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Synonyms

– Disocclusion
– Completion
– Filling-in
– Error concealment

Related Concepts

– Texture synthesis

Definition

Given an image and a region Ω inside it, the inpainting problem consists
in modifying the image values of the pixels in Ω so that this region does not
stand out with respect to its surroundings. The purpose of inpainting might be
to restore damaged portions of an image (e.g. an old photograph where folds and
scratches have left image gaps) or to remove unwanted elements present in the
image (e.g. a microphone appearing in a film frame). See figure 1. The region Ω
is always given by the user, so the localization of Ω is not part of the inpainting
problem. Almost all inpainting algorithms treat Ω as a hard constraint, whereas
some methods allow some relaxing of the boundaries of Ω.

This definition, given for a single-image problem, extends naturally to the
multi-image case therefore this entry covers both image and video inpainting.
What is not however considered in this text is surface inpainting (e.g. how to fill
holes in 3D scans), although this problem has been addessed in the literature.

Fig. 1. The inpainting problem. Left: original image. Middle: inpainting mask
Ω, in black. Right: an inpainting result. Figure taken from [20].

Background



The term inpainting comes from art restoration, where it is also called re-
touching. Medieval artwork started to be restored as early as the Renaissance,
the motives being often as much to bring medieval pictures “up to date” as to
fill-in any gaps. The need to retouch the image in an unobtrusive way extended
naturally from paintings to photography and film. The purposes remained the
same: to revert deterioration (e.g. scratches and dust spots in film), or to add or
remove elements (e.g. the infamous “airbrushing” of political enemies in Stalin-
era U.S.S.R). In the digital domain, the inpainting problem first appeared under
the name “error concealment” in telecommunications, where the need was to
fill-in image blocks that had been lost during data transmission. One of the first
works to address automatic inpainting in a general setting dubbed it “image
disocclusion,” since it treated the image gap as an occluding object that had to
be removed, and the image underneath would be the restoration result. Popular
terms used to denote inpainting algorithms are also “image completion” and
“image fill-in”.

Application

The extensive literature on digital image inpainting may be roughly grouped
into three categories: patch-based, sparse, and PDEs/variational methods.

From texture synthesis to patch-based inpainting

Efros and Leung [14] proposed a method that, although initially intended for
texture synthesis, has proven most effective for the inpainting problem. The
image gap is filled-in recursively, inwards from the gap boundary: each “empty”
pixel P at the boundary is filled with the value of the pixel Q (lying outside the
image gap, i.e. Q is a pixel with valid information) such that the neighborhood
Ψ(Q) of Q (a square patch centered in Q) is most similar to the (available)
neighborhood Ψ(P ) of P . Formally, this can be expressed as an optimization
problem:

Output(P ) = V alue(Q), P ∈ Ω, Q /∈ Ω, Q = arg min d(Ψ(P ), Ψ(Q)), (1)

where d(Ψ(P ), Ψ(Q)) is the Sum of Squared Differences (SSD) among the patches
Ψ(P ) and Ψ(Q) (considering only available pixels):

d(Ψ1, Ψ2) =
∑
i

∑
j

|Ψ1(i, j)− Ψ2(i, j)|2, (2)

and the indices i, j span the extent of the patches (e.g. if Ψ is an 11× 11 patch
then 0 ≤ i, j ≤ 10. Once P is filled-in, the algorithm marchs on to the next pixel
at the boundary of the gap, never going back to P (whose value is, therefore, not
altered again). See Figure 2 for an overview of the algorithm and Figure 3 for an
example of the outputs it can achieve. The results are really impressive for a wide
range of images. The main shortcomings of this algorithm are its computational
cost, the selection of the neighborhood size (which in the original paper is a
global user-selected parameter, but which should change locally depending on



image content), the filling order (which may create unconnected boundaries for
some objects) and the fact that it cannot deal well with image perspective (it
was intended to synthesize frontal textures, hence neighborhoods are compared
always with the same size and orientation). Also, results are poor if the image
gap is very large and disperse (e.g. an image where 80% of the pixels have been
lost due to random salt and pepper noise).

Fig. 2. Efros and Leung’s algorithm overview (figure taken from [14]). Given
a sample texture image (left), a new image is being synthesized one pixel at a
time (right). To synthesize a pixel, the algorithm first finds all neighborhoods in
the sample image (boxes on the left) that are similar to the pixels neighborhood
(box on the right) and then randomly chooses one neighborhood and takes its
center to be the newly synthesized pixel.

Criminisi et al. [12] improved on this work in two aspects. Firstly, they
changed the filling order from the original “onion-peel” fashion to a priority
scheme where empty pixels at the edge of an image object have higher prior-
ity than empty pixels on flat regions. Thus, they are able to correctly inpaint
straight object boundaries which could have otherwise ended up disconnected
with the original formulation. See Figure 4. Secondly, they copy entire patches
instead of single pixels, so this method is considerably faster. Several shortcom-
ings remain, though, like the inability to deal with perspective and the need to
manually select the neighborhood size (here there are two sizes to set, one for the
patch to compare with and another for the patch to copy from). Also, objects
with curved boundaries may not be inpainted correctly.

Ashikhmin [2] contributed as well to improve on the original method of Efros
and Leung [14]. With the idea of reducing the computational cost of the proce-
dure, he proposed to look for the best candidate Q to copy its value to the empty
pixel P not searching the whole image but only searching among the candidates
of the neighbors of P which have already been inpainted. See Figure 5. The
speed-up achieved with this simple technique is considerable, and also there is
a very positive effect regarding the visual quality of the output. Other methods
reduce the search space and computational cost involved in the candidate patch
search by organizing image patches in tree structures, reducing the dimension-



Fig. 3. Left: original image, inpainting mask Ω in black. Right: inpainting result
obtained with Efros and Leung’s algorithm, images taken from their paper [14].

ality of the patches with techniques like Principal Component Analysis (PCA),
or using randomized approaches.

While most image inpainting methods attempt to be fully automatic (aside
from the manual setting of some parameters), there are user-assisted methods
that provide remarkable results with just a little input from the user. In the
work by Sun et al. [27] the user must specify curves in the unknown region,
curves corresponding to relevant object boundaries. Patch synthesis is performed
along these curves inside the image gap, by copying from patches that lie on the
segments of these curves which are outside the gap, in the “known” region.
Once these curves are completed, in a process which the authors call structure
propagation, the remaining empty pixels are inpainted using a technique like the
one by Ashikhmin [2] with priorities as in Criminisi et al. [12]. Barnes et al.
[5] accelerate this method and make it interactive, by employing randomized
searches and combining into one step the structure propagation and texture
synthesis processes of Sun et al. [27].

The role of sparsity

After the introduction of patch-based methods for texture synthesis by Efros
and Leung [14], and image inpainting by Criminisi et al [12], it became clear
that the patches of an image provide a good dictionary to express other parts
of the image. This idea has been successfully applied to other areas of image
processing, e.g. denoising and segmentation.

More general sparse image representations using dictionaries have proven
their efficiency in the context of inpainting. For instance, using overcomplete
dictionaries adapted to the representation of image geometry and texture, Elad
et al. [15] proposed an image decomposition model with sparse coefficients for



Fig. 4. Left: original image. Right: inpainting result obtained with the algorithm
of Criminisi et al. [12], images taken from their paper.

the geometry and texture components of the image, and showed that the model
can be easily adapted for image inpainting. A further description of this model
follows.

Let u be an image represented as a vector in RN . Let the matrices Dg, Dt

of sizes N × kg and N × kt represent two dictionaries adapted to geometry and
texture, respectively. If αg ∈ Rkg and αt ∈ Rkg represent the geometry and
texture coefficients, then u = Dgαg +Dtαt represents the image decomposition
using the dictionaries collected in Dg and Dt. A sparse image representation is
obtained by minimizing

min
(αg,αt):u=Dgαg+Dtαt

‖αg‖p + ‖αt‖p, (3)

where p = 0, 1. Although the case p = 0 represents the sparseness measure
(i.e., the number of non zero coordinates) it leads to a non-convex optimization
problem whose minimization is more complex. The case p = 1 yields a convex
and tractable optimization problem leading also to sparsness. Introducing the
constraint by penalization (thus, in practice, relaxing it) and regularizing the ge-
ometric part of the decomposition with a total variation semi-norm penalization,
Elad et al [15] propose the variational model:

min
(αg,αt)

‖αg‖1 + ‖αt‖1 + λ‖u−Dgαg −Dtαt‖22 + γTV (Dgαg), (4)

where TV denotes the total variation, λ, γ > 0. This model can be easily adapted
to a model for image inpainting. Observe that u − Dgαg − Dtαt can be inter-
preted as the noise component of the image and λ is a penalization parameter



Fig. 5. Ashikhmin’s texture synthesis method (figure taken from [2]). Each pixel
in the current L-shaped neighborhood generates a shifted candidate pixel (black)
according to its original position (hatched) in the input texture. The best pixel
is chosen among these candidates only. Several different pixels in the current
neighborhood can generate the same candidate.

that depends inversely on the noise power. Then the inpainting mask can be in-
terpreted as a region where the noise is very large (infinite). Thus, if M = 0 and
= 1 identify the inpainting mask and the known part of the image, respectively,
then the extension of (4) to inpainting can be written as

min
(αg,αt)

‖αg‖1 + ‖αt‖1 + λ‖M(u−Dgαg −Dtαt)‖22 + γTV (Dgαg). (5)

Writing the energy in (5) using ug := Dgu, ut := Dtu as unknown variables,
it can be observed that αg = D+

g ug + rg, αt = D+
t ut + rt, where D+

g , D
+
t denote

the corresponding pseudoinverse matrices and rg, rt are in the null spaces of Dg

and Dt, respectively. Assuming for simplicity, as in Elad et al [15], that rg = 0,
rt = 0, the model (5) can be written as

min
(αg,αt)

‖D+
g ug‖1 + ‖D+

t ut‖1 + λ‖M(u− ug − ut)‖22 + γTV (ug). (6)

This simplified model is justified in Elad et al [15] by several reasons: it is
an upper bound for (5), is easier to solve, it provides good results, it has a
Bayesian interpretation, and is equivalent to (5) if Dg and Dt are non-singular,
or when using the `2 norm in place of the `1 norm. The model has nice features



since it permits to use adapted dictionaries for geometry and texture, treats the
inpainting as missing samples and the sparsity model is included with `1 norms
that are easy to solve.

This framework has been adapted to the use of dictionaries of patches and has
been extended in several directions like image denoising, filling-in missing pixels
(Aharon et al [1]), color image denoising, demosaicing and inpainting of small
holes (Mairal et al [21], and further extended to deal with multiscale dictionaries
and to cover the case of video sequences in Mairal et al [22]. To give a brief review
of this model some notation is required. Image patches are squares of size n =√
n×
√
n. Let D be a dictionary of patches represented by a matrix of size n×k,

where the elements of the dictionary are the columns of D. If α ∈ Rk is a vector
of coefficients, then Dα represents the patch obtained by linear combination of
the columns of D. Given an image v(i, j), i, j ∈ {1, . . . , N}, the purpose is to find
a dictionary D̂, an image û and coefficients α̂ = {α̂i,j ∈ Rk : i, j ∈ {1, . . . , N}}
which minimize the energy

min
(α,D,u)

λ‖v − u‖2 +

N∑
i,j=1

µi,j‖αi,j‖0 +

N∑
i,j=1

‖Dαi,j −Ri,ju‖2, (7)

where Ri,ju denotes the patch of u centered at (i, j) (dismissing boundary ef-
fects), and µi,j are positive weights. The solution of the nonconvex problem (7)
is obtained using an alternate minimization: a sparse coding step where one
computes αi,j knowing the dictionary D for all i, j, a dictionary update using
a sequence of one rank approximation problems to update each column of D
(Aharon, Elad, and Bruckstein [1]), and a final reconstruction step given by the
solution of

min
u

λ‖v − u‖2 +

N∑
i,j=1

‖D̂αi,j −Ri,ju‖2. (8)

Again, the inpainting problem can be considered as a case of non-homogeneous
noise. Defining for each pixel (i, j) a coefficient βi,j inversely proportional to the
noise variance, a value of βi,j = 0 may be taken for each pixel in the inpainting
mask. Then the inpainting problem can be formulated as

min
(α,D,u)

λ‖β⊗(v−u)‖2+

N∑
i,j=1

µi,j‖αi,j‖0+

N∑
i,j=1

‖(Ri,jβ)⊗(Dαi,j−Ri,ju)‖2, (9)

where β = (βi,j)
N
i,j=1, and ⊗ denotes the elementwise multiplication between

two vectors.
With suitable adaptations, this model has been applied to inpainting (of

relatively small holes), to interpolation from sparse irregular samples and super-
resolution, to image denoising, demoisaicing of color images, and video denoising
and inpainting, obtaining excellent results, see Mairal et al [22].

PDEs and variational approaches



All the methods mentioned so far are based on the same principle: a miss-
ing/corrupted part of an image can be well synthetized by suitably sampling and
copying uncorrupted patches (taken either from the image itself or built from
a dictionary). A very different point of view underlies many contributions in-
volving either a variational principle, through a minimization process, or a (non
necessarily variational) partial differential equation (PDE).

An early interpolation method that applies for inpainting is due to Ogden,
Adelson, Bergen, and Burt [24]. Starting from an initial image, a Gaussian filter-
ing is built by iterated convolution and subsampling. Then, a given inpainting
domain can be filled-in by successive linear interpolations, downsampling and
upsampling at different levels of the Gaussian pyramid. The efficiency of such
approach is illustrated in Figure 6.

Fig. 6. An inpainting experiment taken from Ogden et al [24]. The method uses
a Gaussian pyramid and a series of linear interpolations, downsampling, and
upsampling.

Masnou and Morel proposed in [23] to interpolate a gray-valued image by
extending its isophotes (the lines of constant intensity) in the inpainting domain.
This approach is very much in the spirit of early works by Kanizsa, Ullman, Horn,
Mumford and Nitzberg to model the ability of the visual system to complete
edges in an occlusion or visual illusion context. This is illustrated in Figure 7.
The general completion process involves complicated phenomena that cannot
be easily and univocally modeled. However, experimental results show that, in
simple occlusion situations, it is reasonable to argue that the brain extrapolates
broken edges using elastica-type curves, i.e., curves that join two given points
with prescribed tangents at these points, a total length lower than a given L,
and minimize the Euler elastica energy

∫
|κ(s)|2ds, with s the curve arc-length

and κ the curvature.

The model by Masnou and Morel [23] generalizes this principle to the isophotes
of a gray-valued image. More precisely, denoting Ω̃ a domain slightly larger than
Ω, it is proposed in [23] to extrapolate the isophotes of an image u, known out-



Fig. 7. Amodal completion: the visual system automatically completes the bro-
ken edge in the left figure. The middle figure illustrates that, here, no global
symmetry process is involved: in both figures, the same edge is synthesized. In
such simple situation, the interpolated curve can be modeled as a Euler’s elas-
tica, i.e. a curve with clamped points and tangents at its extremities, and with
minimal oscillations.

side Ω and valued in [m,M ], by a collection of curves {γt}t∈[m,M ] with no mutual

crossings, that coincide with the isophotes of u on Ω̃ \Ω and that minimize the
energy ∫ M

m

∫
γt

(α+ β|κγt |p)ds dt. (10)

Here α, β are two context-dependent parameters. This energy penalizes a gener-
alized Euler’s elastica energy, with curvature to the power p > 1 instead of 2, of
all extrapolation curves γt, t ∈ [m,M ].

An inpainting algorithm, based on the minimization of (10) in the case p = 1,
is proposed by Masnou and Morel in [23]. A globally minimal solution is com-
puted using a dynamic programming approach that reduces the algorithmical
complexity. The algorithm handles only simply connected domains, i.e., those
with no holes. In order to deal with color images, RGB images are turned into
a luma/chrominance representation, e.g. YCrCb, or Lab, and each channel is
processed independently. The reconstruction process is illustrated in Figure 8.

The word inpainting, in the image processing context, has been coined first by
Bertalmı́o, Sapiro, Caselles, and Ballester in [7], where a PDE model is proposed
in the very spirit of real paintings restoration. More precisely, being u a gray-
valued image to be inpainted in Ω, a time stepping method for the transport-like
equation

ut = ∇⊥u · ∇∆u in Ω, (11)

u given in Ωc,

is combined with anisotropic diffusion steps that are interleaved for stabilization,
using the following diffusion model

ut = ϕε(x) |∇u| ∇ · ∇u
|∇u|

, (12)

where ϕε is a smooth cut-off function that forces the equation to act only in Ω,
and ∇·(∇u/|∇u|) is the curvature along isophotes. This diffusion equation, that
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Fig. 8. 8(a) is the original image and 8(b) the image with occlusions in white.
The luminance channel is shown in Figure 8(c). A few isophotes are drawn in
Figure 8(d) and their reconstruction by the algorithm of Masnou and Morel [23]
is given in Figure 8(e). Applying the same method to the luminance, hue, and
saturation channels, yields the final result of Figure 8(f).

has been widely used for denoising an image while preserving its edges, com-
pensates any shock possibly created by the transport-like equation. What is the
meaning of Equation (11)? Following Bertalmı́o et al [7], ∆u is a measure of im-
age smoothness, and stationary points for the equation are images for which ∆u
is constant along the isophotes induced by the vector field ∇⊥u. Equation (11)
is not explicitly a transport equation for ∆u, but, in the equivalent form,

ut = −∇⊥∆u · ∇u (13)

it is a transport equation for u being convected by the field ∇⊥∆u. Following
Bornemann and März [9], this field is in the direction of the level lines of ∆u,
which are related to the Marr-Hildreth edges. Indeed, the zero crossings of (a
convoluted version of) ∆u are the classical characterization of edges in the cel-
ebrated model of Marr and Hildreth. In other words, as in the real paintings
restoration, the approach of Bertalmı́o et al [7] consists in conveying the image
intensities along the direction of the edges, from the boundary of the inpainting
domain Ω towards the interior. The efficiency of such approach is illustrated in
Figure 9. From a numerical viewpoint, the transport equation and the anisotropic
diffusion can be implemented with classical finite difference schemes. For color
images, the coupled system can be applied independently to each channel of



any classical luma/chrominance representation. There is no restriction on the
topology of the inpainting domain.

Fig. 9. An experiment taken from Bertalmı́o et al [7]. Left: original image. Mid-
dle: a user-defined mask. Right: the result with the algorithm of [7].

Another perspective on this model is provided by Bertalmı́o, Bertozzi, and
Sapiro in [6], where connections with the classical Navier-Stokes equation of fluid
dynamics are shown. Indeed, the steady state equation of Bertalmı́o et al [7],

∇⊥u · ∇∆u = 0,

is exactly the equation satisfied by steady state inviscid flows in the two-dimensional
incompressible Navier-Stokes model. Although the anisotropic diffusion equa-
tion (12) is not the exact couterpart of the viscous diffusion term used in the
Navier-Stokes model for incompressible and Newtonian flows, yet a lot of the
numerical knowledge on fluid mechanics seems to be adaptable to design sta-
ble and efficient schemes for inpainting. Results in this direction are shown in
Bertalmı́o, Bertozzi, and Sapiro [6].

Chan and Shen propose in [11] a denoising/inpainting first-order model based
on the joint minimization of a quadratic fidelity term outside Ω and a total
variation criterion in Ω, i.e., the joint energy∫

A

|∇u|dx+
λ

2

∫
Ω

|u− u0|2dx,

with A ⊃⊃ Ω the image domain and λ a Lagrange multiplier. The existence of so-
lutions to this problem follows easily from the properties of functions of bounded
variation. As for the implementation, Chan and Shen look for critical points of
the energy using a Gauss-Jacobi iteration scheme for the linear system associ-
ated to an approximation of the Euler-Lagrange equation by finite differences.



More recent approaches to the minimization of total variation with subpixel ac-
curacy should nowadays be preferred. From the phenomenological point of view,
the model of Chan and Shen [11] yields inpainting candidates with the smallest
possible isophotes. It is therefore more suitable for thin or sparse domains. An
illustration of the model’s performances is given in Figure 10

Fig. 10. An experiment taken from Chan and Shen [11]. Left: original image.
Right: after denoising and removal of text.

Turning back to the criterion (10), a similar penalization on Ω̃ of both the
length and the curvature of all isophotes of an image u yields two equivalent
forms, in the case where u is smooth enough (see Masnou and Morel [23]):∫ +∞

−∞

∫
{u=t}∩Ω̃

(α+ β|κ|p)ds dt =

∫
Ω̃

|∇u|
(
α+ β

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣p) dx. (14)

There have been various contributions to the numerical approximation of
critical points for this criterion. A fourth-order time-stepping method is proposed
by Chan, Kang, and Shen in [10] based on the approximation of the Euler-
Lagrange equation, for the case p = 2, using upwind finite differences and a min-
mod formula for estimating the curvature. Such high-order evolution method
suffers from well-known stability and convergence issues that are difficult to
handle.

A model, slightly different from (14), is tackled by Ballester, Bertalmı́o,
Caselles, Sapiro, and Verdera in [4] using a relaxation approach. The key idea is
to replace the second-order term ∇· ∇u|∇u| with a first-order term depending on an

auxiliary variable. More precisely, Ballester et al study in [4] the minimization
of ∫

Ω̃

|∇ · θ|p(a+ b|∇k ∗ u|)dx+ α

∫
Ω̃

(|∇u| − θ · ∇u)dx,

under the constraint that θ is a vector field with subunit modulus and prescribed
normal component on the boundary of Ω̃, and u takes values in the same range
as in Ωc. Clearly, θ plays the role of ∇u/|∇u| but the new criterion is much less
singular. As for k, it is a regularizing kernel introduced for technical reasons in
order to ensure the existence of a minimizing couple (u, θ). The main difference



between the new relaxed criterion and (14), besides singularity, is the term
∫
Ω̃
|∇·

θ|p which is more restrictive, despite the relaxation, than
∫
Ω̃
|∇u|

∣∣∣∇ · ∇u|∇u| ∣∣∣p dx.

However, the new model has a nice property: a gradient descent with respect
to (u, θ) can be easily computed and yields two coupled second-order equations
whose numerical approximation is standard. Results obtained with this model
are shown in Figure 11.

Fig. 11. Two inpainting results obtained with the model proposed by Ballester
et al [4]. Observe in particular how curved edges are restored.

The Mumford-Shah-Euler model by Esedoglu and Shen [17] is also varia-
tional. It combines the celebrated Mumford-Shah segmentation model for images
and the Euler’s elastica model for curves, i.e., denoting u a piecewise weakly
smooth function, that is a function with integrable squared gradient out of a
discontinuity set K ⊂ Ω̃, the proposed criterion reads∫

Ω̃\K
|∇u|2dx+

∫
K

(α+ β k2)ds.

Two numerical approaches to the minimization of such criterion are discussed in
Esedoglu and Shen [17]: first, a level set approach based on the representation of
K as the zero-level set of a sequence of smooth functions that concentrate, and
the explicit derivation, using finite differences, of the Euler-Lagrange equations
associated with the criterion; the second method addressed by Esedoglu and
Shen is a Γ -convergence approach based on a result originally conjectured by
De Giorgi and recently proved by Schätzle. In both cases, the final system of
discrete equations is of order four, facing again difficult issues of convergence
and stability.



More recently, following the work of Grzibovskis and Heintz on the Willmore
flow, Esedoglu, Ruuth, and Tsai [16] have addressed the numerical flow associ-
ated with the Mumford-Shah-Euler model using a promising convolution/thresholding
method that is much easier to handle than the previous approaches.

Tschumperlé proposes in [28] an efficient second-order anisotropic diffusion
model for multi-valued image regularization and inpainting. Given a RN -valued
image u known outside Ω, and starting from an initial rough inpainting obtained
by straightforward advection of boundary values, the pixels in the inpainting
domain are iteratively updated according to a finite difference approximation to
the equations

∂ui
∂t

= trace(T ∇2ui), i ∈ {1, · · · , N}.

Here, T is the tensor field defined as

T =
1

(1 + λmin + λmax)α1
vmin ⊗ vmin +

1

(1 + λmin + λmax)α2
vmax ⊗ vmax,

with 0 < α1 << α2, and λmin, λmax, vmin, vmax are the eigenvalues and eigen-
vectors, respectively, of Gσ ∗

∑N
i=1∇ui⊗∇ui, being Gσ a smoothing kernel and∑N

i=1∇ui ⊗ ∇ui the classical structure tensor, that is known for representing
well the local geometry of u. Figure 12 reproduces an experiment taken from
Tschumperlé [28].

Fig. 12. An inpainting experiment (the middle image is the mask defined by the
user) taken from Tschumperlé [28].

The approach of Auroux and Masmoudi in [3] uses the PDE techniques that
have been developed for the inverse conductivity problem in the context of crack
detection. The link with inpainting is the following: missing edges are modeled
as cracks and the image is assumed to be smooth out of these cracks. Given a
crack, two inpainting candidates can be obtained as the solutions of the Laplace
equation with Neumann condition along the crack and either a Dirichlet, or a
Neumann condition on the domain’s boundary. The optimal cracks are those
for which the two candidates are the most similar in quadratic norm, and they



can be found through topological analysis, i.e. they correspond to the set of
points where putting a crack mostly decreases the quadratic difference. Both
the localization of the cracks and the associated piecewise smooth inpainting
solutions can be found using fast and simple finite differences schemes.

Finally, Bornemann and März propose in [9] a first-order model to advect
the image information along the integral curves of a coherence vector field that
extends in Ω the dominant directions of the image gradient. This coherence
field is explicitly defined, at every point, as the normalized eigenvector to the
minimal eigenvalue of a smoothed structure tensor whose computation carefully
avoids boundary biases in the vicinity of ∂Ω. Denoting c the coherence field,
Bornemann and März show that the equation c ·∇u = 0 with Dirichlet boundary
constraint can be obtained as the vanishing viscosity limit of an efficient fast-
marching scheme: the pixels in Ω are synthezised one at a time, according to
their distance to the boundary. The new value at a pixel p is a linear combination
of both known and previously generated values in a neighborhood of p. The key
ingredient of the method is the explicit definition of the linear weights according
to the coherence field c. Although the Bornemann-März model requires a careful
tune of four parameters, it is much faster than the PDE approaches mentioned
so far, and performs very well, as illustrated in Figure 13

Fig. 13. An inpainting experiment taken from Bornemann and März [9], with a
reported computation time of 0.4 sec.

Combining and extending PDEs and patch models

In general, most PDE/variational methods that have been presented so far per-
form well for inpainting either thin or sparsely distributed domains. However,
there is a common drawback to all these methods: they are unable to restore
texture properly, and this is particularly visible on large inpainting domains, like
for instance in the inpainting result of Figure 12 where the diffusion method is
not able to recover the parrot’s texture. On the other hand, patch-based meth-
ods are not able to handle sparse inpainting domains like in Figure 14, where
no valid squared patch can be found that does not reduce to a point. On the
contrary, most PDE/variational methods remain applicable in such situation,
like in Figure 14 where the model proposed by Masnou and Morel [23] yields the



inpainting result. Obviously, some geometric information can be recovered, but
no texture.

Fig. 14. A picture of a mandrill, the same picture after removal of 15 × 15
squares (more than 87% of the pixels are removed), and the reconstruction with
the method introduced by Masnou and Morel [23] using only the one-pixel wide
information at the squares’ boundaries.

There have been several attempts to explicitly combine PDEs and patch-
based methods in order to handle properly both texture and geometric struc-
tures. The contribution of Criminisi, Pérez, and Toyama [12] was mentioned
already. The work of Bertalmı́o, Vese, Sapiro, and Osher [8] uses an additive
decomposition of the image to be inpainted into a geometric component that
contains all edges information, and a texture component. Then the texture im-
age is restored using the Efros and Leung’s algorithm of [14], while the geometric
image is inpainted following the method proposed in Bertalmı́o et al [7] (several
subsequent works have proposed other methods for the individual reconstruc-
tion of each component). The final image is obtained by addition of the restored
texture and geometric components. In a few situations where the additive decom-
position makes sense, this approach does indeed improve the result and extends
the applications domain of inpainting.

In Komodakis and Tziritas [20] the authors combine variational and patch-
based strategies by defining an inpainting energy over a graph whose nodes are
the centers of patches over the image. The inpainting energy has two terms,
one being a texture synthesis term and the other measuring the similarity of
the overlapping area of two neighboring patches (centered on nodes which are
neighbors in the graph). By minimizing this energy with Belief Propagation, a
label is assigned to each node, which amounts to copying the patch corresponding
to the label over the position of the node. The results are very good on a variety
of different images (e.g. Fig. 1) and the method is fast. Some potential issues:
there is no assurance that the iterative process converges to a global minimum,
and visual artifacts may appear since the method uses a fixed grid and entire
patches are copied for each pixel of the mask.



The work by Drori, Cohen-Or, and Yeshurun in [13] does not involve any ex-
plicit geometry/texture decomposition, but the search for similar neighborhoods
is guided by a prior rough estimate of the inpainted values using a multiscale
sampling and convolution strategy, in the very spirit of Ogden et al [24]. In
addition, in constrat with many patch-based methods, the dictionary of valid
patches is enriched using rotations, rescalings, and reflections. An example ex-
tracted from Drori et al [13] is shown in Figure 15.

Fig. 15. An experiment from Drori et al [13] illustrating the proposed multiscale
diffusion/patch-based inpainting method. The upper-left image is the original,
the upper-right image contains the mask defined by the user, the bottom-left
image is the result, and the bottom-right image shows what has been synthesized
in place of the elephant.

Beyond single image inpainting

All the methods mentioned above involve just a single image. For the multi-
image case, there are two possible scenarios: video inpainting, and inpainting a
single image using information from several images.

Basic methods for video inpainting for data transmission (where the problem
is known as “error concealment” and involves restoring missing image blocks)
and for film restoration applications (dealing with image gaps produced by dust,
scratches or the abrasion of the material) assume that the missing data changes



location in correlative frames, and therefore use motion estimation to copy in-
formation along pixel trajectories. A particular difficulty in video inpainting for
film restoration is that, for good visual quality of the outputs, the detection of
the gap and its filling-in are to be tackled jointly and in a way which is robust
to noise, usually employing probabilistic models in a Bayesian framework, see
for example the book by Kokaram [19].

Wexler et al. [29] propose a video inpainting algorithm that extends to space-
time the technique of Efros and Leung [14] and combines it with the idea of
coherence among neighbors developed by Ashikhmin [2]. First, for each empty
pixel P they consider a space-time cube centered in P , compare it with all
possible cubes in the video, find the most similar and keep its center pixel Q,
which will be the correspondent of P . For each cube the information considered
and compared is not only color but also motion vectors. Then, instead of copying
the value of Q to P , they copy to P the average all the values of the shifted
correspondents of the neighbors of P : for instance, if R is at the right of P ,
and S is the correspondent of R, then the pixel to the left of S will be involved
in the average to fill-in P . This is based on the idea by Ashikhmin [2], see
Fig. 5. The shortcomings of this video inpainting method are that the results
present significant blur (due to the averaging), it seems to be limited only to
static-camera scenarios (probably due to the simple motion estimation procedure
involved) and periodic motion without change of scale, and the computational
cost is quite high (due to the comparison of 3D blocks).

Shiratori et al. [26] perform video inpainting by firstly inpainting the motion
field with a patch based technique like that of Efros and Leung [14] and then
propagating the colors along the (inpainted) motion trajectories. The method
assumes that motion information is sufficient to fill-in holes in videos, which isn’t
always the case (e.g. with a static hole over a static region). The results present
some blurring, due to the bilinear interpolation in the color propagation step.

Patwardhan et al. [25] propose a video inpainting method consisting of three
steps. In the first step they decompose the video sequence into binary motion
layers (foreground and background), which are used to build three image mosaics
(a mosaic is the equivalent of a panorama image created by stitching together
several images): one mosaic for the foreground, another for the background and
a third for the motion information. The other two steps of the algorithm per-
form inpainting, first from the foreground and then from the background: these
inpainting processes are aided and sped-up by using the mosaics computed in
the first step. See Figure 16 for some results. The algorithm is limited to se-
quences where the camera motion is approximately parallel to the image plane,
and foreground objects move in a repetitive fashion and do not change size: these
restrictions are imposed so that a patch-synthesis algorithm like that of Efros
and Leung [14] can be used.

Hays and Efros [18] perform inpainting of a single image using information
from a database with several millions of photographs. They use a scene-descriptor
to reduce the search space from two million to two hundred images, those images
from the database which are semantically closer to the image the user wants



Fig. 16. Top row: some frames from a video. Middle row: inpainting mask Ω
in black. Bottom row: video inpainting results obtained with the algorithm of
Patwardhan et al. [25].

Fig. 17. Left: original image. Middle: inpainting mask Ω, in white. Right: in-
painting result obtained with the method by Hays and Efros [18], images taken
from their paper.

to inpaint. Using template matching they align the two hundred best matching
scenes to the local image around the region to inpaint. Then they composite each
matching scene into the target image using seam finding and image blending.
Several outputs are generated so the user may select among them, and the results
can be outstanding, see Figure 17. The main shortcoming of this method is
that it relies on managing and operating a huge image database. When the
algorithm fails, it can be due to a lack of good scene matches (if the target
image is atypical), or because of semantic violations (e.g. failure to recognize
people hence copying only part of them), or in the case of uniformly textured
backgrounds (where this algorithm might not find the precise same texture in
another picture of the database).



Open Problems

Inpainting is a very challenging problem and it is far from being solved, see
Figure 18. Patch-based methods work best in general, although for some appli-
cations (e.g. very spread, sparsely distributed gap Ω) geometry-based methods
might be better suited. And when the image gap lies on a singular location, with
surroundings that can’t be found anywhere else, then all patch-based methods
give poor results, regardless if they consider or not geometry. For video inpainting
the situation is worse, the existing algorithms are few and with very constrain-
ing limitations on camera and object motion. Because video inpainting is very
relevant in cinema post-production, in order to replace the current typical labor
intensive systems, important developments are expected in the near future.

(a) (b) (c)

(d) (e) (f)

Fig. 18. An example where no inpainting method seems to work. (a) Original
image, from the database provided by Hays and Efros [18]. (b) In white, the
mask to be inpainted, that is not the initial mask proposed by Hayes and Efros,
but derives from the fuzzy mask actually used by their algorithm. (c) Result
courtesy of D. Tschumperlé using the algorithm from [28]. (d) Result courtesy
of T. März and F. Bornemann using the algorithm from [9]. (e) Result using
a variant of the algorithm from Criminisi et al. [12]. (f) Result from Hays and
Efros [18].
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