yh-1) \ B(Y. )],
and
S = IR?\ (B(x, o) U B(X, 0)).

Setting F, = Ej U B(X, nn) U B(Y, yn), the sets F, are till mdecompo&able
(see Proposition 5(i)), hence we can apply Lemma 7 with N, = (9SE N E )\
(B(X, nh) U B(Y, yn)) to obtain open sets A, D Ny U 9°Fy, such that x, y belong
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to the same M-connected component Gh of Fr \ An. Moreover, since 89S, C Ig?f,
we can also assume that

P(Fn \ An, Sh) < P(Fn, S)) +2 2. (32)

Finally, we can apply Lemma 6 to Gy, to obtain a rectifiable curve I'y, joining X
toy, containedin Gy U95Gp andalsoin L U3Gp, where L isthe segment joining
X toy. Since 395G C 05(Fp \ An) we have

ThNS C (LNSHU(%GhNSH) C (LNSH) U (35Fn\ An) N Sh).
Since 3°F, C 3°E;, using (32), we obtain
HH TN S) < HE (3" (Fn \ An) NSh) + (h-1 — 7h) + (o1 — 1)
< HYOMEi N'Sh) + (=1 — 1) + (1 — yn) + 27728 (33)
forany h > 1. For h = 0, we have
HY (o N ) < HH (8" (Fo\ Ao) N S) + HH(L N S)
<HO"E NS+ XYyl — o+ y0) + 2—125- (34)

Since 35E N EM' < Ap and 385G C 95(Fn \ An) C IR%\ A, we have 35Gy, C
IR\ (33E N I%i“"), and by our choice of ny and yy, the curves Ty, are contained in
Fi'\ (3ENEM) and hencein E" \ 5E out of B(x, nn) UB(Y, yn). Using again our
choice of nn and yn we can build from I', alocally rectifiable curve I' contained
in I%iM \ 95E asin Fig. 4 (we have drawn for simplicity the construction only near
to x).

Fig. 4. Recursive construction of I" near to X

The estimate on #1(I") follows by (33), (34) and by theinclusion

I\ {x y} ¢ [ J@mnns) ulJaBx nn) UaB(Y. y).
h=0 h=0
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9. Connected operatorsfor image denoising

We call “connected operator” any contrast-invariant operator acting on the con-
nected components of level sets. These operators could be defined on BV but we
actually do not need neither the finiteness of the total variation nor the summability
property. We need only to know that almost every level set has finite perimeter,
so that its M-connected components can be defined. We therefore introduce a new
space of functions that we shall call functions of weakly bounded variation.

Definition 7. We say that a Borel function u : Q@ — [—o0, +00] has weakly
bounded variationin 2 if

P({u > t}, Q) < o0 foraet e R

The space of such functions will be denoted by WBV (2). We call total variation
of u and denote by | Du| the measure defined on every Borel subset B C Q2 as

—+00
|Du|(B) := / P({u > t}, B) dt.
—0Q

It followsfrom the properties of the perimeter that | Du| is ao-additive measure on
B(2). Remark that, by Lemmal, BV(Q2) € GBV(R2) € WBV(2) assoonas2is
bounded. Furthermore, if € is bounded, connected and with Lipschitz boundary,
u € WBV(R2) and |Du|(2) < oo then, by Lemma 1, u € BV () and, by the
coareaformula, | Du| coincides with the total variation of u.

It must be emphasized that WBYV is alattice (because sets of finite perimeter
are closed under union and intersection) but is not a vector space. Take indeed the
two functions u(x) = 1/x and v(x) = 1/x — sin(1/x) defined on (—1, 1). Then,
clearly,u, v e WBV (-1, 1) whereasu—v ¢ WBV (-1, 1) sincesin(1/x) assumes
infinitely many times any valuet € [—1, 1]. However, a strong motivation for the
introduction of WBV (L) is the following result, showing that WBV (R2) is the
smallest space containing BV (2) and invariant under any continuous and strictly
increasing contrast change; notice that, by Vol pert chain rule for distributional
derivatives, BV (Q2) is stable only under Lipschitz contrast changes.

Theorem 9. Assume that 2 is bounded, connected and with Lipschitz boundary.
For any u € WBV (£2) there exists a bounded, continuous and strictly increasing
function ¢ : [—o0, +00] — IR suchthat ¢ o u € BV(Q).

Proof. Let ¢ be the primitive of exp(—s?)/(1 + my(s)) such that ¢(—oo) = O.
Then, since ¢ o u is bounded and takes its valuesin [0, ¢(400)],

400 P(+00) 400
[ v = /0 Mt = [ mu(o9©ds

—00 —00
+o0
< exp(—s) ds < oo,

—00

hence ¢ o u € BV(2) by Lemma 1(ii). O
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Notice that Theorem 9 could be used to extend to WBV (©2) many results
of Sect. 3, as for instance the existence of the approximate differential Vu, the
rectifiability of the approximatediscontinuity set S, thefactthat #N-1-ae.x € S,
isan approximatejump point, the structure of Du and so on. However, thisanalysis
goes beyond the main goals of this paper and it will not be pursued here.

The space WBV (£2) can be endowed with the following distance (identifying as
usual the functions which coincide almost everywherein ):

_t2
d(ug, up) := [ € |arctanmy, — arctanmy,| dt
R

+/ e | arctanuy — arctanup| dx.
Q

Since arctan isahomeomorphism between [—oo, +o00] and [—7r/2, /2], it iseasy
to prove that the convergence with respect to d is equivalent to local convergence
in measure of both u and my, hence (WBV (R2), d) is a complete metric space.

L. Vincent’sfilters

Luc Vincent introduced in [64] a class of connected operators for denoising an
image corrupted by anoisethat creates small spots, like for instance impulse noise.
Our motivation for the study of such filtersis, in addition to the fact that they may
be considered as the reference connected operators, their great ability to remove
impulse noise. The key idea is to remove connected components of level sets
whose L ebesgue measure does not exceed some threshold 6. Luc Vincent defined
his filters as operators acting on the space of upper semicontinuous functions, in
the framework of Mathematical Morphology. We shall now propose a definition
adapted to the space WBYV which involvesthe notion of M-connected components.
We shall derive new properties of Vincent's filters, regarding in particular the
behavior of the total variation. In addition, we shall prove that these filters map
SBV onto SBV, Sobolev spaces onto Sobolev spaces and Lipschitz functions onto
Lipschitz functions.

First remark that we shall from now assume 2 bounded with Lipschitz bound-
ary. This is motivated by the fact that an image is generally given on a bounded
domain. However, al the definitions and results stated above remain valid since
any set E C Q of finite perimeter in 2 hasfinite perimeter in IRN (see for instance
Remark 2.14 in [29]). For the sake of simplicity, we shall write 9 E instead of
OME N Q. We start now by defining the action of Vincent's filters on sets of finite
perimeter.

Definition 8. Let E C 2 be a set of finite perimeter in  and 6 > 0. e define
Ty E as the union of the M-connected components E; of E such that |E;j| > 6.

Note that ToE = E and that Ty E is well defined up to Lebesgue negligible sets.
Moreover, by Proposition 3, it follows that

P(TyE, ) < P(E, Q) (395)
with equality only if ToE = E (mod HN).
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Proposition 10. Let E, F C Q be two sets of finite perimeter in Q. If E C F
(mod #N), then ToE € TyF (mod #N).

Proof. If E; isa M-connected component of E with |E;j| > 6, then by Theorem 1
there is a M-connected component F; of F such that Ej € Fj (mod H N). Since
|Fj| > 6, we concludethat ToE C TyF (mod #N). O

Now we want to extend Ty to WBYV functions; to this aim, the following lemma
will be useful.

Lemma9. For any monotone family of sets X;, A € IR, there exists a countable
set D C IR such that

|imAxM=xA forall A € IR\ D,
n—

where convergence means convergence with respect to the finite measure © =
e~1X? 2N (or, equivalently, local convergencein measurein IRV).
Proof. First remark that the map A — w(X,) is rea-valued since u(Q) =
e Mdx < co. Then it is enough to note that this map is monotone, thus
Q
has at most countably many discontinuity points, and to choose D as the set of
those discontinuity points. We call D the set of discontinuity points of X;. O

Theorem 10. Let u € WBV(2) and & > 0. Then there exists a function Su €
WBV () (resp. lgu € WBV (£2)) such that

{Sou> A} =To{u> A} (resp.{logu <A} =Te{u<21})  (mod HN)

with at most countably many exceptions. Any other measurable function v with the
same property coincideswith Syu (resp. lpu) almost everywherein 2. In addition,

IDSU|(B) < |Du|(B) and |Dlgu|(B) < |Du|(B) for anyBorel set B C Q

Proof. Let X; = {u > A}. By definition of WBV, for dmost every A € IR, X;,

has finite perimeter and we can define Y, = TgX,. Since & < A implies that
X 2 X,, weinfer from Proposition 10 that (Y;) is a decreasing family. Let D
be the set of discontinuity points of Y;. Let D* C IR be countable and dense and
define

Su(x) = sup{r € D* : x € Y3 ).

We now provethat {Sgu > A} = Y;, (mod HN) for any A ¢ D. Infact, we clearly
have

Yng{sﬁu>)\}gYp

forany n,p € D*, p < A < n. If we choose sequences nx — A and px — A
in D*, Lemma9 provesthat Y; coincideswith {Syu > A} (mod HN). In particular,
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{Syu > A} is measurable for any A ¢ D. By approximation, the same is true for
any X € IR. Hence, Syu is measurable.

Theuniquenessof Syu can be proved by checking, with asimilar argument, that
if ug, up aretwo measurable functions such that {u; > A} = {u > 1} (mod HN)
for adense set of A, then uy = up almost everywherein <.

Remark now that, by assumption, {u > A} isaset of finite perimeter in 2 for
almost every A € IR, thus P({u > 1}, B) < +o0 for any Borel set B C Q. Since
CCM {Syu > A} € CCM {u > A} we deduce by Proposition 3 that 9™{Syu > A} €
M{u > A} (mod %#N-1). Recalling that P(E, B) = HN~1(B N " E) whenever E
has finite perimeter in B, it follows that P({Syu > 1}, B) < P({u > A}, B) < o0
for every Borel subset B €  and for aimost every A € IR. Thus Syu € WBV ()
and |DSyu|(B) < |Du|(B) for any Borel set B C Q.

The proof of the existence and the uniqueness of 1yu is analogous to the one
for Syu, by noting that the sets X; = {u < A}, henceaso Y, = Ty X,, form an
increasing family and defining lyu(x) = inf{A € D* : x € Y, }. Remark now that
{u> A} ={—u < —A}, thus

Su = —lg(—u) aeinQ. (36)

and it follows that lyu € WBV (2) and |Dlyu|(B) < |Du|(B) for any Borel set
B C Q. O

Remark 11. Recall that, sinceu, Syu and lyu are measurable, it isequivalentinthe
previous theorem to deal with upper level sets instead of strictly upper level sets
for both essentially coincide except for at most countably many exceptions.

SinceTo{u > A} C {u > A} and Ty{u < A} C {u < A} weinfer that {Syu > A} C
{u> Ar}and{lpu < A} C {u < A} for amost every A, hence

Su<u<lgu ae inQ. (37)

In order to study the properties of Sy and |y in the classical functions spaces BV
and WP the following lemmawill be useful.

Lemma10. Let u, v € BV(R) such that |Du|(B) < |Dv|(B) for every Borel set
B C Q. Then
(i) |Vu| <|Vv|laein;
(i) S <SS (mod#HNY);
(i) jut —u| <t —v | HNlaeing;
(iv) |DCu| < |DC|.
Proof. Recall that |Du| = |Vu| LN+ |ut—u~|HN~1L J,4|DCu|. Moreprecisely,
Setting

M= {xeQ: Iiwr‘N|Du|(Br(x)) = o0}

r

and ©, := {x e Q: Iinlionfrl—N|Du|(Br(x)) > 0}
r



86 Luigi Ambrosio et al.

then (see for instance [5]) ®y € My, [My| = 0, Oy is o-finite with respect to
#HN-1 and

D3 = DUL(Q\N,), Dlu=DuL S = DuL ®, and DU = DuL(N,\Oy).
Let AV = ANy UN,. Then || = 0andfor every Borel set B C Q\ N, |Du|(B) =
|D3u|(B) and |Dv|(B) = |D3v|(B). Therefore
|Dau|(B)=/ |Vuldx < |Dav|(B)=/ |Vvdx
B B
and (i) follows since the inequality istrue for every Borel set B C Q \ V.

(ilLetB=S\'S,. Then|Du|(B) < |Dv|(B),|B| =0and B C 2\ S, isco-finite
with respect to N~ so that D2v|(B) = 0 and |D°v|(B) = O (see [5]). Thus
|Du|(B) = |Dv|(B) = 0 and, therefore,

/ ut —ujdNt=o.
B

Since|ut —u~| > 0on Jy and #N-1(S, \ Ju) = Owededucethat #N-1(B) = 0
thus
<SS (modHNTh

(iii) For every Borel set B € J,

/ jut —u—jduN-1 < / ot — v |dH Nt
B B

and we deduce that

ut—u| <t —v7|  HNlaein .
The result follows by simply remarking that [ut — u=| = 0 for #N-1-ae x €
Q\ J.

(iv) Let N = A \ (By U ©,). Since O, is o-finite with respect to HN-1 we

deduce that D°u = Dul_ V. Itis astraightforward consequence of the definitions

that Ny C N, thus DuLL N = D% L_N. For every Borel subset B ¢ A/ we get
|DU|(B) = |Du|(B) < |Dv|(B) = |D|(B)

and (iv) follows. O

The following proposition is a straightforward consequence of the previouslemma
and Theorem 10.

Proposition 11. Let u € BV(R2) and6 > 0. Let T4 denote any of the operator Sy
or lg. Then

(i) |VTeu| <|Vulaeing;

(i) Sryu € Sy (mod HN-Y);

(i) |Tou™ = Tou™| < Jut —u~| HNtaeing;

(iv) |D®Tgu| < |DCul.
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Remark 6. An interesting consequence of this proposition is that Sy and Iy map
SBV(R2) onto itself in such a way that the jump set is reduced as well as the
“height” of the jumps. It is therefore easily seen that any Sobolev space WL P(),
1 < p < oo, is mapped onto itself by Iy and S with a decay of the gradient
norm at almost every point. Analogously, any Lipschitz function is mapped onto
a Lipschitz function with the same Lipschitz constant.

Finally, we conclude this section with some additional properties of the filters Sy
and lg.

Proposition 12. Let 6 > 0. Then Sy, lg, 10Sy, Syly are monotone and idempotent
operators acting on WBV (2). Moreover, they are covariant with respect to any
real continuous and strictly increasing contrast change.

Proof. The monotonicity of the operators is a simple application of the mono-
tonicity of Ty on level sets. Observe that if E is a set of finite perimeter in €,
then To(T9E) = TyE. Therefore, if u € WBV(R2), then, for amost every A € IR,
{u > A} has finite perimeter in @ and we have Ty(Tg{u > A}) = To{u > A}.
By the uniqueness property stated in Theorem 10, we deduce that Sy (Su) = Su
almost everywherein Q2. Equation (36) impliesthat 14 isidempotent aswell. Now,
let us prove that

SloSu = lpSu. (38)

Indeed, let A € IRbesuchthat {u > A} isaset of finiteperimeterin 2, {Syu < A} =
{Sou < A}, and{lgSpu < A} = {IsSpu < A} (mod HN). By Theorem 10, {Syu > A}
= To{u > A}, {IsSu < A} = Tp{Su < A}, {SpleSu > A} = Tp{leSu > A}
(mod HN). Then we prove that

(S9loSou > A} = {lySou > A} (mod HMN). (39)

Otherwise, there exists a M-connected component Q of {lySu > A} with 0 <
|Q| < 6. Thus Q is a M-connected component of IRN \ {I,Su < 1} = IRV \
{lsSou < A} = RN\ Ty{Sy < 1} = RN\ Tg{S < 2} and, accordingto Theorem 1,
we may write

MQ=ul_aMF  (mod HN-Y),

where Fg, k = 1, ..., p, denote the M-connected components of Ty{Syu < A}
such that aMFc N aMQ # @ (mod HN-1). In particular, F, k = 1,..., p, are
M-connected components of {Spu < A} such that |Fx| > 6. It follows that Q
cannot be contained in {Syu < A}. Hence, Q contains at least a M-connected
component of {Sgu > A} and, therefore, |Q| > 6. This contradiction proves (39)
and, as a consequence, (38). Since |y isidempotent, we obtain

leSloSHu = lgleSHu = 1pSpu.

Let us prove the covariance of Sy with respect to any real continuous increasing
contrast change. Thisisduetothefact thefamily of level setsisglobally invariant by
such acontrast change. Letu € WBV(Q2) andlet g : IR — IR beareal continuous
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increasing function. Then, for almost every A € IR, {g(u) > g(A)} = {u > A},
hence, To{g(u) > g(A)} = Te{u > A} and, by definition, {Syg(u) > g1} =
{Spu > A}. Thus {g~1Syg(u) > 1} = {Syu > A}. From the uniqueness statement
of Theorem 10, we conclude that Sgg(u) = g(Syu) a.e. in . The corresponding
statementsfor lg, 19Sy, Syly are provedinthe sameway. Themonotonicity assertion
is straightforward and we shall omit the details. O

Experiments

First recall that an image can be naturally represented as a piecewise constant
function, each pixel being considered as a square with measure one. We have
illustrated in Fig. 5 the internal and externa boundaries of some level sets of
an image (see Sect. 7). For the sake of simplicity, we shall also use the terms
topographic map to refer to thisrepresentation. It isastraightforward consequence
of Theorem 6 and the reconstruction formula u(x) = supft : x € {u > t}} =
inf{t : x € {u < t}} that the topographic map is a complete and contrast-invariant
representation of the image. Remark that, for the sake of readability, we have
actualy illustrated in Fig. 5 the partial topographic map obtained by taking into
account only those level sets separated by at least 10 grey levels.

Fig. 5. Animage and its partial topographic map (grey level step = 10)

Figure 6 illustrates the ability of the Vincent's filter 19Sy to remove impulse
noise in an image. Recall that impulse noise replaces the value of a prescribed
number of pixels, uniformly distributed in the image, by a random value taken
between 0 and 255, according to a uniform distribution law. The algorithm for
computing the action of |y is the following: let xg be a pixel where the image,
denoted by u, assumes a local minimum and A = u(Xg). Adding progressively
pixelsin the neighborhood of xg, one can construct the connected component | (1)
containing xg of the set {X, u(x) < A}. Then, setting » := A + 1, the processis
iterated until |1(A)| > 6. Finaly, each pixel in | (1) isgiventhevalue A. Thewhole
process is performed for each local minimum of u.

The agorithm for Sy is stricly analogous, starting from a local maximum
and computing iteratively the connected component S(A) containing Xg of the set
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Fig. 6. An image corrupted by an impulse noise with frequency 15% and the result of the
denoising performed by 119S19

{x, u(x) > A}, where A is initialy given the value u(xp) and is lowered until
|S(1)| > 6. Again, each pixel in the ultimate S(1) is giventhe value A.

We shall not address here the problem of the consistency of these algorithms,
that is the question whether they converge to the operator 1y as defined for
functions, when the discrete grid tends to the continuous plane. This question is
obvioudly far beyond the scope of this paper.

Three properties of 1yS are particularly relevant in view of an automated
denoising: the idempotence, which prevents from caring about the number of
iterations, the dependence on a single parameter 6, which makes the filter much
easier to handle with and, finally, the ability of 1Sy to preserve the unnoisy parts
of the image (see Fig. 7) which ensures that only noiseis processed.

Fig. 7. An uncorrupted image and the result of the filtering by l10S10. This experiment
illustrates the ability of Vincent'sfilter to preserve uncorrupted parts of an image
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