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Abstract

The aim of this paper is to investigate whether, given two rectifiable k-varifolds in
R

n with locally bounded first variations and integer-valued multiplicities, their gener-

alized mean curvatures coincideH k-almost everywhere on the intersection of the sup-

ports of their weight measures. This so-called locality property, which is well-known for

classicalC2 surfaces, is far from being obvious in the context of varifolds. We prove that

the locality property holds true for integral 1-varifolds, while for k-varifolds, k > 1, we
are able to prove that it is verified under some additional assumptions (local inclusion

of the supports and locally constant multiplicity on their intersection). We also discuss

a couple of applications in elasticity and computer vision.

Introduction

Let M be a k-dimensional rectifiable subset of R
n, θ a positive function which is locally

summable with respect to H k M, and TxM the tangent space at H k-almost every x ∈ M.
The Radon measure V = θH k M⊗δTxM on the product space

Gk(R
n) = R

n ×{k-dim. subspaces of Rn}

is an example of a rectifiable k-varifold.
Varifolds can be loosely described as generalized surfaces endowed with multiplicity (θ

in the example above) and were initially considered by F. Almgren [2] and W. Allard [1] for

studying critical points of the area functional.

Unlike currents, they do not carry information on the positive or negative orientation

of tangent planes, hence cancellation phenomena typically occurring with currents do not

arise in this context. A weak (variational) concept of mean curvature naturally stems from

the definition of the first variation δV of a varifold V , which represents, as in the smooth
case, the initial rate of change of the area with respect to smooth perturbations. This

explains why it is often natural, as well as useful, to represent minimizers of area-type

functionals as varifolds.

One of the main difficulties when dealing with varifolds is the lack of a boundary opera-

tor like the distributional one acting on currents. In several situations, one can circumvent

this problem by considering varifolds that are associated to currents, or that are limits (in

the sense of varifolds) of sequences of currents (see [16, 17]).

This paper focuses on varifolds with locally bounded first variation. In this setting, the

mean curvature vector HV of a varifoldV is defined as the Radon-Nikodÿm derivative of the
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first variation δV (which can be seen as a vector-valued Radon measure) with respect to
the weight measure ‖V‖ (see Section 1 for the precise definitions). In the smooth case, i.e.
when V represents a smooth k-surface S and θ is constant, HV coincides with the classical

mean curvature vector defined on S.
However, it is not clear at all whether this generalized mean curvature satisfies the

same basic properties of the classical one. In particular, it is well-known that if two smooth,

k-dimensional surfaces have an intersection with positive H k measure, then their mean

curvatures coincide almost everywhere on that intersection. Thus it is reasonable to expect

that the same property holds for two integral k-varifolds having a non-negligible intersec-
tion. This locality property of the generalized mean curvature is, however, far from being

obvious, since varifolds, even the rectifiable ones, need not be regular at all. A famous

example due to K. Brakke [9] consists of a varifold with integer-valued multiplicity and

bounded generalized mean curvature, that cannot even locally be represented as a union

of graphs.

Previous contributions to the locality problem are the papers [4] and [17]. In [4], the

locality is proved for integral (n− 1)-varifolds in R
n with mean curvature in L p, where

p > n−1 and p ≥ 2. The result is strongly based on a quadratic tilt-excess decay lemma
due to R. Schätzle [16]. Taking two varifolds that locally coincide and whose mean curva-

tures satisfy the integrability condition above, the locality property is proved in [4] via the

following steps:

1. calculate the difference between the two mean curvatures in terms of the local be-

havior of the tangent spaces;

2. remove all points where both varifolds have same tangent space;

3. finally, show that the rest goes to zero in density, thanks to the decay lemma [16].

The limitation to the case of varifolds of codimension 1, whose mean curvature is in L p

with p > n−1, p ≥ 2, is not inherent to the locality problem itself, but rather to the technics
used in R. Schätzle’s paper [16] for proving the decay lemma.

A major improvement has been obtained by R. Schätzle himself in [17]. Indeed, he

shows that, in any dimension and codimension, and assuming only the L2
loc summability of

the mean curvature, the quadratic decays of both tilt-excess and height-excess are equiv-

alent to the C2-rectifiability of the varifold. Consequently, the locality property is shown

to hold for C2-rectifiable k-varifolds in R
n with mean curvature in L2, as stated in Corol-

lary 4.2 in [17]: let V1,V2 be integral k-varifolds in Ω ⊂ R
n open, with HVi ∈ L2

loc(‖Vi‖) for
i = 1,2. If the intersection of the supports of the varifolds is C2-rectifiable, then HV1 = HV2 for

H k-almost every point of the intersection.

A careful inspection of the proof of the locality in [4] and [17] shows the necessity of

controlling only those parts of the varifolds that do not contribute to the weight density,

but possibly to the curvature. However, the tilt-excess decay provides a local control of the

variation of tangent planes on the whole varifold, and is effective when the multiplicity

functions are integer-valued (i.e., in the case of integral varifolds). This observation has

led us to tackle the locality problem by means of different technics, in order to weaken the

requirement on the integrability of the mean curvature down to L1
loc. Our main results in

this direction are:

1. in the case of two integral 1-varifolds (in any codimension) with locally bounded first
variations, we prove that the two generalized curvature vectors coincide almost ev-

erywhere on the intersection of the supports (Theorem 2.1);
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2. in the general case of rectifiable k-varifolds, k > 1, we prove that if V1 = v(M1,θ1),
V2 = v(M2,θ2) are two rectifiable k-varifolds with locally bounded first variations, and
if there exists an open set A such that M1 ∩A ⊂ M2 and both θ1,θ2 are constant on

M1 ∩A, then the two generalized mean curvatures coincide H k-almost everywhere

on M1∩A (Theorem 3.4).

The strategy of proof consists of writing the total variation in a ball B in terms of a
(k−1)-dimensional integral over the sphere ∂B and showing that this integral can be well
controlled, at least for a suitable sequence of nested spheres whose radii decrease toward

zero.

The 1-dimensional result is somehow optimal, as the only required hypothesis is the lo-
cal boundedness of the first variation. Under this minimal assumption, we can prove that

there exists a sequence of nested spheres that meet only the intersection of the two vari-

folds, i.e. essentially the part that counts for the weight density. In other words, the parts

of the varifolds that do not contribute to the weight density do not either intersect these

spheres. This is a key argument to prove that the generalized curvature is essentially not

altered by the presence of these “bad” parts.

In the general k-dimensional case it is no more possible to prove the existence of nested
spheres that do not intersect at all the bad parts. But we are able to prove, under the extra

assumptions cited above, that the integral over the (k−1)-dimensional sections of the bad
parts with a suitable sequence of spheres is so small, that it does not contribute to the

mean curvature, and thus the locality holds true in this case.

The plan of the paper is as follows: in Section 1 we recall basic notations and main

facts about varifolds. Section 2 is devoted to the proof of the locality property for integral

1-varifolds in R
n with locally bounded first variation (Theorem 2.1), whose immediate con-

sequence is the fact that for any such varifold, the generalized curvature κ(x) coincides
with the classical curvature of any C2 curve that intersects the support of the varifold,

for H 1-almost all x in the intersection (Corollary 2.2). We also provide an example of a
1-varifold in R

2 whose generalized curvature belongs to L1 \
⋃

p>1L p. In Section 3 we first

derive two useful, local forms of the isoperimetric inequality for varifolds due to W.K. Al-

lard [1]. Then, we prove that for almost every r > 0, the integral of the mean curvature
vector in Br coincides with the integral of a conormal vector field along the sphere ∂Br,

up to an error due to the singular part of the first variation. These preliminary facts are

key ingredients to prove our locality result for k-varifolds in R
n (Theorem 3.4). Finally,

we discuss in Section 4 some applications of the locality property for varifolds, in partic-

ular to lower semicontinuity results for the Euler’s elastica energy and for Willmore-type

functionals that appear in elasticy and in computer vision.

Note to the reader: the preprint version of this paper contains an appendix where we have

collected, for the reader’s convenience, the statements and proofs due to W.K. Allard [1] of

both the fundamental monotonicity identity and the isoperimetric inequality for varifolds

with locally bounded first variation.

1 Notations and basic definitions

Let R
n be equipped with its usual scalar product 〈,〉. Let Gn,k be the Grassmannian of

all unoriented k-subspaces of R
n. We shall often identify in the sequel an unoriented k-

subspace S ∈ Gn,k with the orthogonal projection onto S, which is represented by the matrix
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Si j = 〈ei,S(e j)〉, {e1, . . . ,en} being the canonical basis of R
n. Gn,k is equipped with the metric

‖S−T‖ :=

(
n

∑
i, j=1

(Si j −T i j)2

) 1
2

For an open subset U ⊂ R
n we define Gk(U) = U ×Gn,k, equipped with the product metric.

By a k-varifold onU we mean any Radon measure V on Gk(U). Given a varifold V onU ,
a Radon measure ‖V‖ on U (called the weight of V ) is defined by

‖V‖(A) = V (π−1(A)), A ⊂U Borel,

where π is the canonical projection (x,S) 7→ x of Gk(U) onto U . We denote by Θk(‖V‖,x) the
k-dimensional density of the measure ‖V‖ at x, i.e.

Θk(‖V‖,x) = lim
r→0

‖V‖(Br(x))
ωkrk ,

ωk being the standard k-volume of the unit ball in R
k. Recall that Θk(‖V‖,x) is well defined

‖V‖-almost everywhere [18, 10].
GivenM, a countably (H k,k)-rectifiable subset of Rn [10, 3.2.14] (from now on, we shall

simply say k-rectifiable), and θ , a positive and locally H k-integrable function on M, we
define the k-rectifiable varifold V ≡ v(M,θ) by

V (A) =
∫

π(T M∩A)
θ dH

k, A ⊂ Gn(U) Borel,

where T M = {(x,TxM) : x ∈ M∗} and M∗ stands for the set of all x ∈ M such that M has an
approximate tangent space TxM with respect to θ at x, i.e.

lim
λ↓0

λ−k
∫

M
f (λ−1(z− x))θ(z)dH

k(z) = θ(x)
∫

TxM
f (y)dH

k(y), ∀ f ∈ C0
c(R

n).

Remark thatH k(M \M∗) = 0 and the approximate tangent spaces of M with respect to two
different positiveH k-integrable functions θ , θ̃ coincideH k-a.e. on M (see [18], 11.5).
Finally, it is straightforward from the definition above that

‖V‖ = θH
k M.

Whenever θ is integer valued, V = v(M,θ) is called an integral varifold.

Before giving the definition of the generalized mean curvature of a varifold, we recall that

for a smooth k-manifoldM ⊂R
n with smooth boundary, the following equality holds for any

X ∈ C1
c(R

n,Rn): ∫

M
divMX dH

k = −
∫

M
〈HM,X〉dH

k −
∫

∂M
〈η ,X〉dH

n−1, (1)

where HM is the mean curvature vector of M, and η is the inner conormal of ∂M, i.e. the
unit normal to ∂M which is tangent to M and points into M at each point of ∂M. The
formula involves the tangential divergence of X at x ∈ M which is defined by

divMX(x) :=
n

∑
i=1

∇M
i Xi(x) =

n

∑
i=1

〈ei,∇MXi(x)〉 =
k

∑
j=1

〈∇X(x)τ j, τ j〉,
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where {τ1, . . . ,τk} is an orthonormal basis for TxM, with ∇M f (x) = TxM(∇ f (x)) being the
projection of ∇ f (x) onto TxM.
The first variation δV of a k-varifold V onU is the linear functional on C1

c(U,Rn) defined
by

δV (X) :=
∫

Gk(U)
divSX dV (x,S), (2)

where, for any S ∈ Gn,k, we have set ∇SXi = S(∇Xi) and divSX = ∑n
i=1〈ei,∇SXi〉.

In the case of a k-rectifiable varifold V , δV (X) is actually the initial rate of change of the
total weight ‖V‖(U) under the smooth flow generated by the vector field X . More precisely,
let X ∈ C1

c(U,Rn) and Φ(y,ε) ∈ R
n be defined as the flow generated by X , i.e. the unique

solution to the Cauchy problem at each y ∈U

∂
∂ε

Φ(y,ε) = X(Φ(y,ε)), Φ(y,0) = y.

Then, one can consider the push-forwarded varifold Vε = Φ(·,ε)#V , for which one obtains

‖Vε‖(U) =
∫

U
JM

y Φ(y,ε)d‖V‖(y) =
∫

U
|1+ εdivMX(y)+o(ε)|d‖V‖(y),

where JM
y Φ(y,ε) = |det(∇M

y Φ(y,ε))| is the tangential Jacobian of Φ(·,ε) at y, and therefore

δV (X) =
∫

U
divMX(y)d‖V‖(y) =

d
dε

‖Vε‖(U)|ε=0

(see [18, §9 and §16] for more details).

A varifold V is said to have a locally bounded first variation in U if for each W ⊂⊂ U
there is a constant c < ∞ such that |δV (X)| ≤ csupU |X | for any X ∈ C1

c(U,Rn) with spt|X | ⊂W .
By the Riesz Representation Theorem, there exist a Radon measure ‖δV‖ on U - the total
variation measure of δV - and a ‖δV‖-measurable function ν : U →R

n with |ν |= 1 ‖δV‖-a.e.
in U satisfying

δV (X) = −
∫

U
〈ν ,X〉d‖δV‖ ∀X ∈ C1

c(U,Rn).

According to the Radon-Nikodÿm Theorem, the limit

D‖V‖‖δV‖(x) := lim
r→0

‖δV‖(Br(x))
‖V‖(Br(x))

exists for ‖V‖-a.e. x ∈ R
n. The generalized mean curvature of V is defined for ‖V‖-almost

every x ∈U as the vector

HV (x) = D‖V‖‖δV‖(x)ν(x) ≡ |HV (x)|ν(x).

It follows that, for every X ∈ C1
c(U,Rn),

δV (X) = −
∫

U
〈HV ,X〉d‖V‖−

∫

U
〈ν ,X〉d‖δV‖s, (3)

where ‖δV‖s := ‖δV‖ BV , with BV := {x ∈U : D‖V‖‖δV‖(x) = +∞}.
A varifold V is said to have mean curvature in L p if HV ∈ L p(‖V‖) and ‖δV‖ is absolutely

continuous with respect to ‖V‖. In other words,

HV ∈ L p ⇔





HV ∈ L p(‖V‖)

δV (X) = −
∫

U
〈HV ,X〉d‖V‖ for every X ∈ C1

c(U,Rn)
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When M is a smooth k-dimensional submanifold of R
n, with (M \M)∩U = /0, the diver-

gence theorem on manifolds implies that the generalized mean curvature of the varifold

v(M,θ0) for any positive constant θ0 is exactly the classical mean curvature of M, which
can be calculated as

H(x) = −∑
j

divM ν j(x)ν j(x), (4)

where {ν j(x)} j is an orthonormal frame for the orthogonal space (TxM)⊥.

We recall the coarea formula (see [18, 10]) for rectifiable sets in R
n and mappings from

R
n to R

m, m < n. LetM be a k-rectifiable set in R
n with k ≥m, θ : M → [0,+∞] a Borel function,

and f : U → R
m a Lipschitz mapping defined on an open set U ⊂ R

n. Then,

∫

x∈M∩U
JM f (x)θ(x)dH

k(x) =
∫

Rm

∫

y∈ f−1(t)∩M
θ(y)dH

k−m(y)dH
m(t), (5)

where JM f (x) denotes the tangential coarea factor of f at x ∈ M, defined for H k-almost

every x ∈ M by

JM f (x) =
√

det(∇M f (x) ·∇M f (x) t).

We also recall Allard’s isoperimetric inequality for varifolds (see [1]) as it will be crucial in

the following:

Theorem 1.1 (Isoperimetric inequality for varifolds) There exists a constant C > 0
such that, for every k-varifold V with locally bounded first variation and for every smooth
function ϕ ≥ 0with compact support in R

n,

∫

{x: ϕ(x)Θk(‖V‖,x)≥1}
ϕ d‖V‖ ≤C

(∫

Rn
ϕ d‖V‖

) 1
k
(∫

Rn
ϕ d‖δV‖ +

∫

Rn×Gn,k

|∇Sϕ|dV

)
. (6)

2 Integral 1-varifolds with locally bounded first variation

2.1 Locality property of the generalized curvature

We consider integral 1-varifolds of typeV = v(M,θ) inU ⊂R
n, whereM ⊂U is a 1-rectifiable

set and θ ≥ 1 is an integer-valued Borel function on M. Thus, ‖V‖ = θ H 1 M is a Radon
measure onU and we assume in addition that V has a locally bounded first variation, that
is, for any smooth vectorfield X ∈C1

c (R
n;Rn)

δV (X) =
∫

M
divMX d‖V‖ = −

∫

M
〈κ,X〉d‖V‖+δVs(X),

where δVs denotes the singular part of the first variation with respect to the weight mea-

sure ‖V‖. We now prove the following

Theorem 2.1 LetV1 = v(M1,θ1), V2 = v(M2,θ2) be two integral 1-varifolds with locally bounded
first variation. Then, denoting by κ1, κ2 their respective generalized curvatures, one has

κ1(x) = κ2(x) forH 1-almost every x ∈ S = M1∩M2.

PROOF Let x ∈ S satisfy the following properties:

1. x is a point of density 1 for M1,M2 and S;
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2. x is a Lebesgue point for θi and κiθi (i = 1,2);

3. lim
r→0

‖δVs‖(Br(x))
‖V‖(Br(x))

= 0 for V = V1,V2.

In particular, this means

lim
r→0

H 1
(
(Mi \S)∩Br(x)

)

2r
= 0 (7)

lim
r→0

1
2r

∫

y∈Mi∩Br(x)
|θi(y)−θi(0)|dH

1(y) = 0 (8)

lim
r→0

1
2r

∫

y∈Mi∩Br(x)
|κi(y)θi(y)−κi(0)θi(0)|dH

1(y) = 0 (9)

for i = 1,2 and with Br(x) denoting the ball of radius r and center x. Recall that H 1-a.e.

x ∈ S has such properties. Without loss of generality, we may assume that x = 0 and we
shall denote in the sequel Br = Br(0). In view of Property 3 above, we may also neglect the
singular part, i.e. assume that the varifolds have generalized curvatures in L1

loc.

Let us write the coarea formula (5) with f (x) = |x|, M = Mi \S and θ = θi, also observing

that

JM f (x) = |∇M f (x)| =
|xM|

|x|
≤ 1

where xM denotes the projection of x onto the tangent plane TxM. We obtain the inequality

‖Vi‖((Mi \S)∩Br) ≥
∫ r

0

∫

(Mi\S)∩∂Bt

θi dH
0 dt i = 1,2. (10)

By combining (7) and (8), one can show that

‖Vi‖((Mi \S)∩Br)

2r
=

1
2r

∫

(Mi\S)∩Br

θi dH
1−→0 as r → 0, i = 1,2, (11)

hence if we define

gi(t) =
∫

(Mi\S)∩∂Bt

θi dH
0, i = 1,2,

we find by (10) and (11) that 0 is a point of density 1 for the set Ti = {t > 0 : gi(t) = 0}, that
is,

lim
r→0

|Ti ∩ [0,r)|
r

= 1.

Therefore, by the fact that the measure H 0 is integer-valued we can find a decreasing

sequence (rk)k converging to 0 and such that rk is a Lebesgue point for both g1 and g2, with

g1(rk) = g2(rk) = 0, thus

lim
ε→0

1
ε

∫ rk

rk−ε
gi(t)dt = 0 ∀ i = 1,2. (12)

By arguing exactly in the same way, we can also assume that

lim
ε→0

1
ε

∫ rk

rk−ε
h(t)dt = 0, (13)

where

h(t) =
∫

y∈S∩∂Bt

|θ1(0)θ2(y)−θ2(0)θ1(y)|dH
0(y).
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Indeed, one can observe as before that the set

Q = {t > 0 : h(t) = 0}

has density 1 at t = 0, as it follows from the integrality of the multiplicity functions com-
bined with coarea formula and

lim
r→0

1
2r

∫

S∩Br

|θ1(0)θ2−θ2(0)θ1|dH
1 = 0,

this last equality being a consequence of (8). Therefore, rk can be chosen in such a way

that (13) holds, too. Now, for a given ξ ∈ R
n and 0 < ε < rk, we define the vector field

Xk,ε(x) = ηrk,ε(|x|)ξ , where ηr,ε is a C1 function defined on [0,+∞), with support contained in
[0,r) and such that

ηr,ε(t) = 1 if 0≤ t ≤ r− ε, ‖η ′
r,ε‖∞ ≤

2
ε
.

By applying the coarea formula (5) and recalling that ∇Mi |x| = xMi/|x|, we get
∫

Mi\S

∣∣∣η ′
rk,ε∇Mi |x|

∣∣∣θi dH
1 ≤

2
ε

∫ rk

rk−ε

∫

∂Bt∩(Mi\S)
θi dH

0 dt

=
2
ε

∫ rk

rk−ε
gi(t)dt.

Combining this last inequality with (12) and

divMiXk,ε(x) = η ′
rk,ε(x) 〈ξ ,

xMi

|x|
〉

implies

lim
ε→0

∫

(Mi\S)∩Brk

divMiXk,ε d‖Vi‖ = 0, ∀ i = 1,2, ∀k. (14)

At this point, we only need to show that the scalar product ∆ = 〈κ1(0)−κ2(0),ξ 〉 cannot be
positive, thus it has to be zero by the arbitrary choice of ξ . First, thanks to (9) we get

∆ =
1

θ1(0)θ2(0)
lim

k

(
θ2(0)

2rk

∫

M1∩Brk

〈ξ ,κ1〉d‖V1‖−
θ1(0)

2rk

∫

M2∩Brk

〈ξ ,κ2〉d‖V2‖

)
,

and, owing to the Dominated Convergence Theorem,

∆ =
1

θ1(0)θ2(0)
lim

k
lim
ε→0

(
θ2(0)

2rk

∫

M1∩Brk

〈Xk,ε ,κ1〉d‖V1‖−
θ1(0)

2rk

∫

M2∩Brk

〈Xk,ε ,κ2〉d‖V2‖

)
,

Therefore, by the definition of the generalized curvature we immediately infer that

∆ =
1

θ1(0)θ2(0)
lim

k
lim
ε→0

(
−

θ2(0)

2rk

∫

M1∩Brk

divM1Xk,ε d‖V1‖+
θ1(0)

2rk

∫

M2∩Brk

divM2Xk,ε d‖V2‖

)
. (15)

Noticing that divSG(x) = divM1G(x) = divM2G(x) for H 1-almost all x ∈ S, and thanks to (14),
one can rewrite (15) as

∆ =
1

θ1(0)θ2(0)
lim

k
lim
ε→0

(
1

2rk

∫

S∩Brk

divSXk,ε

(
θ1(0)θ2−θ2(0)θ1

)
dH

1

)
. (16)

Computing the tangential divergence of Xk,ε and, then, using the coarea formula (5) in (16),

gives

∆ ≤
|ξ |

θ1(0)θ2(0)
lim

k

1
rk

lim
ε→0

1
ε

∫ rk

rk−ε
h(t)dt = 0.

We conclude that ∆ = 0, hence κ1(0) = κ2(0), as wanted.
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A straightforward consequence of Theorem 2.1 is the following

Corollary 2.2 Let V = v(M,θ) be an integral 1-varifold in U ⊂ R
n, with locally bounded

first variation. Then the vector κ(x) coincides with the classical curvature of any C2 curve

γ, forH 1-almost all x ∈ γ ∩spt‖V‖.

2.2 A 1-varifold with generalized curvature in L1\Lp for all p > 1

Here we construct an integral 1-varifold in R
2 with generalized curvature in L1\L p for any

p > 1. This varifold is obtained as the limit of a sequence of graphs of smooth functions,
its support is C2-rectifiable (i.e., covered up to a negligible set by a countable union of

C2 curves, see [5, 17]) and, due to our Theorem 2.1, its generalized curvature coincides

H 1-almost everywhere with the classical one, as stated in Corollary 2.2 above.

Let ζ ∈C2([0,1]) with ζ 6= 0 and

ζ (0) = ζ ′(0) = ζ (1) = ζ ′(1) = 0.

Given λ > 0 and 0≤ a < b ≤ 1, define

ζa,b,λ (t) =

{
λ ζ
(

t−a
b−a

)
if t ∈ [a,b],

0 otherwise.

Let (an,bn)n≥2 be a sequence of nonempty, open and mutually disjoint subintervals of [0,1],
such that bn −an ≤ 2−n and

0 < ∑
n≥2

(bn −an) < 1.

In particular, the setC = [0,1]\
⋃

n(an,bn) is closed and has positiveL 1measure. We denote

by (λn)n a sequence of positive real numbers, that will be chosen later, and we set

ζn(t) = ζan,bn,λn
(t)

for t ∈ [0,1] and n ≥ 2. Then, we compute the integral of the p-th power of the curvature of
the graph of ζn over the graph itself, that is,

K p
n =

∫ bn

an

|ζ ′′
n (t)|p

[
1+ζ ′

n(t)
2
] 3p−1

2

dt.

Since

ζ ′
n(t) =

λn

bn −an
ζ ′

(
t −an

bn −an

)
,

ζ ′′
n (t) =

λn

(bn −an)2 ζ ′′

(
t −an

bn −an

)
,

and choosing 0≤ λn ≤ bn −an, we infer that the Lipschitz constant of ζn is bounded by that

of ζ , for all n ≥ 2. Therefore, there exists a uniform constant c ≥ 1 such that

c−1K p
n ≤

∫ bn

an

|ζ ′′
n (t)|p dt ≤ cK p

n ,

9



and therefore

c−1K p
n ≤ K

λ p
n

(bn −an)
2p−1 ≤ cK p

n ,

where

K =
∫ 1

0
|ζ ′′(t)|p dt > 0.

At this point, we look for λn satisfying

1. 0 < λn ≤ bn −an,

2. ∑
n≥2

K p
n < +∞ if and only if p = 1.

A possible choice for λn is given by

λn =
bn −an

n2 .

Indeed, up to multiplicative constants one gets

∑
n

K1
n = ∑

n

1
n2 < +∞ (17)

and

∑
n

K p
n ≥ ∑

n

2n(p−1)

n2p = +∞ (18)

for all p > 1. Now, define for t ∈ R

η(t) = ∑
n

ζn(t).

Thanks to (17) and (18), the 1-varifold V = v(G,1) associated to the graph G of η has gen-
eralized curvature in L1\Lp for all p > 1. Indeed, setting ηN = ∑N

n=2 ζn and letting GN be the

graph of ηN , one can verify that the 1-rectifiable varifolds VN = v(GN ,1) weakly converge to
V as N → ∞, and the same happens for the respective first variations:

δVN ⇀
N

δV,

thus for any open set A ⊂ (0,1)×R one has

‖δV‖(A) ≤ lim
N

‖δVN‖(A)

= lim
N

∫

A
|κN |1GN d‖V‖

=
∫

A
|κ|d‖V‖,

where 1GN is the characteristic function of GN and for (x,y) ∈ G we define κ(x,y) = κN(x,y)
for N large enough and y > 0 (the definition is well-posed, since the intervals (an,bn) are
pairwise disjoint) and κ(x,y) = 0whenever y = 0. This shows that V has generalized curva-
ture in L1. It is also evident from (18) that the curvature of V cannot belong to L p for p > 1.
Lastly, the C2-rectifiability comes fromH 1(sptV \

⋃
N≥2 GN) = 0.

An example of the construction of such varifold V is illustrated in Figure 1.
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b3 a2 b2

a3 b3 b2a2

a2 b2

a4 b4

a4 b4 a8b8a7 b7a6 b6a5 b5 a3

0 1

Figure 1: As a particular example, we take the sequence (an,bn) of all middle intervals in [0,1] of
size 2−2p−2 whenever 2p < n ≤ 2p+1, p = 0,1,2, . . .. The union of these intervals is the complement of
a Cantor-type set C with positive measureH 1(C) = 1

2. We have represented from top to bottom the

functions ζ2, ∑4
n=2 ζn and ∑8

n=2 ζn.

3 Rectifiable k-varifolds with locally bounded first variation

3.1 Relative isoperimetric inequalities for k-varifolds

The isoperimetric inequality for varifolds due to W.K. Allard [1] is recalled in Theorem 1.1.

We derive from it the following differential inequalities, that will be useful for studying

the locality of rectifiable k-varifolds.

Proposition 3.1 (Relative isoperimetric inequalities) LetV be a k-varifold in R
n, and

let A ⊂ R
n be an open, bounded set with Lipschitz boundary. Then,

‖V‖(A)
k−1

k ≤ C (‖δV‖(A)−D+‖V‖(A\Aε)|ε=0) , (19)

where Aε is the set of points of A whose distance from R
n \A is less than ε, and D+‖V‖(A \

Aε)|ε=0 denotes the lower right derivative of the non-increasing function ε → ‖V‖(A \Aε) at
ε = 0.
Moreover, if we define g(r) = ‖V‖(Br), then g is a non-decreasing (thus almost everywhere
differentiable) function, and it holds

g(r)
k−1

k ≤ C
(
‖δV‖(Br)+g′(r)

)
for almost all r > 0. (20)

PROOF Let ε > 0 and let ϕε : A → R be defined as

ϕε(x) = min(ε−1d(x,Rn \A),1).

Clearly, ϕε is a Lipschitz function with compact support in R
n. Approximating ϕε by a

sequence of non-negative, C1 functions with compact support in R
n, it follows from Allard’s

isoperimetric inequality (6) that

∫

{x: ϕε (x)Θk(‖V‖,x)≥1}
ϕε d‖V‖ ≤C

(∫

Rn
ϕε d‖V‖

) 1
k
(∫

Rn
ϕε d‖δV‖ +

∫

Rn×G(n,k)
|∇Sϕε |dV (x,S)

)

(21)

11



Clearly, we have |∇ϕε(x)| ≤ 1
ε on Aε := {x∈A : d(x,Rn\A)≤ ε}, therefore (21) can be rewritten

as

∫

A\Aε
d‖V‖ ≤

∫

{x: ϕε (x)Θk(‖V‖,x)≥1}
ϕε d‖V‖ ≤C

(∫

A
d‖V‖

) 1
k
(∫

A
d‖δV‖ +

1
ε

∫

Aε
d‖V‖

)
(22)

Now, since

lim
ε→0

∫

A\Aε
d‖V‖ =

∫

A
d‖V‖

and
1
ε

∫

Aε
d‖V‖ =

‖V‖(Aε)

ε
= −

‖V‖(A\Aε)−‖V‖(A)

ε
,

the Dominated Convergence Theorem allows us to take the limit in (22) as ε → 0, yielding

‖V‖(A)
k−1

k ≤C
(
‖δV‖(A)−D+‖V‖(A\Aε)|ε=0

)
.

Take now A ≡ Br and remark that A \Aε = Br−ε . Denoting g(r) = ‖V‖(Br), we deduce from
the monotonicity of g that it is almost everywhere differentiable. In particular, for almost
every r > 0, and using the fact that g(r−ε)−g(r) =−‖V‖(Aε) for almost every r > 0 (and for
every ε > 0), we get

g′(r) = − lim
ε→0

g(r− ε)−g(r)
ε

= lim
ε→0

‖V‖(Aε)

ε
. (23)

Then, (20) immediately follows from (23) and (19).

3.2 A locality result for rectifiable k-varifolds

First, we derive a useful formula for computing the generalized mean curvature of a recti-

fiable k-varifold. This formula will be crucial in the proof of our second locality result (The-
orem 3.4). More precisely, given a rectifiable k-varifold V = v(M,θ) with locally bounded
first variation, we show in the next proposition that the integral of the mean curvature on

a ball Br essentially coincides with the integral on the sphere ∂Br of the conormal η to M,
up to an error term due to the singular part of the first variation. Therefore, we obtain an

equivalent expression for the curvature at a Lebesgue point x0 ∈ M. Recall that xM denotes

the orthogonal projection of x onto TxM.

Proposition 3.2 Let x0 ∈R
n andV = v(M,θ) be a rectifiable k-varifold with locally bounded

first variation. Then, setting σ = θ H k−1 M, we get for almost every r > 0
∣∣∣∣
∫

Br(x0)
H d‖V‖+

∫

∂Br(x0)
η dσ

∣∣∣∣≤ ‖δV‖s(Br(x0)), (24)

where η(x) =

{
− xM

|xM | if |xM| 6= 0

0 elsewhere
is the inner conormal to M ∩Br(x0) at x ∈ M ∩ ∂Br(x0).

Consequently, if x0 ∈ M is a Lebesgue point for H, then

H(x0) = − lim
r→0+

1
‖V‖(Br(x0))

∫

∂Br(x0)
η dσ . (25)
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PROOF For simplicity, we assume that x0 = 0. Let us consider a Lipschitz cutoff function
βε : [0,+∞)→R such that βε(t) = 1 for t ∈ [0,r−ε], βε(t) = 1− t−r+ε

ε for t ∈ (r−ε,r] and βε(t) = 0
elsewhere. Then, choose a unit vector w ∈ R

n and define the vector field Xε = βε(|x|)w. The
definition of the generalized mean curvature yields

∫

Br

divMXεd‖V‖ = −
∫

Br

βε〈H,w〉d‖V‖+δVs(Xε),

and, thanks to our assumptions, we also have

∫

Br

divMXεd‖V‖ = −
1
ε

∫

Br\Br−ε

〈xM,w〉
|x|

d‖V‖

By the Dominated Convergence Theorem,

lim
ε→0

∫

Br

〈H,w〉βε d‖V‖ =
∫

Br

〈H,w〉d‖V‖, ∀r > 0.

Therefore, the derivative
d
dr

∫

Br

〈xM,w〉
|x|

d‖V‖

exists for almost all r > 0 as the limit of the difference quotient
1
ε

∫

Br\Br−ε

〈xM,w〉
|x|

d‖V‖ and,

in view of (3), one has

d
dr

∫

Br

〈xM,w〉
|x|

d‖V‖ =
∫

Br

〈H,w〉d‖V‖+
∫

Br

〈ν ,w〉d‖δVs‖.

Observe now that, denoting N := {x : |xM| = 0}, the coarea formula (5) gives

∫

Br

〈xM,w〉
|x|

d‖V‖ =
∫

Br\N

〈xM,w〉
|xM|

|xM|

|x|
d‖V‖ =

∫ r

0

∫

∂Bt\N

〈xM,w〉
|xM|

dσ dt

We deduce that, for every Lebesgue point of the integrable function t 7→
∫

∂Bt\N

〈xM,w〉
|xM|

dσ ,

d
dr

∫

Br

〈xM,w〉
|x|

d‖V‖ =
∫

∂Br\N

〈xM,w〉
|xM|

dσ

By the definition of the conormal η , we conclude that, for every vector w ∈ R
n,

∣∣∣∣
∫

Br

〈H,w〉d‖V‖+
∫

∂Br

〈η ,w〉dσ
∣∣∣∣≤ |w| ‖δVs‖(Br), for a.e. r > 0

or, equivalently,

∣∣∣∣
∫

Br

H d‖V‖+
∫

∂Br

η dσ
∣∣∣∣≤ ‖δVs‖(Br), for a.e. r > 0.

This proves (24) and, since
‖δVs‖(Br)

‖V‖(Br)
→ 0 as r → 0,

also (25) follows.
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Remark 3.3 In case δV has no singular part with respect to ‖V‖, (24) becomes

∫

Br(x0)
H d‖V‖ = −

∫

∂Br(x0)
η dσ , for almost every r > 0.

Below we prove a locality property for k-varifolds in R
n, k ≥ 2, requiring some extra hy-

potheses on the varifolds under consideration. The proof is quite different from that of

Theorem 2.1, mainly because the Hausdorff measure H k−1 is no more a discrete (count-

ing) measure. Our result gives a positive answer to the locality problem in any dimension

k ≥ 2 and any codimension, assuming that the support of one of the two varifolds is locally
contained into the other, and also that the two multiplicities are locally constant on the

intersection of the supports.

Theorem 3.4 Let Vi = v(Mi,θi), i = 1,2 be two rectifiable k-varifolds in U ⊂ R
n with locally

bounded first variations, and let H1,H2 denote their respective generalized mean curvatures.

Suppose that there exists an open set A ⊂U such that

1. M1∩A ⊂ M2,

2. θ1(x) and θ2(x) areH k-a.e. constant on M1∩A.

Then, H1(x) = H2(x) forH k-a.e. x ∈ M1∩A.

PROOF Up to multiplication by suitable constants, we may assume without loss of general-

ity that θ1(x) = θ2(x) = θ0 constant, forH k-almost every x ∈ M1∩A. Moreover, the theory of
rectifiable sets and of rectifiable measures ensures thatH k-a.e. point x ∈ M1∩A is generic
in the sense that it satisfies

1. Θk(‖Vi‖ (M2\M1),x) = 0 and Θk(‖Vi‖,x) = θ0 for i = 1,2;

2. x is a Lebesgue point for H1 and H2;

3. ‖δVs‖(Br(x)) = o(‖V‖(Br(x))) for V = V1,V2.

Suppose, without loss of generality, that x = 0 is a generic point ofM1∩A. Let r0 be such that

Br0 := Br0(0) ⊂ A, let M̃2 = M2\M1 and Ṽ2 = v(M̃2,θ2). Obviously, Ṽ2 is a rectifiable k-varifold,
but possibly δṼ2 has an extra singular part with respect to ‖Ṽ2‖. By (24), for almost every
0 < r < r0

∫

Br

H2d‖V2‖+o(‖V2‖(Br)) = −
∫

∂Br

η2dσ2 = −
∫

∂Br∩M1

η2dσ2−
∫

∂Br∩M̃2

η2dσ2. (26)

where σ2 = θ2H k−1 M2. Since both M1 and M2 are rectifiable, they have the same tangent

space atH k-almost every point ofM1∩A, thus η1 = η2 forH k-a.e. x ∈ M1∩A. Then, observe
that the coarea formula and the assumption θ2(x) = θ1(x) = θ0 H k-almost everywhere on

M1∩A yield, for almost every 0 < r < r0,

∫

∂Br∩M1

(θ2−θ1)dH
k−1 = 0

that is,

σ2(∂Br ∩M1) = σ1(∂Br) = θ0H
k−1(∂Br ∩M1),
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where σi = θi H
k−1 Mi, i = 1,2. We deduce by (24) that, for a.e. 0 < r < r0,

∫

∂Br∩M1

η2dσ2 =
∫

∂Br

η1dσ1 = −
∫

Br

H1d‖V1‖−o(‖V1‖(Br)).

Being x = 0 generic, we have

1
ωkrk

∫

Br

H2d‖V2‖ −→ θ0H2(0) as r → 0+ (27)

and

−
1

ωkrk

∫

∂Br∩M1

η2dσ2 =
1

ωkrk

∫

Br

H1d‖V1‖+o(1) −→ θ0H1(0) as r → 0+, (28)

thus, in view of (26), it remains to prove that

∫

∂Br∩M̃2

η2dσ2 = o(rk) – at least for a suitable

sequence of radii – to get the locality property at x = 0, i.e. that H1(0) = H2(0).

For every X ∈ C1
c(A,Rn), we observe that, by the definition of the first variation, and thanks

to the inclusion M1∩A ⊂ M2,

δV2(X) =
∫

M2

divM2X θ2 dH
k

=
∫

M̃2

divM̃2
X θ2dH

k +
∫

M1

divM1X θ1 dH
k

= δṼ2(X)+δV1(X),

hence

‖δṼ2‖(A) ≤ ‖δV1‖(A)+‖δV2‖(A).

Therefore, Ṽ2 has locally bounded first variation in A, like V1 and V2. Furthermore, using

the genericity of 0, one gets
‖δV1‖(Br)

ωkrk → θ0|H1(0)|

and
‖δV2‖(Br)

ωkrk → θ0|H2(0)|,

as r → 0, whence
‖δV1‖(Br)+‖δV2‖(Br) = O(rk),

and finally

‖δṼ2‖(Br) = O(rk). (29)

Let g(r) := ‖Ṽ2‖(Br). Since g(0) = 0 and g is non-decreasing on [0,+∞) – thus g has locally
bounded variation – it holds for every 0≤ α < β < r0

g(β )−g(α) =
∫ β

α
g′(t)dt + |Dsg|((α ,β ])

where g′(t)dt and Dsg are, respectively, the absolutely continuous part and the singular
part of the distributional derivative Dg. Besides, the coarea formula (5) yields

g(β )−g(α) =
∫

Bβ \Bα∩M̃2

d‖V2‖ ≥
∫

Bβ \Bα∩M̃2

|xM2|

|x|
d‖V2‖ =

∫ β

α

∫

∂Bt∩M̃2

dσ2 dt.
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Since Dsg and g′(t)dt are mutually singular, it follows that for almost every 0≤ α ,β < r0,

∫ β

α
g′(t)dt ≥

∫ β

α

∫

∂Bt∩M̃2

dσ2 dt,

therefore, by the Radon-Nikodÿm Theorem,

g′(r) ≥ σ2(∂Br ∩ M̃2), for a.e. 0 < r < r0.

We deduce that for almost every r ∈ (0,r0)

∣∣∣∣
∫

∂Br∩M̃2

η2dσ2

∣∣∣∣≤ σ2(∂Br ∩ M̃2) ≤ g′(r). (30)

Then, it follows from the relative isoperimetric inequality (20) that for almost every 0 <
r < r0

g(r)
k−1

k ≤C
(
‖δṼ2‖(Br(x))+g′(r)

)
,

thus, by (29), for another suitable constant still denoted by C,

g(r)
k−1

k ≤C(rk +g′(r)), (31)

At the same time, the genericity of x = 0 and the assumption Θk(H k M̃2,x) = 0 give

g(r) = o(rk). (32)

Let N be the set of real numbers in (0,r0) such that (30) and (31) hold. Clearly, N has
full measure in (0,r0). To conclude, we need to show that there exists a sequence of radii
(rh)h∈N ∈ N decreasing to 0, such that

g′(rh) = o(rk
h). (33)

By contradiction, suppose that there exist a constant C1 > 0 and a radius 0 < r1 < r0, such

that g′(r) ≥ C1rk for every r ∈ N ∩ (0,r1). Then, by (31) and for an appropriate constant
C2 > 0,

g(r)
k−1

k ≤C2g′(r)

thus, for a.e. 0 < r < r1,

g(r)
1−k

k g′(r) ≥
1

C2
.

Observing that g(r) is non-decreasing and g(0) = 0, we can integrate both sides of the
inequality between 0 and r, to obtain

k g(r)
1
k ≥

r
C2

,

i.e. g(r) ≥
rk

(C2k)k , in contradiction with the fact that g(r) = o(rk). In conclusion, by (30) and

(33), there exists a sequence of radii (rh)h∈N decreasing to 0 such that (32) holds and
∫

∂Brh∩M̃2

η2dσ2 = o(rk
h).

Combining with (26), (27) and (28), we conclude the proof.
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Corollary 3.5 LetVM = v(M,θM), be a rectifiable k-varifold with positive density and locally
bounded first variation, such that

1. there exist an open set A ⊂ R
n and a C2 k-manifold S such that S∩A ⊂ M,

2. θM(x) ≡ θ0 constant forH k-a.e. x ∈ S∩A

Then, HM(x) = HS(x) forH k-almost every x ∈ S∩A, where HM and HS denote, respectively, the

generalized mean curvature of VM and the classical mean curvature of S.

PROOF It is an obvious consequence of the previous theorem by simply observing that,

thanks to the divergence theorem for smooth sets, the classical mean curvature HS of S
coincides with the generalized mean curvature of the varifold v(S,θ0).

4 Applications

4.1 Lower semicontinuity of the elastica energy for curves in R
n

Let E be an open subset of R2 with smooth boundary ∂E and let us consider the functional

F (E) =
∫

∂E
(α +β |κ∂E(y)|p)dH

1(y),

where p ≥ 1, κ∂E(y) denotes the curvature at y ∈ ∂E and α ,β are positive constants. This
functional is an extension to boundaries of smooth sets and to different curvature expo-

nents of the celebrated elastica energy
∫

γ
(α +βκ2)dH

1

that was proposed in 1744 by Euler to study the equilibrium configurations of a thin,

flexible beam γ subjected to end forces. This energy, mainly used in elasticity theory, has
also appeared to be of interest for a shape completion model in computer vision [14, 15].

Let F denote the lower semicontinuous envelope – the relaxation – of F with respect

to L1 convergence, i.e. for any measurable bounded subset E ⊂ R
2,

F (E) = inf{liminf
h→∞

F (Eh), Eh ⊂ R
2 open, ∂Eh ∈ C2, |Eh∆E| → 0},

where |Eh∆E| denotes the Lebesgue 2-dimensional outer measure of the symmetric differ-
ence of the sets Eh and E.
Many properties of F and F have been carefully studied in [6, 7, 8]. In particular,

it has been proved in [6] that, whenever E, (Eh)h ⊂ R
2, ∂E, (∂Eh)h ∈ C2 and |Eh∆E| → 0 as

h → 0, then
∫

∂E
(α +β |κ∂E |

p)dH
1 ≤ liminf

h→∞

∫

∂Eh

(α +β |κ∂Eh
|p)dH

1 for any p > 1.

This lower semicontinuity result is proved through a parameterization procedure that can

be extended to the case of sets whose boundaries can be decomposed as a union of non

crossingW2,p curves. As a consequence, F (E) = F (E) for any E in this class [6].
Thanks to Theorem 2.1, we can easily prove the lower semicontinuity of the p-elastica

energy for curves in R
n, n ≥ 2, and for p ≥ 1, thus getting an affirmative answer also for

the case p = 1. In this context, it is more appropriate to use the convergence in the sense
of currents (see [18, 10] for the definitions and properties of currents), and the following

result ensues:
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Theorem 4.1 Let (Ck)k∈N with Ck =
⋃

i∈I(k)Ck,i be a uniformly bounded sequence of countable

collections of disjoint, closed and simple C2 curves in R
n converging in the sense of currents

to a countable collection of disjoint, closed and simple C2 curves C =
⋃

i∈I Ci and satisfying

sup
k∈N

∑
i∈I(k)

∫

Ck,i

(1+ |κCk,i |
p)dH

1 < +∞.

Then, for α ,β ≥ 0,

∑
i∈I

∫

Ci

(α +β |κCi |
p)dH

1 ≤ liminf
k→∞ ∑

i∈I(k)

∫

Ck,i

(α +β |κCk,i |
p)dH

1 for every p ≥ 1.

PROOF With the notations of Section 1, we consider the sequence of varifolds Vk = v(Ck,1).
As an obvious consequence of our assumptions, the Vk’s have uniformly bounded first vari-

ation and their generalized curvature is in L p(‖Vk‖). By Allard’s Compactness Theorem for
rectifiable varifolds [1, 18], and possibly taking a subsequence, we get that (Vk) converges
in the sense of varifolds to an integral varifold V with locally bounded first variation. In
addition, by Theorem 2.34 and Example 2.36 in [3]

1. if p > 1 then the absolute continuity of δVk with respect to ‖Vk‖ passes to the limit,
i.e. V has generalized curvature in L p, and

∫

Rn
(α +β |κV |

p)d‖V‖ ≤ liminf
k→∞ ∑

i∈I(k)

∫

Ck,i

(α +β |κCk,i |
p)dH

1;

2. if p = 1, then δV may not be absolutely continuous with respect to V , but the lower
semicontinuity of both measures ‖δV‖ and ‖V‖ implies that

∫

Rn
(α +β |κV |)d‖V‖ ≤ α‖V‖(Rn)+β‖δV‖(Rn) ≤ liminf

k→∞ ∑
i∈I(k)

∫

Ck,i

(α +β |κCk,i |)dH
1.

Besides, as the convergence of the curves holds in the sense of currents, we know that

H 1 C = ‖VC ‖ ≤ ‖V‖, where VC = v(C ,1). Since both VC and V have locally bounded first
variation, it is a consequence of Theorem 2.1 that the curvatures of VC and V coincide
H 1-almost everywhere on C . In conclusion, for every p ≥ 1,

∑
i∈I

∫

Ci

(α +β |κCi |
p)dH

1 ≤
∫

Rn
(α +β |κV |

p)d‖V‖ ≤ liminf
k→∞ ∑

i∈I(k)

∫

Ck,i

(α +β |κCk,i |
p)dH

1

and the theorem ensues.

Remark 4.2 Using the same kind of arguments, the result can be extended to unions of

W2,p curves in R
n, p ≥ 1.

Remark 4.3 In higher dimension, the elastica energy becomes the celebrated Willmore

energy [19], that can also be generalized to arbitrary mean curvature exponent under the

form ∫

S
(α +β |HS|

p)dH
k.

with S a smooth k-surface in R
n and HS its mean curvature vector. Our partial locality

result for rectifiable k-varifolds in R
n is not sufficient to prove the extension to smooth k-

surfaces of the semicontinuity result for curves stated above. This is due to the fact that
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the limit varifold obtained in the proof of Theorem 4.1 might not have a locally constant

multiplicity. For instance, consider the varifold V̂ obtained by adding the horizontal x-
axis (with multiplicity 1) to the varifold V that we have built in section 2.2. Then, one
immediately observes that the x-axis is contained in the support of ‖V̂‖, but the multiplicity
θ̂ of V̂ is not locally constant at the points corresponding to the “fat” Cantor set (θ̂ takes
both values 1 and 2 in any neighbourhood of such points). Therefore, Theorem 3.4 cannot
be directly used in this situation.

However, we may reasonably conjecture that a more general locality property for k-
varifolds holds under the sole hypothesis of locally bounded first variation. This would

also imply the validity of the lower semicontinuity result in any dimension k and codimen-
sion n− k, and for any p ≥ 1. Currently, to our best knowledge, the most general lower
semicontinuity result for the case k > 1 is due to R. Schätzle [17, Thm 5.1] and is valid
when p ≥ 2.

4.2 Relaxation of functionals for image reconstruction

Recall that for any smooth function u : R
n → R and for almost every t ∈ R, ∂{u ≥ t} is a

union of smooth hypersurfaces whose mean curvature at a point x is given by

H(x) = div
∇u
|∇u|

(x).

Thus, for any open set Ω ⊂ R
n and by application of the coarea formula, we get

∫ +∞

−∞

∫

Ω∩∂{u≥t}
(1+ |H∂{u≥t}|

p)dH
n−1 dt =

∫

Ω
|∇u|(1+ |div

∇u
|∇u|

|p)dx,

where the integrand of the right term is taken to be zero whenever |∇u| = 0. Denoting

F (u) :=
∫

Ω
|∇u|(1+ |div

∇u
|∇u|

|p)dx, this energy has been proposed in the context of digital

image processing [12, 11, 13] as a variational criterion for the restoration of missing parts

in an image. It is therefore natural to study the connections between F (u), and its relax-
ation F (u) with respect to the convergence of functions in L1 . In particular, the question

whetherF (u) = F (u) for smooth functions has been addressed in [4] and a positive answer
has been given whenever n ≥ 2 and p > n−1. Following the same proof line combined with
our Theorem 4.1 and with Schätzle’s Theorem 5.1 in [17], one can prove the following :

Theorem 4.4 Let u ∈ C2(Rn). Then

F (u) = F (u) whenever

{
n = 2 and p ≥ 1 or

n ≥ 3 and p ≥ 2

PROOF Let (uh)h∈N ⊂ L1(Rn)∩C2(Rn) converge to u in L1(Rn) and set L := liminf
h→∞

F (uh), as-

suming with no loss of generality that L < ∞. Using Cavalieri’s formula and possibly taking
a subsequence, it follows that for almost every t ∈ R,

1{uh≥t} → 1{u≥t} in L1(Rn).

Observing that, by Sard’s Lemma, {uh ≥ t}, h ∈ N, and {u ≥ t} have smooth boundaries for
almost every t ∈ R, we get that ∂{uh ≥ t} converges to ∂{u ≥ t} in the sense of rectifiable
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currents for almost every t ∈R [18]. Therefore, applying either Theorem 4.1 or Theorem 5.1

in [17], we obtain that for almost every t ∈ R

∫

∂{u≥t}
(1+ |H{u≥t}|

p)dH
n−1 ≤ liminf

h→∞

∫

∂{uh≥t}
(1+ |H{uh≥t}|

p)dH
n−1

whenever

{
n = 2 and p ≥ 1 or

n ≥ 3 and p ≥ 2

Integrating over R and using Fatou’s lemma, we get

F (u) ≤ liminf
h→∞

F (uh),

thus F is lower semicontinuous in the class of C2 functions and coincides with F on that

class.

A Monotonicity identity and isoperimetric inequality

See the note to the reader at the end of the introduction.

In this section we recall some fundamental results of the theory of varifolds, which can be

found in [1] (see also [18, 10]). We also provide their proofs, for convenience of the reader.

The first result is the following

Theorem A.1 (Monotonicity identity) Let V be a k-varifold in R
n with locally bounded

first variation. Denoting µ(t) := ‖V‖(Bt) and

Q(t) =
k
t
−

1
tµ(t)

d
dt

∫

Bt×Gn,k

|xS|
2

|x|
dV (x,S), (34)

it holds

µ(r)
rk exp

(∫ r

ρ
Q(t)dt

)
−

µ(ρ)

ρk =
∫

(Br\Bρ )×Gn,k

|xS⊥ |

|x|k+2 exp

(∫ |x|

ρ
Q(t)dt

)
dV (x,S) (35)

Formula (35) shows the interplay between some crucial quantities associated to a varifold

V with locally bounded first variation δV . The local boundedness of δV is needed basically
to apply Riemann-Stieltjes integration by parts, and is meaningful also in the following

key estimate:

|Q(t)| ≤
‖δV‖(Bt)

‖V‖(Bt)
. (36)

In particular, from (35) and (36) one deduces that any stationary varifold V , i.e. such that
δV = 0, must satisfy the well-known monotonicity inequality

µ(r)
rk −

µ(ρ)

ρk =
∫

(Br\Bρ )×Gn,k

|xS⊥ |

|x|k+2 dV (x,S) ≥ 0, 0 < ρ < r < ∞. (37)

Identity (35) holds for balls centered at a point a ∈ R
n close to the support of the varifold,

and will be obtained following the technique sketched here (with the assumption a = 0):

1. the first variation is calculated on a smooth, radially symmetric vector field gθ (x) =
θ(|x|)x, where θ ∈ D(R);
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2. the term δV (gθ ) is, then, written in two equivalent forms, only using the fact that
|x|2 = |xS|

2 + |xS⊥ |
2, where xS and xS⊥ denote, respectively, the tangential and the or-

thogonal component of the vector x with respect to the k-plane S;

3. the resulting identity is represented in terms of one-dimensional Riemann-Stieltjes

integrals, and then interpreted as the nullity of a certain distribution Ψ(θ);

4. finally, to obtain (35) one has to test the null distribution Ψ on a suitably chosen,
absolutely continuous function f : [ρ,r] → R, with 0 < ρ < r < ∞.

Then, (35) can be used to prove the following general isoperimetric inequality

Theorem A.2 (Isoperimetric inequality for varifolds) There exists a constant C > 0
such that, for every k-varifold V with locally bounded first variation and every ϕ ∈ D(Rn),
ϕ ≥ 0,

∫

{x: ϕ(x)Θk(‖V‖,x)≥1}
ϕ d‖V‖ ≤C

(∫

Rn
ϕ d‖V‖

) 1
k
(∫

Rn
ϕ d‖δV‖ +

∫

Rn×Gn,k

|∇Sϕ|dV

)
(38)

The localization of this inequality yields the relative isoperimetric inequality (19) shown

in section 3.

A.1 Basic facts on Riemann-Stieltjes integrals and consequences

Before entering the proof of (35), we recall some basic facts concerning Riemann-Stieltjes

integrals of functions of one real variable (see 2.5.17 and 2.9.24 in [10]) and show how they

can be used to represent integrals of certain functions with respect to Radon measures on

R
n or R

n ×Gn,k. Suppose that g : [a,b]→ R is a function of bounded variation, then for every

continuous function f : [a,b] → R one can define the Riemann-Stieltjes integral

∫ b

a
f (t)dg(t) = sup

N

∑
i=1

f (ti)(g(ai+1)−g(ai)), (39)

where the supremum is calculated over all subdivisions a1 = a < a2 < · · · < aN+1 = b and all
t1, . . . , tN such that ti ∈ [ai,ai+1], for i = 1, . . . ,N.

Proposition A.3 [10, 2.9.24] Let f ,θ : [a,b] → R be continuous functions and assume θ is
absolutely continuous on [a,b]. Then

∫ b

a
f (t)dθ(t) =

∫ b

a
f θ ′ dL

1. (40)

Moreover, if g has bounded variation in [a,b] then

∫ b

a
gθ ′ dL

1 +
∫ b

a
θ(t)dg(t) = g(b)θ(b)−g(a)θ(a). (41)

Next, we apply the Riemann-Stieltjes integral to reduce integrals with respect to Radon

measures defined on the Grassmann bundle R
n × Gn,k to one-dimensional integrals, as

shown in the following
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Proposition A.4 Let V be a k-varifold, let ϕ : R
n ×Gn,k → R be non-negative and measur-

able, and let θ be absolutely continuous on [ρ,r]. Then
∫

(Br\Bρ )×Gn,k

θ(|x|)ϕ(x,S)dV (x,S) =
∫ r

ρ
θ(t)dg(t), (42)

where we have set

g(t) =
∫

(Bt\Bρ )×Gn,k

ϕ(x,S)dV (x,S).

PROOF Simply write the integral in the left-hand side of (42) as a sum of integrals over

differences of concentric balls. Then, the proof follows from (39).

In the following lemma, we introduce some special functions of one real variable that will

be used later in the proof of the monotonicity identity (35). We first define an opportune

test vector field Xt,ε(x): given

ηε(r) =





1 if r ≤ 1

1− (r−1)/ε if 1 < r ≤ 1+ ε
0 otherwise,

we set for t,ε > 0 and x ∈ R
n

Xt,ε(x) = ηε(t
−1|x|)x. (43)

Given a k-plane S, we compute

divSXt,ε(x) = k ηε(t
−1|x|)−

1
εt

|xS|
2

|x|
1Bt(1+ε)\Bt

(x).

Lemma A.5 Let V be a varifold with locally bounded first variation δV . Given t ∈ R, we

define

µ(t) =
∫

Bt×Gn,k

dV (x,S) (44)

ξ (t) =
∫

Bt×Gn,k

|xS⊥ |
2

|x|
dV (x,S) (45)

ν(t) = kµ(t)−
d
dt

∫

Bt×Gn,k

|xS|
2

|x|
dV (x,S) (46)

for t > 0, and zero elsewhere, with the convention that the integrands are zero in (45) and
(46) whenever x = 0. Then, the functions defined above are right-continuous and of bounded
variation on R. Moreover, the function Q(t) = ν(t)

t µ(t) , defined when t and µ(t) are both positive,

satisfies Q(t) ≤ ‖δV‖(Bt)
µ(t) .

PROOF Clearly, µ(t) and ξ (t) are right-continuous and non-decreasing, thus of bounded
variation. On the other hand, one can easily see that, for almost all t > 0,

ν(t) = lim
ε→0+

δV (Xt,ε).

Therefore, by taking 0 < r < t one has

|ν(t)−ν(r)| = | lim
ε→0+

δV (Xt,ε −Xr,ε)|

≤ liminf
ε→0+

t(1+ ε)‖δV‖(Bt(1+ε) \Br)

= t[‖δV‖(Bt)−‖δV‖(Br)].
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Since ‖δV‖ is a Radon measure, we conclude that ν(t) is of bounded variation. Moreover,
one has

limsup
t→r+

|ν(t)−ν(r)| ≤ lim
t→r+

t[‖δV‖(Bt)−‖δV‖(Br)] = 0,

hence ν(t) is right-continuous at almost all t ∈ R. The last assertion about Q(t) is also an
immediate consequence of the previous estimates on ν(t).

A.2 Proof of the monotonicity identity (35)

We test the first variation of V on a radial vector field Y of the form Y (x) = θ(|x|)x, where
θ ∈D(R). A simple approximation argument shows that the support of θ ′may even contain

0 for the proof below to be valid, thus all functions θ ∈D(R) are allowed for testing. Hence,
setting t = |x| we have

δV (Y ) =
∫

Gk(Rn)
divSY (x)dV (x,S) =

∫

Gk(Rn)
[θ ′(t)

|xS|
2

t
+ kθ(t)]dV (x,S). (47)

Thanks to the identity |x|2 = |xS|
2 + |xS⊥ |

2 we rewrite the right-hand side of (47) as follows

∫

Gk(Rn)
[θ ′(t)

|xS|
2

t
+ kθ(t)]dV (x,S) =

∫

Gk(Rn)
[t θ ′(t)+ kθ(t)]dV (x,S)−

∫

Gk(Rn)
θ ′(t)

|xS⊥ |
2

t
dV (x,S).

(48)

Defining µ(t), ξ (t), ν(t) as in Lemma A.5, and owing to Propositions A.3 and A.4, we can
write (48) as

−
∫

ν(t)θ ′(t)dt =
∫

tθ ′(t)dµ(t)− k
∫

µ(t)θ ′(t)dt −
∫

θ ′(t)dξ (t). (49)

Integrating by parts (see formula (41)) we obtain
∫

[ν(t)− kµ(t)]θ ′(t)dt +
∫

θ ′(t) tdµ(t)−
∫

θ ′(t)dξ (t) = 0. (50)

In other words, let Ψ ∈ D ′(R) be the distribution defined by

Ψ(θ) =
∫

[ν(t)− kµ(t)]θ(t)dt +
∫

θ(t) tdµ(t)−
∫

θ(t)dξ (t).

Clearly, (50) says that the distributional derivative of Ψ is zero, hence Ψ must be equal to
a constant c ∈ R. On the other hand, choosing θ(t) = 0 for all t ≥ 0 one concludes that c = 0,
that is,

Ψ(θ) =
∫

[ν(t)− kµ(t)]θ(t)dt +
∫

θ(t) tdµ(t)−
∫

θ(t)dξ (t) = 0 (51)

for all θ ∈D(R). By approximation, one gets (51) valid for all absolutely continuous θ with
compact support in R. Another integration by part as in (41) lets us write (51) in the form

∫ r

ρ
{[ν(t)− kµ(t)] f (t)− (t f (t))′µ(t)}dt + r f (r)µ(r)−ρ f (ρ)µ(ρ) =

∫ r

ρ
f (t)dξ (t), (52)

which is true for any absolutely continuous function f : [ρ,r] → R.

To conclude, we only need to choose f (t) in order that the first integral in (52) becomes
zero. Another requirement is the term ρ f (ρ) to be equal to ρ−k. In conclusion, we simply

take f (t) as the solution to the following Cauchy problem:
{

µ(t)(t f (t))′ = [ν(t)− kµ(t)] f (t) t ∈ [ρ,r],

f (ρ) = ρ−k−1,
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that is,

f (t) = t−k−1exp
∫ t

ρ

ν(τ)

τ µ(τ)
dτ. (53)

Defining Q(t) = ν(t)
t µ(t) for t > 0 and plugging (53) into (52), one obtains (35) as wanted.

A.3 Proof of the isoperimetric inequality (38)

Define the varifold Vϕ = ϕV , such that

Vϕ(α) =
∫

α(x,S)ϕ(x)dV (x,S)

for all α ∈ C0
c(R

n ×Gn,k), and assume that ‖δVϕ‖ is a Radon measure (otherwise the result
holds trivially). Fix λ ∈ (1,+∞) and define a suitable radius

s =

(
λ‖Vϕ‖(R

n)

ωk

) 1
k

.

Take a ∈ R
n and suppose θ(a)ϕ(a) ≥ 1. The monotonicity identity (35) thus implies

exp
∫ s

r
Qϕ(t)dt ≥

sk

rk

‖Vφ‖(B(a,r))

‖Vφ‖(B(a,s))
, (54)

where Qϕ(t) is defined as in (34), with Vϕ replacing V . From (54) we infer that

liminf
r→0+

exp
∫ s

r
Qϕ(t)dt ≥ ωkθ(a)ϕ(a)

sk

‖Vφ‖(B(a,s))

≥ ωkθ(a)ϕ(a)
sk

‖Vφ‖(Rn)

= θ(a)ϕ(a)λ
≥ λ ,

that is,

liminf
r→0+

∫ s

r
Qϕ(t)dt ≥ logλ > 0.

From Lemma A.5 and the previous inequality, we get

liminf
r→0+

∫ s

r

‖δVϕ‖(B(a, t))

‖Vϕ‖(B(a, t))
dt ≥ logλ ,

thus for any 0 < ε < logλ there exists r̂ = r̂(a,ε) such that, for all 0 < r < r̂,

∫ s

r

‖δVϕ‖(B(a, t))

‖Vϕ‖(B(a, t))
dt ≥ logλ − ε,

whence the existence of t̂ ∈ (0,s) for which

s
‖δVϕ‖(B(a, t̂))

‖Vϕ‖(B(a, t̂))
≥ logλ − ε (55)
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holds true. By the Besicovich Covering Theorem we deduce

‖Vϕ‖({a : θ(a)ϕ(a) ≥ 1}) ≤CB
s

logλ − ε
‖δVϕ‖(R

n) = CB
‖Vϕ‖(R

n)
1
k

ω
1
k

k

λ 1
k

logλ − ε
‖δVϕ‖(R

n). (56)

Therefore, the minimization of the function λ → λ
1
k

logλ−ε on the interval (exp(ε),+∞) leads to

the optimal choice λ̃ = exp(k + ε), for which

λ̃ 1
k

logλ̃ − ε
=

exp(1+ ε/k)
k

.

Then, passing to the limit in (56) as ε → 0+, we obtain

∫

{a: ϕ(a)θ(a)≥1}
ϕ d‖V‖ ≤C

(∫
ϕ d‖V‖

) 1
k

‖δVϕ‖(R
n).

Combining with

‖δVϕ‖(R
n) ≤

∫
ϕ d‖δV‖+

∫
|∇Sϕ(x)|dV (x,S),

we obtain (38).
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