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Abstract Exemplar-based methods have proven their
efficiency for the reconstruction of missing parts in a
digital image. Texture as well as local geometry are
often very well restored. Some applications, however,
require the ability to reconstruct non local geometric
features, e.g. long edges. We propose in this paper to
endow a particular instance of exemplar-based method
with a geometric guide. The guide is obtained by a prior
interpolation of a simplified version of the image us-
ing straight lines or Euler spirals. We derive from it an
additional geometric penalization for the metric asso-
ciated with the exemplar-based algorithm. We discuss
the details of the method and show several examples of
reconstruction.

Keywords : Inpainting, texture synthesis, level lines, im-
age geometry, Euler spirals.

1 Introduction and motivations

The last ten years have witnessed many contributions to
the inpainting problem in digital images, i.e. the prob-
lem of recovering entire regions where the information
either has been lost or is partially occluded by unde-
sired objects. The two main applications of inpainting
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methods are image restoration (e.g. the suppression of
scratches and blotches in old pictures and movies) and
image manipulation (e.g. the removal of objects in post-
production).

There are basically three categories of methods in
the literature. The variational or PDE-based approaches
enable in favorable cases a good reconstruction of the
global geometry of an image but fail at correctly syn-
thesizing the texture. In contrast, the methods of the
second category were initially designed for texture syn-
thesis. Some of them that we will describe later, called
exemplar-based, can produce visually striking results
but often do not permit the interpolation of non repeti-
tive global image structures such as long edges. Finally,
methods in the third category do not involve any ex-
plicit interpolation in the image domain but rather in
one or several transform spaces, relying e.g. on wavelets
or Fourier transform. They usually perform well for
sparse missing data or thin domains.

Recently, there have been several attempts to com-
bine variational/PDE methods with exemplar-based al-
gorithms in order to deal with those situations where
the latter alone fail at recovering the geometry. This is
the spirit of the method presented here that first com-
pletes the geometry for a simplified version of the image
then uses it as a weakly constraining guide for a com-
plete reconstruction.

2 State of the art

2.1 Geometric methods

The different approaches to geometrical inpainting are
all based on the prior that geometry can be recovered
from the close neighborhood of the inpainting domain.
They divide into two categories:
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1. the variational methods that involve a criterion of
regularity of the reconstruction;

2. the pure PDE methods that try to diffuse and/or ad-
vect progressively the information from the bound-
ary.

The first variational approach to geometrical inpaint-
ing has been proposed in 1998 in [53], see also [52],
following an inspiring work by Nitzberg, Mumford and
Shiota [57] on amodal completion and depth comput-
ing based on Kanizsa’s vision theory [47]. The basic
idea of [53] is that the geometry can be reconstructed
in the inpainting domain by simply interpolating – us-
ing short and not too oscillating curves – all level lines
that touch the domain boundary. This appears to be
equivalent to minimizing a functional involving the cur-
vature to a power p. Further details will be given in Sec-
tion 4. A globally minimizing scheme is proposed in [53]
for the case p = 1 while the local minimization in the
case p > 1 is addressed in [18]. Starting from the same
model, an interesting relaxed formulation is proposed
in [5] that yields a second-order Euler-Lagrange equa-
tion. This last equation is much more convenient for
numerical computation than the fourth-order equation
of [18].

A totally different approach has been proposed by
Bertalmio, Sapiro, Caselles and Ballester in [7], where
the term inpainting has been proposed for the first time
in this context. The idea is to mimic the way profes-
sionals do inpainting for real paintings restoration. It
consists in progressively advecting the valid informa-
tion from the boundary of the inpainting domain in-
wards using a third-order advection-type equation. This
equation transports the image values along continua-
tions of edges, an additional anisotropic diffusion being
used to avoid shocks. An interesting interpretation of
the model is given in [12] and the connections with the
classical Navier-Stokes equation of fluid dynamics are
shown in [6].

Using a more global approach, Chan and Shen pro-
pose in [19] a denoising/interpolation model based on
the joint minimization of a quadratic fidelity term and
a total variation criterion. This latter makes actually
sense only for thin inpainting domains because its min-
imizers are images having the shortest level lines. A
variant of the associated Euler-Lagrange equation is
studied in [20].

Elder and Goldberg propose in [32] an approach to
image editing based on the manipulation of the edge
map. A possible application is the removal of objects
in some simple situations: the corresponding edges are
first removed from the edge map, the remaining edges
are completed if necessary with, possibly, the help of

the user, and the final image is obtained by a linear
interpolation out of the edges.

Esedoglu and Shen propose in [34] to interpolate in
the inpainting domain using a piecewise smooth func-
tion that minimizes the Mumford-Shah functional with
an additional penalization, so that the discontinuity set
has small Euler’s elastica energy (see below), i.e. is short
and not too curvy, see [33] for an interesting implemen-
tation of the model.

Grossauer and Scherzer study in [37] an inpainting
model based on Ginzburg-Landau’s equation. In [67],
Tschumperlé and Deriche propose an efficient second-
order anisotropic diffusion equation that preserves cur-
vature and gives good results. The approach of D. Au-
roux and M. Masmoudi in [4] uses the PDE techniques
that have been developed for the inverse conductivity
problem in the context of crack detection. In [2, 60] a
prior segmentation of the edges outside the inpainting
domain is performed. Then edges are interpolated – us-
ing splines in [2], arc of circles in [60] – and the inpaint-
ing is completed using a smooth interpolation between
edges. The tricky part of such an approach is the careful
choice of pairs of edges that will be connected.

Finally, in an attempt to improve the fast but lim-
ited method proposed by A. Telea [64], F. Bornemann
and T. März described in [12] a fast first-order equation
that advects the image information along the character-
istics of a coherence vector field that extends inside the
inpainting domain the dominant directions of the out-
side gradient. The method is based on a fast-marching
scheme and thus very fast. In terms of speed and qual-
ity of the results, it is one of the best PDE approaches
to the inpainting problem, together with [67].

There is however a common drawback to all PDE or
variational methods that we have presented so far: they
are unable to properly restore the texture, in contrast
to the approaches that we will now describe.

2.2 From texture synthesis to inpainting:
exemplar-based methods

For a long time, texture synthesis has been formulated
as a problem of learning then sampling a probabil-
ity distribution [9, 25, 75]. This approach may pro-
vide good results but is usually computationally ex-
pensive and the choice of a suitable model distribution
is very sensitive . De Bonet studies in [10] a multireso-
lution technique where interscale dependencies of tex-
ture samples are constrained. Drawing their inspiration
from psychophysics experiments, Heeger and Bergen
[42] propose to synthesize a texture by constraining
the marginals of overcomplete wavelet decompositions.
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This work has been followed by others in which not only
the marginals but also more complicated statistics on
wavelet decompositions were constrained, see [62]. All
these methods may provide good results but not for all
situations: highly structured patterns are usually badly
synthesized.

New models have been proposed in the late 90’s
that appear to be much more efficient [29, 30, 70]. Ex-
ploiting the locality and the stationarity at a certain
scale1 of the texture, they achieve a degree of real-
ism that was beyond the reach of previous approaches.
The first celebrated algorithms in the class of exemplar-
based methods, due to Efros and Leung [29] and Wei
and Levoy [70], both involve the notion of patch, i.e. a
square window of size r × r. The basic idea is that in
order to synthesize the value at a pixel whose neighbor-
hood is partially known, one looks for similar patches
in a sample image (when performing texture synthesis)
or in a valid part of the image (when performing in-
painting). The gray or color value at the pixel is simply
chosen as the value of the central pixel of the most re-
sembling patch or sampled from a set of very similar
patches, the similarity between patches being generally
measured with a weighted L2 metric. This core algo-
rithm is proposed with different variants in [29] and [70],
see also [41, 11], involving for instance a multiscale ap-
proach and a careful synthesis order.

All these papers are essentially dedicated to texture
synthesis, yet an example of inpainting is given in [29].
Previously, a parametric synthesis approach had been
proposed in [45] for illustrating an inpainting applica-
tion. To the best of our knowledge, the first explicit and
systematic dedication to inpainting of a non paramet-
ric synthesis method can be found in [11]. Despite the
great improvements with respect to the previous con-
tributions to texture synthesis, a well-known problem
of the exemplar-based methods that we have mentioned
comes from the synthesis of only one pixel at a time,
which may sometimes result in ”cycling” effects like the
constant propagation of an erroneous synthesis or the
formation of much too repetitive patterns. Surprisingly,
because it amounts to reducing the space of interpola-
tion possibilities, better results can be obtained by syn-
thesizing not only the central pixel but entire patches.
It also considerably reduces the computational time.
Many contributions have been proposed in this direc-
tion with several variants [30, 40, 50, 24, 28, 59, 46, 73,
58, 1]:

1 By scale of a texture, we mean a positive real r or a range
of real numbers, as small as possible, such that two arbitrary
disjunct r × r windows have similar statistical moments up to a
certain order.

– on the location of the patches to be synthesized (us-
ing a fixed grid or not, with either no overlap, a
smooth or a sharp overlap between adjacent patches),

– on the filling order (raster scan, concentric layers,
incorporation of geometric or intensity constraints),

– on the searching domain (reinitialized at each itera-
tion or constrained by the previously chosen sample
patch),

– on the distance between patches and the way to find
a minimizing candidate (enumeration, belief propa-
gation, etc.),

– on the artificial extension of the space of samples
by introducing rotated and rescaled versions of the
existing patches.

The results are often amazing and obtained in a very
reasonable time, even for large inpainting domains. Most
approaches of this kind are not only able to reproduce
a texture but are also very good at restoring a local ge-
ometric information whenever it can be obtained else-
where in the image.

2.3 Optimizing in a transform domain

There have been in recent years several contributions
where the inpainting problem is formulated as an op-
timization task in a transform domain, e.g. Fourier,
wavelets, framelets, etc. It usually amounts to finding
the reconstructed image whose representation in the
transform domain is optimal. For instance, a simulta-
neous geometry/texture inpainting is performed in [31]
(see also [38, 39]) by optimizing the decomposition in
two different transform domains, one giving a sparse
representation of the geometry (the curvelets domain)
and the other adapted to the texture (the DCT do-
main). Other approaches in this category are [43, 14,
21]. All these methods are usually very efficient when
the unknown part of the image is a sparse set of pixels.
In case where the inpainting domain is large, however,
they are clearly outperformed by exemplar-based meth-
ods.

2.4 Combining texture synthesis and geometric
reconstruction

Several papers on inpainting have been concerned with
the combination of a PDE or variational model for
the reconstruction of the geometry together with an
exemplar-based algorithm for the reconstruction of tex-
ture. In [8], the image is first decomposed into a geo-
metric and a texture component using a technique de-
scribed in [69]. The geometric component is inpainted
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by the model in [7], the texture component is restored
using the Efros-Leung’s algorithm [29] and the final im-
age is the sum of both reconstructions. There is no such
explicit decomposition in [28] but rather a prior fast
estimate of the colors of the hidden region by a multi-
scale filtering approach that guides the exemplar-based
inpainting. This is also the spirit of [27] except that the
guide is obtained with the very efficient PDE model for
geometrical inpainting of [67] that we presented above.
The method presented in [46] consists in a prior edge
segmentation in the known part of the image followed
by a completion of the edges in the inpainting domain.
This yields a partition of the domain that guides the fi-
nal reconstruction done with a tensor voting technique.

The exemplar-based approach of [24] has been an
inspiration for our paper. It involves indeed a local ge-
ometrical guiding though a priority term that forces
the reconstruction of strong edges first. In the current
paper, we build instead a global geometrical guiding.

Eventually, in [63], the user manually draws the geo-
metric structure in the inpainting domain then exemplar-
based inpainting is performed, first along the edges then
in the rest of the domain.

2.5 Our contribution

The method presented in this paper is in the spirit of
some of the approaches above. Our motivation is to
propose an algorithm that exploits the performances of
the best exemplar-based methods in addition with the
ability to recover long-range geometric structures, pos-
sibly more complex than straight lines. The first step
of our method is the creation of a simplified represen-
tation of the valid part of the image – a sketch – that
essentially contains the important geometric features
(Section 3). The sketch is then interpolated in the in-
painting domain using a variational model that com-
putes an “optimal” set of curves completing the ”bro-
ken” level lines (Section 4). Finally, in Section 6, the
fully reconstructed sketch is used as a data term in an
optimization formulation that extends the exemplar-
based method from [59] that we present in Section 5.
As will be clear from a few experiments that we will
present, this approach enables, in some situations, to
take into account the geometry in a much more global
way than classical exemplar-based methods. As we pre-
viously mentioned, the latter already have the ability
to locally restore the geometry. Is there a way to assert
this fact theoretically? We provide a partial answer in
Section 5.2 where we investigate the ability to asymp-
totically recover a curve starting from patches made of
straight lines.

3 Computing a sketch of the image

By sketch of a gray level image (the color case will be
addressed later on), we mean a piecewise constant ap-
proximation obtained with a suitable segmentation pro-
cedure. The segmentation used in this paper is derived
from the topographic map of the image [16] and, more
precisely, from the meaningful level lines defined in [26]
(other segmentation procedures could be used to com-
pute a sketch). Recall that the topographic map of a
gray level image I is the collection of all its level lines,
that we define here as the connected components of the
boundaries of upper levels sets Xt(I) = {x : I(x) ≥ t}
(similar results would be obtained with the lower level
sets). Since

I(x) = sup{t : x ∈ Xt(I)}, (1)

the image can be completely reconstructed from its level
lines. This complete representation has several advan-
tages. First, it is invariant with respect to increasing
contrast changes and, secondly, the topographic map
can be associated with a nested tree structure that is
very useful for image denoising [55], shape extraction
and comparison [51] or compression [36].

A sketch of the initial gray level image is obtained by
keeping only the most significant level lines, i.e. those
that are contrasted enough according to an a contrario
criterion [26]. Roughly speaking, meaningful lines are
lines having a contrast that is very unlikely to be en-
countered in a white noise image. More precisely, we
only keep lines L for which

NH(c(L))l(L) ≤ ε, (2)

where N is the total number of level lines in the image,
H is the cumulative histogram of the modulus of the
gradient over the image, l(L) is the length of the line,
c(L) is the minimum contrast along the line, and ε is
a positive number. In practice, we use a refinement of
this approach as presented in [15]. It consists in using
a local estimation of the cumulated gradient histogram
H to assert for the meaningfulness of a curve. We chose
to use this refinement because it yields less detection in
textured area, a desirable property for the application
considered in this paper.

Remark that extracting the most significant level
lines does not mean extracting the objects in the im-
age but constructing a piecewise constant image whose
dynamics are very close to the original. However, as ob-
served in [51], boundaries of objects usually locally co-
incide with pieces of level lines, so that the most salient
objects will appear in the sketch representation. We did
not specify until now how a piecewise constant image
can be obtained from a collection of curves: relying on
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Fig. 1 A digital image (top), its meaningful level lines (middle)
and the sketch reconstructed only from these lines (bottom) . The
texture has partly disappeared but the geometric structures and
the dynamics remain.

the nested structure of the topographic map, we simply
define the value of the sketch at a pixel x as the level
associated with the smallest level line that encloses x.

The above procedure for computing a sketch is valid
for gray level images only but can be extended to color
images thanks to the following heuristic argument (see [17]):
the geometric information contained in a real world
color image is essentially carried by the luminance chan-
nel of any classical luminance/chrominance color rep-
resentation, e.g. YUV, L*a*b, etc. Therefore, a color
sketch associated to a color image can be obtained in
the following way: first compute a sketch of the lumi-
nance component and consider the associated partition
of the domain; then, for each chrominance channel, re-

place every pixel value by the average value computed
on the corresponding component of the partition. An
example of meaningful lines and color sketch is shown
in Figure 1, using a value of ε = 1 in Formula (2), as in
all experiments to be displayed in this paper.

It must be emphasized however that this extension
to color is useless for the global inpainting method pre-
sented in this paper. Since we are interested in a geo-
metric guiding of the exemplar-based inpainting method
to be presented in Section 5, we will actually use as
a geometric guide the reconstruction of a gray level
sketch computed from the luminance channel of the
original image to be inpainted (the YUV color model
has been used in all experiments presented below). Let
us now describe in detail two geometry-oriented in-
painting methods that will be used for the reconstruc-
tion of the sketch image. Both of them are based on the
interpolation of the broken level lines.

4 Level lines completion, image inpainting and
sketch reconstruction

We describe in this section two geometrical inpaint-
ing methods for color images, i.e. two methods essen-
tially devoted to the reconstruction of geometry. The
first one, introduced in [53], is based on the comple-
tion of level lines by straight curves, whereas the second
approach is new and uses Euler spirals as completion
curves. We will see at the end of the section that both
methods can be used for the reconstruction of a sketch
image aimed to be a geometric guide for the global in-
painting algorithm to be presented in Section 6.

The notion of level lines is clear for gray level images
(see the previous section) but not for color images. Like
in the previous section, we will actually generalize to
color a method designed for gray level images. More pre-
cisely, given a method that interpolates the broken level
lines of a scalar image, the reconstruction of a color im-
age will be performed by independently processing the
luminance and both chrominance channels in a suitable
luminance/chrominance representation (YUV, L*a*b,
etc.). Note that using a luminance/chrominance repre-
sentation instead of the usual RGB is crucial for limit-
ing the creation of false colors.

We now show how an inpainting method can be de-
rived from shape completion techniques.
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4.1 From amodal completion to inpainting

Recall that, given a regular curve C in the plane pa-
rameterized by arc-length, the elastica functional2∫ L(C)

0

|κC(s)|2ds, (3)

where κC denotes the curvature and L(C) the length
of the curve, measures the elastic energy stored by the
curve. It has been first studied in 1744 by Euler in his
work on the physics of thin rods. Much later, it has
been proposed by Ullman [68] and Horn [44] in the
context of shape completion. Recall that our visual sys-
tem has the ability to reconstruct missing edges when
objects are partially occluded, see the important con-
tribution of G. Kanizsa [47] on the so-called amodal
completion. In terms of computer vision, the problem
can be rephrased as follows: what is the most “pleas-
ing” curve that joins two points with prescribed tan-
gent boundary conditions. The elasticae, i.e. the curves
minimizing the elastica energy, are natural candidates
since they are the smoothest curves in regard to the
accumulated elastic energy.

Elasticae are however hard to compute for they do
not admit any analytical expression [56]. There have
been many attempts to derive efficient approximation
methods, either for the elastica energy itself or for vari-
ants such as L

∫ L(C)

0
|κ|2ds which is scale invariant,

see [49, 57, 61, 65, 66, 74, 22, 13].
Although nice completions can be obtained with the

elastica model, it has some drawbacks, such as the com-
putational issues we have mentioned but also the inca-
pacity to recover angles or circles, the non existence
of a minimizer in some extreme boundary conditions,
etc. Other models have therefore been proposed, con-
sidering however that no model can always provide the
perfect solution, essentially because the problem is ill-
posed: the question whether a curve is “pleasing” or not
is somewhat subjective and nothing totally reliable can
be said in some extreme situations. We mention how-
ever two other models that yield interesting solutions
in most common situations:

1. the minimal path/good continuation model of Fan-
toni and Gerbino that computes an intermediate
solution between the straight line and the polygo-
nal line obtained by simply continuing the tangents
from each extremity, see [35] where an exhaustive
survey of completion models is provided;

2. the Euler spiral – also called Cornu’s spiral or clothoid
loop – that has been studied by Euler in his work
on freely coiled up elastic springs and accurately

2 more general versions are
R

(α + β|κC(s)|2)ds.

plotted by Cornu in 1874. In the relaxed position
of the spring – modeled as a curve γ – the scalar
curvature at each point satisfies κ(s) = C1 s + C2

where C1, C2 are constant and s is the arc-length.
Euler spirals have already been used in the context
of shape completion, see for instance [48].

Completing one broken curve using one of these two
models is not difficult. A more difficult task is to com-
plete many curves because there are n! possible pairwise
connections of 2n interrupted lines. Is there a particular
family of connections that makes sense in the context
of image inpainting? Can it be obtained without using
an algorithm with exponential complexity? Let us start
with a model that has been initially proposed in [53, 52]
and that involves straight lines as very basic interpo-
lating curves.

4.2 A simple inpainting algorithm using straight
lines [53, 52]

The algorithm described in [53, 52] for the inpainting of
gray level images is shown in Table 1. The extension to
color images is straightforward by independently restor-
ing each channel in a luminance-chrominance represen-
tation.

As discussed in [53, 52], this approach is equivalent to
finding an image whose level lines in the inpainting do-
main are minimizers of the functional

∫
(α + β|κ|)ds.

Despite its limitations – optimal curves are polygonal
lines – this model produces interesting results in a rea-
sonable time. The global optimization is indeed per-
formed with a dynamic programming approach thanks
to a causality principle satisfied by the T-junctions.
More precisely, we impose that for any two pairs of con-
nected T-junctions, the corresponding intervals on the
boundary of the inpainting domain are either disjoint or
nested. This ensures that the connecting straight lines
do not mutually cross so that a function can be easily
reconstructed by simple propagation between the recon-
structed lines. The causality principle yields a consider-
able reduction of the optimization, which runs in O(N3)
with respect to the number N of T-junctions thus ap-
proximately in O(M

3
2 ) with respect to the number M

of pixels in the inpainting domain.

We now describe a new geometrical inpainting ap-
proach using Euler spirals for the completion of broken
level lines.
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Inpainting with straight lines [53, 52]

1. extract all termination points on the inpainting domain’s boundary of the level lines associated with the sketch; these points are
called T-junctions, in reference to the term used by G. Kanizsa [47] to name the points where the edge of a partially occluded
object encounters the edge of an occluding object;

2. compute the associated tangents by a simple averaging approach [53, 52];
3. find an optimal set of curves that connect pairs of T-junctions that have the same level, under the constraint that any two curves

do not cross and each curve can be generically identified with the boundary of a level set. The optimality criterion takes into
account a linear combination of the curves total length and total curvature, including the angles at the extremities;

4. find the generic piecewise constant function associated with the reconstructed family of level lines.

Table 1 Algorithm from [53, 52] for the geometrical inpainting of gray level images using straight lines. The inpainting of color images
is done by independently processing each channel in a luminance/chrominance representation, e.g. YUV.

4.3 A new inpainting method using Euler spirals as
interpolation curves

Let us first discuss the computation of a Euler spiral
joining two points with prescribed tangents at both
ends. Interestingly, there is a close connection between
elasticae and Euler spirals as explained in [23]. Param-
eterizing a curve γ by arc-length and denoting as ψ
the inclination at γ(s), i.e. the oriented angle between
the x-axis and the tangent γ′(s), the elastica functional
reads as∫ L(γ)

0

|ψ′(s)|2ds, (4)

from which the following Euler-Lagrange equation can
be derived, taking into account the transversality con-
dition due to the unknown length L(γ) [23]:

(ψ′(s))2 = λ cosψ(s) + µ sinψ(s). (5)

After linearization, one gets

(ψ′(s))2 = λ+ µψ(s), (6)

whose solutions satisfy

ψ(s) =
µ

4
(s− α)2 − λ

µ
, (7)

where α is a constant of integration, Since the scalar
curvature coincides with ψ′(s), we deduce that Euler
spirals are the solutions of (7). Such spirals, which in-
clude circles and are rotationally invariant in contrast to
splines, can therefore be considered as approximations
of elasticae. They have other interesting properties, for
example they can serve as C2 transitions between a seg-
ment and an arc of circle, which explains that they are
frequently used in very concrete applications, e.g. ar-
chitecture, road design, typography and even for the
design of roller coasters! Integrating (7), one obtains
that the curve can be parameterized as

(x(s), y(s)) = (x0, y0) +(∫ s

0

cos(ψ(u))du,
∫ s

0

sin(ψ(u))du
)
. (8)

This expression involves the Fresnel integrals

C(x) =
∫ x

0

cos(u2) du and S(x) =
∫ x

0

sin(u2) du

that can be easily approximated from their Taylor ex-
pansion. Different methods have been proposed to find
a numerical approximation of the Euler spiral joining
two points with tangent boundary conditions [54, 13].
Here we use the rather simple approximation algorithm
proposed in [23] that involves an iterated Newton’s scheme.
Additional constraints are necessary to avoid solutions
with loops but even in that case uniqueness is not al-
ways guaranteed: one can easily find two spirals with
same energy that join the point (0, 0) to (1, 0) with ini-
tial direction (1, 0) and final direction (−1, 0). In this
kind of situation, one may force a particular solution
by imposing to the tangent along the curve a suitable
range of allowed directions.

Let us now describe the adaptation to Euler spirals
of the algorithm presented in the previous section. A
first important point – for it influences a lot the shape
of the spirals – is a careful computation of the tangent
at each T-junction of the “broken” level lines. We follow
the method due to F. Bornemann and T. März [12] after
the work of J. Weickert [71, 72] on the robust determi-
nation of coherence directions in image. Denoting as Ω
the image domain, A the inpainting domain (that we
assume to be at a positive distance from the boundary
of Ω) and IS the sketch on Ω \ A computed according
to the previous section, the coherent direction at x 6∈ A
is defined as the normalized eigenvector associated to
the minimal eigenvalue of the structure tensor [12]:

J(x) =

(
Kρ ?

(
1Ω\A∇IS

σ ⊗∇IS
σ

))
(x)(

Kρ ? 1Ω\A

)
(x)

(11)

where 1Ω\A is the characteristic function of Ω \A, Kρ

is a smoothing kernel and IS
σ is defined by

IS
σ =

Kσ ?
(
1Ω\AI

S
)

Kσ ? 1Ω\A
, (12)



8

Inpainting with Euler spirals

1. extract all T-junctions on the inpainting domain’s boundary ∂A;
2. compute the associated tangents by the Bornemann-März-Weickert method described above;
3. for each level t ∈ {N1, · · · , N2} represented on ∂A:

(a) extract the associated T -junctions;
(b) find a set of Euler spirals (γt

j)j∈{0,··· ,nt} that pairwise connect the T-junctions and minimize

ntX
j=0

Z
γt

j

(α + β|κ|2)ds. (9)

Due to the exponential complexity, the minimization is performed over all configurations only if the number of T-junctions
(at level t) is low (in practice 6 is a reasonable choice). Otherwise the minimization is performed only over the configurations
that respect the causality principle on the boundary;

(c) build a binary set Et by superposing all subsets enclosed by two interpolating curves, like in Figure 2;
4. get the complete sketch at every pixel x ∈ A by the formula

IS(x) = N1 +
X

t∈{N1,··· ,N2}
1Et (x) (10)

Table 2 Algorithm for the inpainting of gray level images with Euler spirals. The inpainting of color images can be done by indepen-
dently processing each channel in a luminance/chrominance representation, e.g. YUV.

with Kσ another smoothing kernel. It can be experi-
mentally observed that this computation yields a reli-
able estimation of the level lines directions at the T-
junctions (a sensible choice for the convolution param-
eters is σ = 1.5, ρ = 4).

The second important point is how one can handle
several possibly crossing Euler spirals. We mentioned
in the previous section that such problem does not oc-
cur with straight lines if the connection model satisfies
a causality principle: in such case, the inpainting re-
sult is obtained by propagation between interpolated
curves. If we now use Euler spirals, it is easily checked
that the causality principle does not guarantee anymore
that any two curves will not mutually cross. In addition,
there are cases where crossing curves are the right so-
lution (see Figure 2) so one must handle properly this
situation. The new algorithm that we propose for the
geometrical inpainting of gray level images is shown in
Table 2. Again, the generalization to color can be done
by independently processing the three channels in a lu-
minance/chrominance color space.

The reason why we use Formula (10) comes from
a classical result: any measurable positive function u :
Ω → R satisfies at almost every point x ∈ Ω,

u(x) =
∫ +∞

0

1{y: u(y)≥t}(x)dt (13)

Obviously, if u takes values in [t1, t2] then

u(x) = t1 +
∫ t2

t1

1{y: u(y)≥t}(x)dt, (14)

and (10) follows. Remark however that, contrary to
what happens with the level sets {y : u(y) ≥ t}t≥0

of the function u, our family of reconstructed sets Et

needs not being nested therefore (10) is not the exact
counterpart of (13). Yet our tests show that it is a rea-
sonable choice, much more sensible for instance than
the formula IS(x) = sup{t : x ∈ Xt} which is very
sensitive to completion errors that might occur at the
highest levels.

Fig. 2 A binary situation (left) where the completion of level
lines yields curves that mutually intersect (top right). Observing
that each curve divides the inpainting domain in two components,
one can derive a reasonable reconstructed image (bottom right)
from suitable intersections and unions of all components.

4.4 Results and application to sketch reconstruction

We present in Figures 3- 5 three examples of geometri-
cal inpainting using either straight lines or Euler spirals.
We illustrate in particular in Figure 5 how the technique
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naturally applies for reconstructing a geometric sketch
obtained with the algorithm described in section 3.

It now remains, in order to design a geometry-guided
inpainting method, to combine the sketch completion
with an exemplar-based inpainting algorithm. We de-
scribe in the next section the particular instance of
exemplar-based method that we will use.

Fig. 3 Top: original color image with an occluded zone. The
transparency of the occlusion is only for information. Only the
outer information is used for the reconstruction. Bottom: Result
after inpainting with straight lines [53] of each channel in a YUV
representation.

5 A closer look at exemplar-based inpainting

In this section we first detail a robust and efficient
exemplar-based inpainting algorithm, the ”patchwork”
algorithm introduced in [59], that we will use later on.
The inpainting is performed by copying entire patches
taken in the valid part of the image, which allows a
much better reconstruction of simple geometric struc-
tures in comparison with the methods that involve only
one pixel at a time. Then, in Section 5.2, we state a
result showing a theoretical connection between patch-
based inpainting and the reconstruction of geometry.

5.1 The ”patchwork” algorithm from [59]

We consider a gray-scale or color image I defined on
a discrete domain Ω ⊂ Z2 and we denote as A ⊂⊂ Ω

the inpainting domain. Given p ∈ N, the patch Γp(x)
of a point x ∈ A is defined as the discrete (2p + 1)2-
square centered at x. Such a neighborhood is called a
patch. We will also use this word to refer to the values
taken by I on the square. To q > p ∈ N we associate
the ring Bp,q(x) = Γq(x) \ Γp(x). Both sets of patches
and rings are endowed with the L2 metric. If G ⊂ Z2,
∂G denotes its inner boundary, that is the set of points
that are in G and have at least one neighbor in its
complementary set Gc. We also consider the set of all
centers of neighborhoods that are included in Ac,

Eq = {x ∈ Ω : Γq(x) ⊂ Ac}. (15)

Eventually, we consider the set of patches intersecting A
and lying on a regular grid with a mesh of size (2p+1)2.
That is, we define

Fq = {Γp(x),x = (k(2p+ 1) + p, l(2p+ 1) + p) ,

k, l ∈ Z and Γp(x) ∩ A 6= ∅}. (16)

The basic idea of the algorithm is that the unknown
parts of patches from Fq will be sequentially updated
using a dictionary made up of patches centered at points
of Eq.

Given two integers p < q, the algorithm consists
in replacing the unknown part of a patch Γp(x) in-
tersecting A with the values of the patch Γp(y) where
y is such that the distance between the rings Bp,q(x)
and Bp,q(y) is minimal. In other words, the comparison
and the copy involve different pixels and the fact that
Bp,q(x) encloses Γp(x) avoids blocky effects. Indeed, the
patches progressively inpainted by the algorithm do not
overlap but the associated rings do overlap. This is an
important issue for blocky effects are a noticeable draw-
back of many exemplar-based methods. The algorithm
is summarized in Table 3 for color images (I1, I2, I3)
in a RGB representation. To deal with cases where the
inpainting domain touches the border of the image, a
prior artificial extension by mirroring of the image do-
main can be done.

This method gives impressive results on natural im-
ages, as may be seen on Figure 6. It essentially depends
on two parameters : the size (2p + 1)2 of the patches
to be copied and the size (2q+1)2 of the neighborhood
used to quantify the similarity of two patches. Usually,
small values of p yield good results for weakly struc-
tured texture images. The case p = 0 corresponds to the
original algorithm of Efros and Leung. Larger values of
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Fig. 4 Left: Uranus in infrared light (courtesy STScl and NASA) with artificial occlusions. Right: after reconstruction with Euler
spirals of each channel in a YUV representation.

Fig. 5 A geometric sketch (see section 4.3) and its reconstruction using Euler spirals.

Exemplar-based algorithm [59]

1. Let Γp(x0) be a patch from Fq such that the intersection between Bp,q(x0) and Ac has maximal area (a selection criterion such
as the one proposed in [24] could also be used);

2. Let y0 be defined as

y0 = argmin
y∈Eq

X
k=1,2,3

X
yi∈Bp,q(y)

yi−y+x0∈Ac

˛̨̨
Ik(yi)− Ik(x0 − y + yi)

˛̨̨2
(17)

i.e. y0 is the center of the patch in Ac whose associated ring is the most similar to the ring associated with the patch centered
at x0;

3. For each x ∈ Γp(x0) ∩A, let Ik(x) = Ik(y0 + x− x0), k = 1, 2, 3;
4. Replace Fp with Fp \ Γp(x0) and go to 1 if Fp 6= ∅.

Table 3 Exemplar-based algorithm [59] for a color image (I1, I2, I3) in a RGB representation.

p give better results in the presence of geometric struc-
tures. Indeed, large patches enable the propagation of
straight edges whereas small values of p may lead to
the creation of erratically oscillating structures. How-
ever, even though edges are somehow preserved when
using large patches, two problems remain for achiev-
ing a satisfying reproduction of geometry. First, curved
edges are not well prolongated if a suitable curvy piece

of edge cannot be found elsewhere in the image. A so-
lution would be to enlarge the dictionary of patches by
simply taking rotated versions. This sometimes yields
nice results but erratic results often occur when the
dictionary becomes too rich. Second, exemplar-based
methods are local or semi-local and therefore long edges
crossing the missing part of the image cannot always be
satisfactorily restored.
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Fig. 6 Top: original image with missing parts (holes) in white.
Bottom: reconstructed image using the exemplar-based method
from [59] (with p = 4 and q = 6).

5.2 Patches metric and curvature

We now briefly investigate a connection between the
exemplar-based approach that we just described and
the restoration of geometry. It is obvious from the ex-
periments that exemplar-based inpainting methods do
not only restore texture but also a local geometric in-
formation. This is not surprising since copying a patch
means copying both the texture and the geometry. How-
ever, we may wonder whether a theoretical link can be
found between the replication of patches and the ge-
ometry. This is the purpose of the next proposition
(see also [3] for a more general variational formula-
tion), where we investigate a very simplified model of
replication. More precisely, we prove that the differ-
ence between a smooth set and the concatenation of
“straight” patches (i.e. intersections between balls and
half-planes) can be evaluated using a criterion that in-
volves the curvature. This is not surprising since the
curvature measures the variation of the tangents to the
set boundary.

Let E be an open, bounded subset of R2 with C3

boundary. Given x ∈ R2, we call straight patch of size
r centered at x any set obtained as the intersection be-
tween the disk Dr(x) of radius r centered at x and a
half-plane. We let P denote the collection of all half-

planes in R2. We want to quantify asymptotically (as
r tends to 0) how much E differs at every point from
a straight patch. A natural dissimilarity criterion is de-
fined as

Jr(E) =
∫

R2
( inf
P∈P

∣∣(E∆P ) ∩Dr(x)
∣∣p) dx, (18)

where ∆ is the symmetric difference operator, | · | the
Lebesgue measure and p > 0 a parameter.

Proposition 1 There exists Cp > 0 such that

Jr(E) = Cpr
3p+1

∫
∂E

|κ∂E |p dH1 + o(r3p+1), (19)

The proof of this proposition is given in Appendix A.
This result quantifies the fact (which is obvious from an
experimental point of view) that the more oscillating a
boundary is, the more difficult it is to recover it using
only “straight” patches.

6 Using the reconstructed sketch to guide the
exemplar-based algorithm

Recall that the main motivation for this paper is to
adapt an exemplar-based algorithm in order to improve
the quality of the restored geometry, and in particular
to handle properly long-range geometric features, while
maintaining a good ability to reproduce the texture.
We saw in Section 3 how to compute a sketch of the
image outside the inpainting domain and in Section 4
how to interpolate it, using either straight lines or Eu-
ler spirals. Let us now examine how the reconstructed
sketch can be used for guiding the exemplar-based al-
gorithm of the previous section. Again, we denote by A
the inpainting domain and by I the image known only
on Ω \ A (I = (I1, I2, I3) for color images). We write
IS for the interpolated sketch, known on the whole im-
age domain Ω. In the case of color images, IS denotes
the interpolation of the gray level sketch obtained from
the luminance channel in a YUV representation of the
original image. As already mentioned (see also [17]),
the luminance channel essentially contains all the geo-
metric information of almost every non synthetic image
therefore using color sketches is unnecessary.

Based on the interpolated sketch IS , the core algo-
rithm of our approach is given in Table 4.

Given a point x on ∂A, the algorithm searches y ∈ Ac

such that, simultaneously,

• the patches Γq(x) and Γq(y) are similar in the com-
pletion of the sketch luminance channel;

• the rings Bp,q(x) and Bp,q(y) are similar in the orig-
inal image I.
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Geometrically guided exemplar-based algorithm

1. Let Γp(x0) be a patch from Fq such that the intersection between Bp,q(x0) and Ac has maximal area (a selection criterion such
as the one proposed in [24] could also be used);

2. Let y0 be defined as

y0 = argmin
y∈Eq

n
λ

“ X
yi∈Γq(y)

˛̨̨
IS
V (yi)− IS

V (x0 + yi − y)
˛̨̨2”

+ (1− λ)
“ X

k=1,2,3

X
yi∈Bp,q(y)

x0+yi−y∈Ac

˛̨̨
Ik(yi)− Ik(x0 + yi − y)

˛̨̨2”o
; (20)

3. For each x ∈ Γp(x0) ∩A, let Ik(x) = Ik(y0 + x− x0), k = 1, 2, 3;
4. Replace Fp with Fp \ Γp(x0) and go to 1 if A 6= ∅.

Table 4 Geometry/texture inpainting algorithm proposed in this paper.

The parameter λ weights the respective contributions of
the sketch and the original image. Taking λ = 0.5 was a
reasonable choice for all the experiments presented be-
low which explains why we will not discuss the correct
tuning of this parameter. We nevertheless believe that
understanding correctly how λ must be chosen accord-
ing to the very nature of the image is an interesting
challenge.

7 Experimental results

We display in Figures 7-14 several examples of image re-
construction where we compare the approach proposed
in this paper with the original ”patchwork” algorithm
from [59]. In Figures 7 and 8, we display examples where
the use of a geometrical guide (obtained using straight
lines) improves the reconstruction of the geometry. In
Figure 8 (e)-(g), we also display a case of failure in
presence of a T-junction. Indeed, T-junctions as well
as corners are not accounted for in both sketch recon-
struction algorithms presented in Section 4. Figure 9
illustrates that, in some situations, the geometric guid-
ing may yields a result not better than with the only
”patchwork” algorithm. Remark that, for this rectilin-
ear example, it is preferable to use straight lines rather
than Euler spirals for the geometric inpainting. In Fig-
ure 10, we present a toy example made of a textured
disk, which illustrates the possibility to correctly recon-
struct such a curvy geometry while reproducing well
the texture part of the image. In Figures 11 and 12, we
show two examples where the use of a geometrical guide
that has been interpolated by means of Euler spirals en-
ables correct inpainting results in difficult cases. For the
experiment shown in Figure 13(e), a larger dictionary
of patches has been used in Formula (20) by simply
considering several rotations of each patch. This larger
dictionary permits to closely follow the reconstructed
curves of the sketch even though none of the patches
from the original image has the correct orientation. It
is interesting to note that using geometrically-guided

rotated patches yields significantly better results than
using rotated patches without guide since, as already
mentioned, a richer dictionary of patches without addi-
tional constraint often leads erratic results. Lastly, we
display in Figure 14 an example of a successful com-
pletion of an electron microscope image illustrating the
ability of our method to restore properly both the tex-
ture and the geometry.

8 Conclusion

We have presented a new method for the joint restora-
tion of texture and geometry. In many situations, our
method has the ability to restore properly long-range
geometric features like edges and, simultaneously, to
sample and paste correctly the texture information.

What are the limitations of our approach? Although
it allows us to recover long-range edges, its performances
are somewhat limited when the sketch to be recon-
structed is intricate and contains many edges that can
hardly be interpolated without ambiguity. In such sit-
uation, it appears that a manual intervention is neces-
sary. A natural approach could be to adapt to the level
lines framework the contour editing strategy proposed
by Elder and Goldberg in [32]. The user could simply
mark the pairs of lines to be connected and the program
would compute the optimal sets of Euler spirals. This
would give a more flexible – but no more automatic –
algorithm for inpainting.

We conclude by mentioning that several variants
of our model can be proposed: a natural one consists
in pasting samples in priority along the interpolated
curves of the sketch, in the spirit of [63] except that
in our case the curves are automatically computed and
not drawn by the user. A second variant consists in
changing the energy in (20), for instance replacing the
L2 norm by another Lp norm (see [3] for a discussion
based on axiomatic requirements). One can also replace
the linear combination of the image and sketch energy
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terms in (20) by a new energy and define the center of
a candidate patch as a solution to:

y0 = argmin
y∈Eq

{
max

{ 1
Z1

( ∑
yi∈Γq(y)

∣∣∣IS
V (yi)−IS

V (x0+yi−y)
∣∣∣p),

1
Z2

( ∑
k=1,2,3

∑
yi∈Bp,q(y)

x0+yi−y∈Ac

∣∣∣I(yi)− I(x0 + yi − y)
∣∣∣p)}}

(21)

where Z1 and Z2 are suitable normalizing constants de-
pending on the dynamic ranges of IS and I, respec-
tively, and on the respective sizes of Γp(·) and Bp,q(·).
The choice of Z1 and Z2 is however rather delicate and
strongly depends on the type of images but there are
obviously situations where this energy would be more
adapted.

A Proof of Proposition 1

In this appendix, we give a proof of Proposition 1 which is stated
in Section 5.2, where the corresponding notations are also in-
troduced. Let x ∈ R2 and denote Jr(E, x) = infP∈P

˛̨
(E∆P ) ∩

Dr(x)
˛̨
.

Step 1: Up to a translation, we may assume that x = 0 and sup-
pose that, in a neighborhood of 0, E coincides – up to a rotation –

with the set of points (x, y) such that y ≥ λ+
κ∂E(0)

2
x2 for some

λ ∈ R. If λ < −r or λ > r or if κ∂E(0) = 0, then Jr(E, 0) = 0.
By symmetry, we can now assume that κ := κ∂E(0) > 0 and we
observe that

Jr(E, 0) =

inf
(m,p)∈R2

˛̨̨“
{y ≥ m + px}∆{y ≥ λ +

κ

2
x2}

”
∩Dr(0)

˛̨̨
. (22)

By symmetry arguments, we observe that for every m ∈ R,
p 7→ |({y ≥ m + px}∆{y ≥ λ + κ

2
x2})∩Dr(0)| is minimal when-

ever p = 0. Therefore, the computation of Jr(E, 0) reduces to
minimizing m 7→

R
Dr(0) |λ−m + κ

2
x2| dx, see Figure 15.

Let A be the intersection point between the right branch of
the parabola and the circle Cr(0), and B the intersection point
with positive x-value between the line y = m and the circle.
Clearly, if m minimizes

R
Dr(0) |λ−m+ κ

2
x2| dx, then λ ≤ m ≤ yA.

Let P be the patch Dr(0) ∩ {y ≥ m}. Then:Z xA

−xA

|λ−m+
κ

2
x2| dx ≤ |E∆P | ≤

Z xB

−xB

|λ−m+
κ

2
x2| dx, (23)

therefore

inf
m∈R

Z xA

−xA

|λ−m +
κ

2
x2| dx ≤ Jr(E, 0)

≤ inf
m∈R

Z xB

−xB

|λ−m +
κ

2
x2| dx, (24)

Now the minimum of
R xA
−xA

|λ−m + κ
2
x2| dx is reached at mA =

the median value of λ+ κ
2
x2 on [−xA, xA], i.e mA = λ+ κ

2

„
x2

A
4

«
.

Fig. 15 Approximation in Dr(0). Jr(E, 0) is the gray area

Analogously, a minimizer of
R xB
−xB

|λ − m + κ
2
x2| dx is mB =

λ + κ
2

„
x2

B
4

«
. Plugging into (24) yields

κ

4
x3

A ≤ Jr(E, 0) ≤
κ

4
x3

B . (25)

Remark that x2
B = r2 − λ2 and x2

A = r2 −
`
λ + κ

2
x2

A

´2
thus

x2
A ≥ r2 − λ2 − κr3 which is positive for r small enough, and

therefore

κ

4
(r2 − λ2 − κr3)

3
2 ≤ Jr(E, 0) ≤

κ

4
(r2 − λ2)

3
2 . (26)

Step 2: Assume now that E has C3 boundary and let x ∈
∂E⊕Dr. For r small enough and after a suitable change of the co-
ordinates frame, ∂E on Dr(x) can be approximated as a parabola
of the form λ + κ

2
x2 in Dr(0), where κ is the curvature of ∂E

at (0, λ) ∈ ∂E in the new coordinates frame. The approximation
error is a o(r2) therefore

κ

4
(r2−λ2−κr3)

3
2 +o(r3) ≤ Jr(E, 0) ≤

κ

4
(r2−λ2)

3
2 +o(r3) (27)

Step 3: Let dE denote the signed distance function to ∂E (pos-
itive outside E, negative inside). Since dE is smooth in a band
containing ∂E and |∇dE | = 1 a.e., we deduce from the coarea
formula that

JR(E) =

Z r

−r

Z
∂{x: dE(x)≥λ}

“
Jr(E, y)

”p
dH1(y) dλ. (28)

By a well-known property of the distance function, dE locally
inherits the regularity of ∂E. If r is small enough, for any x ∈
∂E⊕Dr, there exists a unique y ∈ ∂E such that x = y+dE(x)n∂E

where n∂E denotes the outer normal to E at y. Considering the
arc-length s on ∂E, there exists a parameterization s′ on ∂{x :
dE(x) ≥ λ} such that ds′ = (1 − κλ) ds. Therefore, by Fubini’s
Theorem,

Jr(E) =

Z r

−r

Z
∂E

“
Jr(E, x + λn∂E)

”p
(1− λκ(x)) dH1 dλ

=

Z
∂E

Z r

−r

“
Jr(E, x + λn∂E)

”p
(1− λκ(x)) dλ dH1.
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(a) (b)

(c) (d)

Fig. 7 (a) original image; (b) occluded image; (c) image restored with the exemplar-based method from [59]; (d) image restored using
the method introduced in this paper, detailed in Section 6 (using p = 4, q = 6, λ = 0.5). The geometrical interpolation of the sketch
(to obtain figure (d)) uses straight lines.

By (27) and the change of variables λ → λ/r:

r3p+1

Z
∂E

˛̨̨ κ

4

˛̨̨p Z 1

−1

“
(1−λ2−κ(x)r)3/2 +o(1)

”p
(1−λ r κ(x)) dλ dH1 ≤

Jr(E) ≤ r3p+1

Z
∂E

˛̨̨ κ

4

˛̨̨p Z 1

−1

“
(1−λ2)3/2+o(1)

”p
(1−λ r κ(x)) dλ dH1.

(29)

Being the curvature along ∂E uniformly bounded, the proposition

ensues by taking C =
1

4p

Z 1

−1
(1− λ2)3p/2 dλ.
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Fig. 9 A case where the geometrical guiding does not systematically improve the result given by the ”patchwork” algorithm [59]. (a)
occluded image; (b) image restored using the exemplar-based method from [59]; (c) image restored using the method introduced in
this paper, detailed in Section 6 (using p = 4, q = 6, λ = 0.5, and straight lines for sketch interpolation); (d) Same as (c), but using
Euler spirals for the completion of the sketch.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10 (a) original image; (b) occluded image; (c) image restored using the ”patchwork” algorithm [59]; (d) same restoration process
but using for each patch in the dictionary 15 additional patches obtained by rotation. The result is better but still unsatisfactory;
(e) sketch of the image; (f) sketch reconstructed using Euler spirals; (g) image restored using the method detailed in Section 6 (with
p = 4, q = 6, λ = 0.5 and (f) as guiding image); (h) Same method as in (g) but with the dictionary enriched by 15 rotations of each
patch so that the disk boundary is smoother.
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Fig. 11 (a) original image; (b) occluded image; (c) image restored using the ”patchwork” algorithm [59]; (d) image restored using
the method introduced in this paper, detailed in Section 6 (using p = 4, q = 6, λ = 0.5, and Euler spirals for sketch interpolation).
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Fig. 12 (a) original image; (b) occluded image; (c) image restored using the ”patchwork” method from [59]; (d) image restored using
the method introduced in this paper, detailed in Section 6 (using p = 4, q = 6, λ = 0.5, and Euler spirals for sketch interpolation).
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Fig. 14 (a) A low-resolution scanning electron microscope image showing an integrated circuit which was given an overload current
and subsequently failed thermally. The fibers are oxides which formed and grew out of the device during thermal destruction (From:
Digital Image Processing, 3rd ed. by R. C. Gonzalez and R. E. Woods, Prentice Hall, 2008. Used with permission). (b) A mask covering
the fibers. (c) image restored with the exemplar-based method from [59] (using p = 6, q = 8, λ = 0.5); (d) image restored using the
method introduced in this paper, detailed in Section 6 (using p = 6, q = 8, λ = 0.5, and Euler spirals for sketch interpolation).
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