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Abstract— In this paper we present the first globally optimal
ratio-based image segmentation method allowing to imposeuc //\
vature regularity of the region boundary. The proposed metlod
is fully unsupervised and compares favorably to other such
approaches.
To identify the optimal foreground region in the image, the

algorithm minimizes the ratio of flux over a weighted sum of input length-based curvature-based

length and curvature regularity of the region boundary. The key
concept is to find cycles in a product graph where each node
corresponds to a pair of image locations.

Furthermore our results allow to draw conclusions about
certain global optima of a reformulated snakes functional vhich
is independent of parameterization: the proposed algoritm
allows to find parameter sets where the modified snakes func-

tional has a meaningful solution and simultaneously provigs the input length-based curvature-based

corresponding global solution. ) o
Fig. 1. Effects of length-based and curvature-based regulasizati image
segmentation on artificial images. Results were generas@ty tfunctionals
I. INTRODUCTION (4) and (1), the latter with absolute curvaturg¢ « 1, = 0). Note that

: : : : urvature regularity gives rise to fundamentally diffdareregmentations. In
Curvature r?g“'a“ty F_’lays an |mport_ant role in many f!eldéarticular it allows gap closing and contour completion.
of computer vision and image processing - among them |mage_|_h d method is full ised and all i
segmentation, perceptual organization and inpaintingchis € proposed method IS Tully unsupervised and aflows 1o

logical studies have identified curvature as a key compon{rﬁmpme gI(_)baI minimizers .Of a dlscr_ete version of the eyerg
for human scene interpretation. tis of practical value since it deals with shading effectsene

In this paper we present a method that links curvature wifﬁ?'o_n'ballsed Te:]hods _ha\I/e plroblel_”ns. h . f
image segmentation: the optimal foreground region is olethi t s also of theoretical value since the computation o

by the minimization of an energy functional of the regior?k)ba_lI mllr.wl_mlz”ers help% Wh_en ﬁnalyzmg 't_]he uzefulness of a
boundary that we term thelastic ratia unctional: it allows to identify the strengths and wealgess

of a model.

L(©) WL Moreover, the class of optimizable functionals is not liit
/0 VI(C(s)) - (C'(s)) " ds to (1): we allow almost arbitrary dependencies on the parsiti
o) (1) of a pointC(t) on the curve, the tangent vect6t () and the
v L(O) +/ |kc(s)|?ds curvature vectokq(t) at C'(t). That is, we consider ratios of
0 form

Here I : Q — R denotes a gray-level image defined on a £(0) ,

domainQ ¢ R?, C : [0, £(C)] — Q is a positively oriented /O h(C(s), C'(s), kc(s)) ds
parameterization by arc-length of the region boundary et L£(C)

assume to be smooth, simple and closed with lengtt), / g(C(s),C"(s),kc(s)) ds

(C’(s))L coincides withC’(s) rotated by+%, rc(s) is the 0

curvature vector at the poinf(s) — i.e., ko(s) = C”(s) Whereh: QxS'xR? — R is arbitrary andy : QxS' xR? —
due to arc-length parameterization [22;-and v are positive R* such that the denominator is strictly positive for all cldse
real weighting factors anddenotes the scalar producti®?. curvesC with strictly positive length.

Remark that changing the orientation of a curve changes theAmong these functionals, we study what we call $nakes

sign of the associated elastic ratio. ratio: £(0)
Figure 1 demonstrates the effect of curvature in this func- _/ IVI(C(s))|P ds
tional: it compares a version with length-regularity onty @ 0 ?)
version with curvature-regularity only. The results witore vL(C) + foﬁ(C) ke (s)]9 ds
vature are much closer to human perception and we observed o
this consistently throughout our experiments. As we shall see later, the snakes ratio is closely related to a

parameterization-invariant formulation of the famous ke
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Before entering the details of our method, we first give b) Edge-based Method€ver since the pioneering work
an introduction on related work on curvature and imagef Kass, Witkin and Terzopoulos [40], edge-based meth-

segmentation. ods [13], [60], [37], [59] have formed one of the major
approaches to image segmentation.
Il. RELATED WORK AND CONTRIBUTION In their seminal work on the snakes model, Kass et al. [40]

In this work we propose a method for image segmentatigmopose to minimize an energy computed along the region
which relies on results on the influence of curvature regtylar boundary described by a cuné : [0,1] — Q. The criterion
in various fields. Both areas will now be reviewed, then thi® be minimized reads:
contribution of this paper is described.

1 1 1
A. Curvature in Vision and Image Processing 04/0 |C"(8)*dt + 5/0 |C"(t)[*dt — /\/0 [VI(C(t))[ dt
Following results in Psychophysics [39], the curvature has

been _introduceql into various fields of computer vision. Wherea, 3 and \ are real positive constants. The first two
was first seen in the context of sh%;()g) completion throughy s of the criterion measure the smoothness of the curve
the celebrated Euler's elastica enerdiy"  |rc(s)|” ds, Se€ (recall that the second derivative” (¢) is directly related
[57], [35], [48] and the subsequent developments in [23 the curvature — they actually coincide for arc-length pa-
[41], [32], [17]. Other applications of curvature are imag@ameterization of the curve) whereas the third term aims at
segmentation [40], [3], [2], [51], [12], inpainting [4], 8. attracting the curve to places with large image gradierts. |
[45], [28], [30], image smoothing and denoising (see [5Gk a well known issue of the model that for some particular
and references in [11]), image analysis [52], [26] or swefagayes of the parameters, no meaningful global optima can be
interpolation and smoothing [36], [55], [24], [6], [29]: found: the only minimizers would be either points or curves
A large body of this literature is devoted to optimizingyith infinite length. In this paper we state a parameterizati
curvature-dependent functionals in a continuous and/ef djyariant version of the functional and show that the pragubs

crete setting through a minimizing flow yieldingcal optimiz-  nethod allows to identify meaningful global optima of this
ers. Very few methods are able to compgtebal optimizers, ersion.

as for instance [46], [45] where total absolute curvature is

optimized gl_obally in the context of inpainting and [3], [2]using dynamic programming. To avoid meaningless solufions
where Amini, Weymouth and Jain showed how to globallﬁ}ey enforce the curve to be polygonal with an a priori

optimize line integrals depending on curvature by means R ber of poi hth iahbori .
dynamic programming. However, the run-time of their methodnown NUMbET 0 _pomts,- such that no two neig oring points
' ' re less than a given distance apart. Although their method

is guaranteed to be quadratic in the number of image pixels. . L ; X .
. o . : provides polynomial time solutions, due to its quadratio-ru

In practice this is too slow for reasonable image sizes. As_a G S
time complexity it is only applied in a small band around an

consequence they only consider curves in a band around.an
- initial curve.
initial curve.

Caselles et al. [13] propose to minimize a line integral of
B. Image Segmentation as an Optimization problem a posmve_ edge _|nd_|cator f‘.*”C“Q’”U.V”)' whereg decreas_es
monotonically with increasing gradient strength. Althbubis
Over the past few decades numerous methods have bagfye| is interesting for local optimization, it is easilyese
proposed for image segmentation. We focus on those thak: the global minimizers are meaningless: any degenerate

are based on minimizing a suitable energy functional. The,e reduced to a point in the image is a minimizer of this
corresponding functionals typically combine a data terthwi g, ctional. Meaningful global optima can be found when seed

a regularity term (for a recent review see [19]). Both termgyqes are given for foreground and background [8].
can incorporate either region or edge properties, yet the

regularity term generally penalizes certain propertiesthodf
region boundaries.

a) Region-based Methoddn region-based image seg- ..
mentation the intensity inside the region is assumed to 8?,
approximately constant [49], [16], to vary only slowly [48} 0
to be generated by a suitable probability model [61]. RecentThe ratio regions of Cox et al. [18] provide meaningful
methods allow to integrate flux into region-based formuldHobal optima together with a polynomial time complexity.
tions [38], [58], [42], [43], in particular for the segmetitan However, the complete search over all starting points takes
of long elongated structures. prohibitively long in practice. Moreover the method is lted

In the region-based framework, global optima are usuall§ Planar graphs.
not available in polynomial time. A region-based functibna Finally, Jermyn and Ishikawa propose in [38] a class of ratio
with a very basic smoothness term could recently be optichiz&unctionals for image segmentation, including the ratidlox
globally [23]. For length regularity andivenregion statistics over length, whose global minimizers can be efficiently fdoun
global optima can be computed [7], [14], [50]. For curvaturby iterative negative cycle detection in a suitable graptihls
regularity we are only aware of local methods [27], [51]. paper we extend their approach to include curvature reigylar

Amini et al. [3] optimize a modified shakes functional

Methods that work without seed nodes are usually built on
ratio functionals. Shi and Malik [54] propose normalizeds;u
which leads to an NP-hard optimization problem. Using relax
on techniques one can find a solution which is independent
initialization.



C. Contribution It is worth noticing that we are dealing with oriented curéés

In this paper we extend the class [38] of globally optimizand do not fix the orientition: when changing the orientation
able ratio functionals: we show how to integrate curvatuf@e curve normal$C’(s)) switch sign and so does the entire
regularity of the region boundary. The proposed method !merator term. Hence minimizing (4) over oriented curges i
fully unsupervised and allows a great variety of data arffuivalent to maximizing its absolute value.
regularity terms: in the numerator any functional depemegen It therefore amounts to finding curves perpendicular to
on the (local) curvature of the curve is allowed. In thétrongimage edges. The normalization by length avoidatriv
denominator we require functions yielding positive inalgr optima (zero-length or infinite-length curves). Yet, in gtiee
for all closed curves. the found regions tend to be small and usually do not coincide

Moreover the proposed algorithm allows to draw corWwith human perception. As a remedy Jermyn and Ishikawa
clusions about certain global optima of a parameterizatioproposed a balloon force. To understand how this works we
invariant version of the snakes model: it allows to find a para must first look at the region-based interpretation.
eter set where the snakes functional has a meaningful global
optimum for the given image and simultaneously provides t
corresponding global solution.

A preliminary version of this work appeared in [53]. Criterion (3) is only apparently a pure edge criterion. As
This extended version additionally addresses the issuesobferved in [38], the Gauss-Green Theorem forms a bridge
an efficient parallel implementation as well as theoretichetween curve energies and region energies. Dendfing
considerations of the continuous optimization task: weresl simple and smooth curve iR* andCj,, the connected region
the existence of minimizers in the continuous domain ar@hclosed byC, the Gauss-Green Theorem states that for any
prove the convergence of discrete minimizers to “contirgiousmooth fieldz on R?

minimizers as the resolution increases. £(C)
/ dividz = —/ U(C(s)) -fic(s) ds
0

in

the. Conversion to the Region-based Form

IIl. THE JERMYN-ISHIKAWA SEGMENTATION METHOD

I.H. Qermy_nhand H. Ishikawa _proposed in [38] to Opt'm'zﬁ/hereﬁc(s) is theinner unit normal toC' at C'(s). It is easily
a criterion with two nice properties: observed that any continuous functigndefined onR? can

1) its discrete counterpart can lobally optimized in pe associated with a vector fiel4 such thatf = div oy by
polynomial time, which is somewhat unusual: for most z Y

. . 1
segmentation models based on the optimization of ihe simple formulaiy (z, y) = 5(/0 f(ty)dt, . f(a,t)dt).
energy, the global optima are either With this formula, the minimization of (4) can equivalenb
2) it can indifferently be written as an edge-based or aritten as
meaningless or not efficiently computable. region-based /
criterion. Most criteria in the literature fall either in en Cin
or the other category. e L

We will first state the contour-based formulation, then tton
the region-based one.

Al(z)dx
@

whereATl = div(VI) is the Laplace operator. This expression
gives some indications on the optimal regions and confirms
what can be observed experimentally: the optimal regioaes ar
A. Contour-based Problem Statement likely to contain high values oA with constant sign, which

In Jermyn and Ishikawa’s approach the image domain éten occurs for small regions in the vicinity of edges, ire.
segmented into two regions separated bysdantedcurveC.  zones whereVI changes a lot.
In the most general setting, this curve minimizes a ratichef t  To include the balloon force weighted withone only has

form £(C) to add+3' to Al(z). The arising problem can be written as
| e ) as c©) .
o ®3) / VI(C(s)) - (C'(s)) " ds + /5 dx
| stcw)as P o |
0 c L(C) ’

where the curvel is parameterized with arc-lengthi,: 2 — _ N _
R2 is a vector field (C’(s))L is the unit normal to the curve @nd will be termedextended length ratian the following. It
Fhat coir_lc;ides vyitkC’(s) r.otated by+Z andyg : R2 _, R+ Provides substantially better results in practice.
is a positive weight function.
In particular, Jermyn and Ishikawa propose to minimize theé pyplems with Region-based Terms

average outward flux that we cdéngth ratioin this paper: . ) . )
In the considered framework, the inclusion of region-based

/L(C) VI(C(s)) - (C’(s))J'ds terms is actually a delicate issue. The reason is the use
0

(4)

IHere + means taking the sign which yields the highest energy.

L(C)



As mentioned in the introduction, we propose a different
remedy to the problem: in addition to the length of the curve,
we will also penalize its curvature and thus consider the
minimization of (1):

£(C) o
/0 VI(C(s))- (C'(s))" ds

mcin y3te)
VE(C')—!-/ |ke(s)]? ds
0

Fig. 2. The trouble with self-intersecting curves: the consideaégbrithm

. 1 . . )
provides curve normals(()’(s)) (shown in blue) that are partially inner
normals and partially outer ones. With these normals, tiggoreintegral is

£(C

Why should this particular energy help to avoid small curves
more than the length ratio? The reason is that the curvature
N term discourages direction changes: the curvature alontga |
evaluated as 5(C(s)) - (C'(s)) " ds = —2, wheredivd; = f.  segment is zero. Hence the curvature term will not grow in
A correct application of the Gauss-Green theorem usingistemt normals parts where the curve goes straight so that for long and not
gives the correct region integraj  f dz = 0. oscillating curves the denominator will be roughly simitar

Cin the length only and the ratio will not differ much from the

of a contour-based algorithm which does not exclude selgngth ratio. In contrast, for small curves, the curvatugert
intersecting curves. Alternatively one could use the regioWill b much larger than the length so the ratio will be much

based method in [43]. However, this method presently allovi§@ller, in absolute value, than the length ratio. o
only for a very restricted class of functionals. As the minimization of (1) will be intensively studied in

In principle the Gauss-Green theorem is valid for a larg8iS Paper, we now prove the existence of minimizers under
class of self-intersecting curves, e.g. the one in Figuréhz SOMe mild assumptions on the imagend on the length of
problem lies on the side of the optimization algorithm: t&UrVes.
calculate the region integral by processing along the gume
either needs consistently the outer curve normal every&ber o Existence of minimizers

consistently the inner normal. Yet, the optimization aitjon A ) hat) is bounded. th . ¢ minimi
provides the outer normal for a part of the curve and the “*SSUMINg thatt? is bounded, the existence of minimizers

inner normal for the other part. To get consistent normaks 0|‘?'c (1) is rather easy to prove among closed curves with length

would have to consider the entire curve at once. Yet, to geygiformly bounded by a constant and that admits a uniform

polynomial time complexity the algorithm can only keep kacparameterization in the Sobolev spade"*([0, 1], Q).' a= 1
of small fragments of the curve. [31]. Remark that the constant can be chosen arbitrarityelar

Therefore, given a vector field; such thaidiv 7 = f, the F_or simplicity, we assume that the imagdeis continuously
region integral for the oriented curve in Figure 2 is caltedh differentiable onf..
as Lo Remark that if VI(C(s)) - (C’(s))Lds < 0 then
/ 5 (C(s)) - (C’(s))Lds =-2 changing the oriéntation of’ also changes the sign of the
0 integral. Thus, minimizing (1) is equivalent to maximizing
because(C’(s))L is defined as the unit tange@t (s) rotated
by +7. However, a correct computation should give

£(C) N
/ VI(C(s))- (C'(s)) ds
0
div vy dx = fdx=0. L(C)
/ ! / v L(C) +/O k()| ds

(6)
Cin Cin

This implies that self-intersecting curves are not assign@sing a uniform parameterization d, 1] this ratio can be
the desired costs which makes the inclusion of region terms ritten as ’
non-trivial design task: one needs to make sure that thes cost
assigned to self-intersecting curves do not form the global
minimum of the arising modified optimization problem. This
seems to impose severe limits on the use of region terms. For - L.
this reason we will not consider region terms in the remainde v L(C) + [£(C)] q/ |C7 ()| dt
of this paper. 0

/01 VI(C(t) - C'(t)*F dt’

()

whereC’(t)* denotes the vectat’(t) rotated byZ. Let A >
IV. INTRODUCING CURVATURE REGULARITY INTO RATIO 0 and define
_ OPTmMizaTion W29(10,1],Q) = {C' € W29([0, 1], ), £(C) < A}.
We have previously seen that the ratio of flux over length
often leads to very small minimizing curves. One way to g&tle assume in the sequel thahnd A are such that there exists
longer curves is the addition of region integrals. In thet last least a simple closed curveWi;q([O, 1], Q) for which the
section we discussed the problems with such region termsnumerator in (7) is non zero, otherwise the problem is ttivia



Take a maximizing sequendg’,),cn Of simple closed and we finally get that
curves inW%%([0,1],9Q) with uniform parameterization on .
[0,1]. With no loss of generality, we can assume that there / VI(C(t) - C'(t)* dt‘
existsa; > 0 such that, for every, € N 0

1
1 —
JRCXOR=AOR ve(©)+ @) [ e a
0 1 > a1
1
v L(Cy) + [z(cn)]l—%/ | ()] dt / VI(C Cn(t) dt‘
0 > limsup
Due to the regularity of the imagg there exists alsa, such neN v L(Cy) + )L Qq/ O (1)) dt
that
! The sequencéC,,) being maximizing, we conclude that
/ i n ’
/O VI(Cn (1)) - Cr(t) dt’ < 62L(Cr) < 024 is a curve — limit of simple curves — that maximizes (6) in
thus W2%9(0,1], Q). Remark that the same proof could be used to

4 establish the existence of minimizers amongV&it:¢ curves,
v L(Cy) + Nk 24/ |7 (1)) dt < a2_ (8) simple or non simple.

and therefore there exists a constagtsuch that for every

B. The Class of Optimizable Functionals
neN

N The discrete approach that we use can handle a much wider
/0 |Cr ()] dt < as class of functionals with a great variety of data and redtylar
Observing that? is bounded andC” ()] = £(Cy) < A for terms: the integrands in both numerator and denominator can

everyt c [0,1] and everyn € N, due to the assumption depend on the poinf'(¢) of the curve, on the tangent vector

C'(t) and the curvature:-(t) at C(t), so that the class of
of uniform parameterization, we conclude that the sequengg( ) co(®) (*)

(Cn)nen is uniformly bounded inW?2:4([0, 1], Q2). Therefore lvable problems reads:

(see for instance [31]), there exists a subsequence, stibtd £(0) h(C(s).C d
as (Cy)nen, that converges weakly ifW>4([0,1],Q) and o (C(s), C'(s), hc () ds
strongly in C'([0,1],Q) to a limit curve C. In addition, L(C) (10)
L(C,,) — L(C) —in particularC' € W%%([0,1],Q) — and /O g(C(s),C"(s),kc(s)) ds
1 1
/ |C" ()7 dt < 1iminf/ |CY(t)]4 dt. (9) Hereh : Q xS! x R? — R is arbitrary and the integral of
0 n—oo 0

g:QxS"xR? — Rt over any closed curve with positive
Remark that”' is not necessarily simple since tangential autgength must be strictly positive.

contacts may occur in the limit. In the next section, we will describe how ratios of the form
Let us now check that the limit cun@ has strictly positive (10) can be globally optimized after a suitable discreiimatit
length. From (8), we deduce that should be noted that self-intersecting curves can occur.iiye
L(Cn) @A our experiments we observed them only for very small length
| e s = e / crmlrdr < 22 eightsw,

Extending Fenchel's Theorem [22][Theorem 5.7.3]\162

. . V. THE OPTIMAL CURVE ASCYCLE IN A GRAPH
curves by approximation, we know that for every €

L(Cn) ) _ o To globally optimize functionals of form (10) we discretize
]N,’/ |k, (s)|ds > 2m. By the Holder inequality, it the space of all possible curves: a curve is now defined
foliows that as a contiguous subset among finitely many line segments.

£(C) Nevertheless we have the continuous optimization task in
E(Cn)q_l/ ke, (s)|7ds > (2m)? mind and the optimal discrete curve is viewed as a polygonal
0 approximation of the optimal continuous one: its length and
thus £(C, ) > % Passing to the limit, we concludecurvature estimates approximate the values of the contisiuo
that £(C) > 0. Therefore, we can deduce from (9) that solution. Convergence is discussed in the next section.
To be able to use the path-based method described later on,
/ |C” )T dt / |C” )4 dt we build a graph where each edgés assigned a numerator
2q < liminf(v L(C 5T ) edge weightu(e) and a denominator edge weiglife). Each
e closed curveC' in the discrete search space corresponds to
Besides, the contlnmty o/ and the p0|ntW|se convergenc&ome cyclel’ in the graph. In the end we will minimize the
of C,,(t) to C(t) andCy,(t) to C'(t) for everyt € [0,1] imply ratio problem
that > n(e)

1 1 min <5
/ VI(Co(t)) - CL.(8)* dt — / VI(C®) - ()" dt By d(e) ()
0 0

1




The numerator and denominator sums should hence reflect BhieComputing the Edge Weights

respective integrals in (10). We first give edge weights for the two ratios (1) and (2)
For the length ratio (4) Jermyn and Ishikawa [38] buil¢onsidered in the experimental section. For the numeragor w
a graph with one node for each image pixel and edggfscretize each line segment via the method of Bresenham [9]
connecting pixels in arg-neighborhood. The edge weightsthen, we evaluate the data term for each pixel using the above
correspond to the respective integrals along the arising limentioned segment normal and sum the obtained values.
segments. For the denominator we evaluate length-based and
For functionals of form (10) a more elaborate graph strugyrvature-based terms separately. The length of the curve i
ture is needed: the optimization algorithm supports onlgeed readily calculated as the sum of all line segment lengths. Fo
weights depending osingleedges. However, if edges directlythe curvature term we evaluate the expression (12) and take
correspond to line segments, one cannot approximate the e desired power of it. Finally, to get the integral of tresm,
vature of the desired continuous curve: line segments @wape length of the segment needs to be included in the weights.

have zero curvature. Here again we follow the results of [10], summing over all
In [53] we used a graph where a node corresponds toe@ges(;,, 72, 73) the quantity

pair of an image pixel and an incoming direction. In this e o

work we take a slightly different approach: each node in the smin(ly2,123) - [|%](71, P2, P3)]” -

graph corresponds to a pair of image pixels. More precisely the general case (10) is more difficult to handle: e.g. it
the search space consists of all pairs of pixels that areesbagoum contain terms Iikefoﬁ(c) I(C(s)) [ke(s)| ds where the

apart from one another not more than a certain c21|staﬁ?1ce integrand depends on position and curvature simultangousl
if 7 is the pixel set of the image, the node 32t P* of the g’ makes it much harder to reflect the continuous functiona
graph is expressed as (with| the L,-norm) in terms of discrete sums. Our solution is presently to dateu
V={(pnp)|0<|pi—p| <R} the Bresenham Iin_es, then_ calculate the vglueb(qf-,_-) and
g(-,-, ) for each pixel, using the above given estimates for
Edges in the graph connect nodes sharing an image pixgrmals and curvature. These values are then summed to form
More precisely the edge set is the edge weights.

E={((p1,P2), (P2, P3)) € V*}.
{((p1 p2), (P2 p?’)) } C. Convergence of the Process

An edge now represents an oriented polygonal curve congisti \we defer the question of how to compute the optimal
of two line segments, both of length /2. We now turn to the polygonal curve to the next section and assume for the
question of how to define suitable edge weights to approXmahoment that it is solved. We should mention, however, that
the continuous functional (10). the optimization algorithms requires the weightg) andd(e)

to be subject to some regular quantization, i.e. they must be

A. Estimating Curvature, Normals and Tangent Angles multiples of a certairz > 0. Termination is guaranteed for any

, . , such quantization, but the complexity depends .dbetails are
To define the edge weights one first needs to calculate %‘i@en in section VI-D.

tangent vector —or, equivalently, the tangent angle vyiﬁpeet We prove now that the limit of a converging sequence
to the-axis — and the curvature of the corresponding part @k giscrete simple minimizers is a minimizer of (1) in the

the curve. Recall that an edge represents a polygonal Cupginuous domain. Let us first recall that the usual way to
consisting of two adjacent line segments, $ay> andpzps. sy relations between discrete and continuous miniraizer
For these two line segments the corresponding tangent&ngi,q|yes a particular notion of convergence for functicnahe

with respect to the-axisa, > andas s are computed using the p_conyergence [20]. It has the particularly useful propsifta
C++-functionat an2 on the difference vector of the reSpeCt'V%equence of energy functiondls I'-converges to a functional
end points. This vector also allows to calculate curve nésmar 5nq a sequencer,,) of minimizers of £, converges ta
. . . n n
to this end the vector is normalized and rotated)bydegrees. yhen . is a minimizer of F. In this framework the results of
Estimating curvature is a more difficult issue. To allovgyckstein et al. in [10] are directly related to our problem
optimal convergence properties we follow the results ofd&FU pg,ckstein et al. consider the space of rectifiable curvel wi

stein, Netravali and Richardson [10]. Denoting the length @pjte total absolute curvature endowed with the metiic
the two line segments » andls 3, the absolute curvature atyefined by

point p> is estimated as

d(Cy,Cy) = inf sup |Cy(t) — Co(U(t

S lar 2 — ag 3lst (€1, Co) ‘1’3[0-,1]"[0-,1]256[01?1]' 1(®) 2(2 ()]
|k|(P1, P2, D3) = T oin(o o) (12)

3 min(ly 2,023) with Cy, C2 parameterized o1j0,1] and ¥ in the class of
where the angle difference is taken on the manifsldto all homeomorphisms fronjo, 1] to [0,1]. Then they prove,
correctly account for the jump over. The sign of the USINg the dlscrete_deflnltlon of curvature (12) and usvhg_s
curvature (if needed) is determined by whether the angf@nvergence mﬁe(tg;: for sequence of curves, that the descret
between the line segments excedd® degrees or not. We counterpart of (" [k (s)|? ds computed on polygons with

discuss below convergence properties of this process. n edgesI’-converges tofoﬁ(c) |kc(s)]|2ds asn tends tooco



and the maximal length of polygon edges tends to zero. NowMinimum Ratio Cycle Algorithm
remark that the existence (in the continuous domain) of gecur

maximizing (6) is equivalent — if (6) is not trivially zero o't Input: A graphG = (V, £) with two edges weights(e) and

the existence of a curve minimizing d(e) for each edge. — .
Output: A cycle T minimizing the ratio

L(C) n(e)/ d(e).
VE(C) + / |/ﬂ‘,c(5)|q dS Z.EEF ZEEF . .
0 (13) 1) Find an upper bound on the optimal ratio\,:
2) Compute edge weights(e) = n(e) — Ad(e) for each edge
ecé.

() N
/0 VI(C(s))- (C'(s))” ds

3) Call the Moore-Bellman-Ford algorithm (Fig. 4) for the

] ) ) graph G and the edge weights. If it returns a negative
in the class ofW?2¢ curves with length uniformly greater than cycle, set\ to its ratio and go to 2). Otherwise output the

a suitable constant. I% denotes the pixel size, let us defing last found cycle andtop.
F,, as the functional that associates any polydéndefined
on the grid with

Fig. 3. Ratio optimization after Lawler [44]. Shown is the linear search
variant, also known as Dinkelbach’s method [21].

F,(P,) = Z d(e) over aII_cyc_IesF, yvheren(e) andd(e) are subject to a regular
cep, e-quantization withd(e) > 0 and such that the denominator

sum is strictly positive for any cycle in the graph. To this
end we use a variant of the Minimum Ratio Cycle algorithm
proposed by Lawler [44]: instead of binary search we use
linear search as proposed by Dinkelbach [21], which is much
faster in practice.

The basic algorithm is shown in Figure 3. It is based on
iterated negative cycle detection in a graph with singleeedg
weights. LetA be some ratio and define edge weights

whered(e) is computed as in the previous section andis
assumed to have a maximal edge length smaller lfflamith
0 a constant independent &f, andn. According to the result
by Bruckstein et al.F,, I'-converges to the functional

£(C)
F(C’):VE(C')—F/O |ke(s)] ds.

Besides, remark that the smoothness lofmplies that its
discrete gradient computed with finite differences uniflgrm w(e) =n(e) — Ad(e).

converges to the continuous gradiénf. Take any sequence . .

of simple polygong P,,) with uniformly bounded length that Now suppose the graph cor_ltalns a negative cycler.t th_e
converges for the metrié to a limit curveC. Let int(P,,) and edge weightsu(e). By applying equivalence transformatlons
int(C)) denote the sets enclosed B, and C, respectively, one sees that .any such cycle must be of better ratio than
and1,,p,), L) the associated characteristic functions. B?nd vice versa:

the theory of functions of bounded variation [1] and possibl Zw(e) <0
taking a subsequence, the derivatives,, p, ) weakly-+ con- eel
verge toD1,,c) asn — oc. It follows from the Gauss-Green o )\ 0
Theorem forBV functions [1] that e;[”(e) (e)] <
£(C)
3 n(e) — / VI(C(s)) - (C'(s)) " ds @ d_nle) <A-) dle)
cep, 0 eel eel
ZeGF n(e)
. d(e) & === <A
and we deduce that the ratig=st | I'-converges to > ecrd(e)

n
(13) asn tends toso. Therefore, taking a sequence of simpldlotice that the third line is valid only because of the pwii
discrete minimizers of this ratio, there exists a subsegeierPf all conceivable denominator sums. This is the reasortier t
that converges to a minimizer of (13) in the continuouRreviously introduced restriction on the denominator.
domain. Such minimizer being non degenerate according to! e above equivalence transformation shows that the graph
our assumption that the length is uniformly bounded frofontains a negative cycle w.riti(e) if and only if the optimal

below, we conclude that for any sequence of simple discréfio is lower than\. If one is able to find negative cycles, this
N >, nle) . immediately gives rise to the algorithm in Figure 3: stagtin

minimizers of S e there exists a subsequence thaf,m some upper bound on the optimal ratio, negative cycle

converges to a minimizer of (1) a8 — oo. This achieves detection and ratio adjustments are alternated. Every ime

the proof of convergence. negative cycle is found) is set to its ratio. The last found
cycle must be of optimal ratio.
V1. RATIO OPTIMIZATION OVER CYCLES IN A GRAPH Negative cycle detection is performed efficiently by the

We now address the task of finding the cycle of optimdfioore-Bellman-Ford algorithm [33], [47], [5] for distance
ratio in the described graph, i.e. how to solve the task calculations. The algorithm, depicted in Figure 4, is based
on dynamic programming: starting from an initial distance

>, n(e) labeling the distance label of any node is reduced whenbeer t
labels of its predecessors allow such an improvement. If the
o= graph does not have negative cycles, the algorithm teresnat




Moore-Bellman-Ford Algorithm implemented in parallel. To this end one uses two buffers of
distance labels, where the second is updated based on the firs
Input: A directed graphg = (V, £) with (possibly negative)  Distances and parent pointers are stored in matriceshieee t
edge weightau(e) for each edge. A root node& V. are no node structures at all. The cycle check is done on the
Output: A distance labeld(v) and a predecessor noggv) CPU 95 iterati it tati | ts (includi
for every nodev € V in the graph. If the graph contains everyzo lterations, 1ts computational costs ('”‘?‘! lng
negative Cycles such a Cycle is returned. memory transfer betWeen GPU and CPU) are negl'g'ble n
ractice.
1) Setd(r) = 0, d(v) = oo for v € V\{r}. Mark p(v) as P
invalid for all v.
2) Setchanges := fal se C. Choosing the Root Node

For all v € V: check all incoming edges = (w,v). If . .

d(w) + w(e) < d(v) For the Moore-Bellman-Ford algorithm for distance calcu-
d(v) = d(w) + w(e), p(v) = w lation (Fig. 4) a root node must be fixed. While the choice of
changes := true this root node does not affect the optimality property of the

3) If changes = fal se stop. _ ratio optimization process, it can have significant inflLena

Otherwise check the predecessor entriggor cycles. If a the performance

cycle is found, return the cycle. Else go to 2). P " .

For the parallel implementation it is useful to add an extra

Fig. 4. Distance calculation and negative cycle detectiovia the Moore- root node and connect it to every node by an edge weighted
Bellman-Ford algorithm [33], [47], [5]- with 0. This amounts to initializing all distance labels with
with the correct distance labeling. Otherwise, after a feaps (. After & iterations the distance label of any node contains
the parent entries will permanently contain cycles. Redyla the weight of the cheapest path of lengtipassing through it.
checking for cycles then allows to extract a negative cyclvhile in theory one can still hav@/| iterations until a negative
which is necessary to update the ratio. cycle arises, in practice we expect a number of iterations in
While the basic algorithm in Figure 3 must be carried ouhe order of the length of the most negative cycle in the graph
sequentially, the negative cycle detection in Figure 4vadlo  This initialization could be used for the sequential imple-
a lot of freedom for the implementation. We now discussientation as well. However, we do not consider this sensible
how to efficiently implement negative cycle detection, botfirst of all, the memory requirements are high since iniall
in a sequential and in a parallel way. The key for efficiencgvery node in the graph is added to the queue. Also one will
lies in how to implement step 2) in Figure 4. Concerningave to visit every node in the graph at least once, which
the numerical implementation we noticed that both doubleduces the efficiency of the method in practice. For the first
precision and integer optimization lead to the global optim negative cycle detection we choose a root node in the center
Since double precision is not available on current GPUs, vg¢ the image. In subsequent calls the root node is selected as
use integer operations for both implementations. one of the nodes in the last found cycle.

A. Sequential Negative Cycle Detection D. Complexity of the Method

Efficient sequential implementations make use of a queueThe described graph to estimate curvature cont&lqg| -
for implementing step 2 in Figure 4. Nodes whose distanq&”) nodes. Since each node is connected V@tRk?) neigh-
label cannotchange in the present iteration (because none i9érs, there ar@(|P| - R*) edges. The Moore-Bellman-Ford
their neighbors changed their label in the last one) wilhthet algorithm is known to terminate in timé&(nm) on a graph
be visited. Every time the distance label of a node is chang&glth » nodes andm edges. This gives us a worst case
the node is added to the end of a queue. As long as there @enplexity of O(|P|?>R®) for one negative cycle detection.
nodes in the queue, the front one is removed and its neighborginally there is the issue of the number of distance cal-
are checked for possible distance improvements. While thglation that need to be performed. Let> 0 be the level
worst case complexity remains the same, in practice sigmific of quantization,w,, be the maximum absolute numerator
speed-ups are obtained. weight andw, the maximal denominator weight, both before
To optimize the run-time an explicit representation of thguantization. One can show [38] that the number of iteration
entire graph is suitable. However, its memory consumption ji thenO(m?’wflwn/e?’) in the worst case, withn the number
very high: only images up to siz&56 x 256 can be processed of edges. In practice the number of iterations is less than
with 2 GigaByte of memory. We therefore implemented for ¢ = 10—3 and a radiusk = 3.
version where edges (and their weights) are computed on-the|n total this results in a run-time aD(|P|° RBw2w, /e3).
fly. This solves the memory issues, but increases the rue-tiwhile this seems very high, in practice we observe a linear

significantly. dependence on the number of image pixels. On the GPU, even
images of size40 x 480 are processed in less than half an
B. Parallel Negative Cycle Detection hour using a radius of.

State-of-the-art graphics hardware allows highly patathe
plementations of a certain class of algorithms. This classsd
not contain the queue-based implementation just describedin this section we show that the presented class of opti-
However, in the form described in Figure 4, step 2) can buizable ratio functionals allows to draw conclusions abaut

VII. MINIMUM RATIO CYCLES AND SNAKES



parameterization-invariant version of the snakes moaethé Image Run-time

original work of Kass et al. [40] the model was stated as Name Resolution | CPU-expl. | CPU-impl. | GPU
1 ) 1 ) 1 ) Seal 200 x 133 364s 812s 35s
! 1
_/0 [VI(C(s))] dt+0‘/0 ()] dt+5/0 |C" (@) dt. Bunny | 260 x 180 | 1567s 1593s | 101s
This expression is not invariant to the chosen parameteriza | BeTeley #3| 321 x 481 NIA 8673s | 1046s
tion of the curve. Kass et al. probably chose this formutatio Baseball #2| 450 x 314 N/A 14810s | 151s
as it allows to remove numerical instabilities when dealing
with explicit parameterizations of the curve. From a today’ TABLE |
perspective one would want a parameterization-invariant f ComPARISON of run-times for the different implementations. For the CPU
mulation which might read like this: run-time with explicit storage of edges and with on-the-fymputation are
shown. Experiments were run on the same machine and usingileom
£(C) £(0) imizafi
_/ |VI(C(S))|2 ds + AMC(C) +/\/ |I€c(8)|2 ds optimization.
0 0
(14)

o Our method is robust to noise, i.e. even for very noisy
pictures it produces results comparable to those on noise-
free pictures. We stress that there is no need to adjust any

Here we have modified the role of the weighting parameters:
one is now given a relative weight> 0 to balance the relation
of length and curvature regularity as well as a weight 0

to influence both regularity terms at once. parameters.
This functional is closely related to thenakes ratiowe
introduced in (2) and recall here for convenience: A. Length Ratio vs. Elastic Ratio
L(C) In Figure 5 we show a comparison of ratio functionals on
—/ IVI(C(s))[" ds images containing objects in front of cluttered backgraund
. Z©) two cases the length ratio finds a meaningful object: here the
vL(C) + [ Ike(s)|? ds entire object boundary has a high contrast. On these images
When applying the Minimum Ratio Cycle algorithm to thighe elastic ratio produces comparable results.
ratio with p = ¢ = 2, one ends up computing &, < 0 and In the majority of cases, however, the length ratio tends
an optimal curveC,,, such that to find small homogeneous regions. The figure shows that

in many of these cases the elastic ratio is able to locate
meaningful objects. This trend is confirmed by Figure 6, veher
we show some results on the Berkeley database.
L(Copt) For this reason Jermyn and Ishikawa [38] proposed to
+ | Ao VL(Copt) + [Aopi] / [Ko(s)]?ds =0 integrate a suitably weighted balloon force. Figufed@mon-
0 strates that there are fairly large parameter ranges gisego
and any other curve has larger energy with respect to the sagh@ost identical segmentations. The functional there$ems
parameter|\,,|. Hence, the snakes ratio provides valuablgpust to the choice of the area weight. However, there is no
insights into the modified snakes model (14): given a redatiyarameter which works well for all the shown images.
weightr between length and curvature regularity, minimizing Nonetheless the extended length ratio produces meaningful
the snakes ratio provides an absolute regularity wejghi  objects in several cases and we consider it somewhat comple-
for which the parameterization-invariant snakes mode) (e mentary to the elastic ratio: each gives rise to segmemistio
a meaningful optimum and the algorithm also provides thfiat cannot be produced with the respective other one. In
associated optimal curve. This means that now a model Cand%‘?]eral, whether one wants to favor objects with large area

optimized globally for which previously only local solufi®  or with low curvature of the region boundary will depend on
were available. the application.

L(Copt)
- / IV I(Con())? ds
0

VIIl. EXPERIMENTS B. Efficiency on CPU and GPU
On several images from different domains we demonstrateDue to the large search space an efficient optimization of

the performance of the proposed method. We focus on e, o|astic ratio is desirable. We implemented the algorith
elastic ratio, but also discuss the snakes ratio (2). INQAar ., o the CPU and on the GPU as described in Section V1.
we show: The run-times for several images are given in Table I. For
+ The elastic ratio with squared curvature allows objeghe smallest image the explicit graph uses roughly half the
segmentation for a large variety of domains. The lengdystem memory. Here the explicit storage of edges is about
weight v was adjusted experimentally on a variety ofwice as fast as the implicit one — both on the CPU. For the

images. We found.15 to give reliable results. second image the two perform almost identical: here theenti

« Our fully unsupervised method is able to outperforngystem memory of 4 GB was needed for explicit storage.
region-based methods: it is less sensitive to shading

effects which allows to find more precise boundaries.  2we thank Greg Mori for sharing his data with us.
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Segmentation obtained with the length ratio.

B3

Segmentations obtained with the elastic ratio.
Fig. 6. The results on the Berkeley database confirmthe elastic ratio is better suited for object segmentatimntthe length ratio.

The speed-up of the GPU version over the CPU one wittvo disjoint regions(2; and €2, is computed by alternating
implicit storage is between a factor 8fand a factor ofl00. globally optimal updates fou,, u2 and€2;. The data fidelity
The huge deviations are due to the different natures of tterms — normalized with respect to the intensity variange-
algorithms (queue-based vs. full parallel). In particutaese are only imposed in the regions indicated by the charatieris
differences result in a different sequence of intermedwties. functions 1, associated with regiof;, and |0f);| denotes

All given run-times are quite high, lying above half ahe Euclidean boundary length ©f. The update with respect
minute. However, we once again emphasize that the proposed:; (for fixed 2;) is obtained by solving the Euler-Lagrange
method separates objects from the background ifulyy equations
unsupervised manner (i.e. does not rely on any user input).

(I—ui)lg, + No? Au; =0, i=1,2 (16)

C. Robust dC i to Region-based A h . .
obustness and L.omparison fo Region-base pproacutglsng Successive Over-Relaxation (SOR). The updat@;of

For a comparison to region-based approaches we impig; fiyed y; can be computed in globally optimal manner for a
mented variants of Mumford-Shah-like functionals [%9] discrete approximation on a regular grid using graph cuté [7
For A— oo we obtain piecewise constant approximations with
scalar constants; given by the mean gray value in regién.

(15) We know of no global optimization algorithms for either
Qe piecewise smooth or piecewise constant version of the
unctional (the latter is obtained far — o). In fact, solving

(I—ui)Q 2
E(u1,uz,1)= E p lo, + A\|Vu;|“dz + v|09;].
i=1,2 I
=0

where a piecewise smooth approximation by two functiori
ui,us : 2 — R and a partition of the image plarfe into

3Note that functional (15) is not identical with the origindumford-Shah 4A related efficient algorithm for minimizing the piecewisssoth Mum-
approach since the smoothness terms in expression (15xtereed into the ford Shah functional by alternating graph cuts and smootbramations
entire domaing. was independently developed and evaluated in greater deti@4].
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B=141 B8=19 ’ B=1.45 8 =1.56 8 =1.925
With a suitable area weight{3), the extended length ratiofinds meaningful regions.

Fig. 7. Where the elastic ratio identifies body parts, the lengtio raly finds small homogeneous regions. With a suitable ameight the extended length
ratio can find meaningful regions.

the piecewise constant case reduces toktineeans problem and the functional approaches the length ratio.
for v = 0. The problem is known to be NP-hard.

The performances of the elastic ratio and (15) are compamed Results for the Snakes Ratio
in Figure 8. Already for the noise-free image we could
not find a length parameter where the Mumford-Shah-ty
implementation separates the object from the backgroumd.
the highly noisy images, despite the adaptive smoothnesste
numerous small regions arise. In contrast, the elastio ra
identifies the object almost perfectlyithout needing to adjust
any parameters.

Figure 10 presents results for a slightly modified snakes
Stio: for robustness we use the gradient absolute instead
of its squared absolute. We recall from Section VIl that
all these results are global solutions of a suitably weidhte
Barameterization—invariant reformulation of the snakescf
tional. Since our algorithm always finds parameter sets eher
the global solution has enerdgly we cannot draw conclusions

Lastly we address the robustness of the elastic ratio widbout the entire functional. However, we believe that other
respect to the length weight Figure 9 demonstrates that formeaningful parameter sets do not lead to significantly bette
a fairly large range of the object is found. Up to a certainresults.
point the contour becomes more complex with increasing When using the balancing weight = 0.15 for length
Then, from this point on the length term becomes dominaagainst curvature — which works well for the elastic ratio —
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*

o . - - T '.if}‘i‘.l?'_:.ﬁu e
piecewise smooth appiation

piecewise constant Mumford-Shah elastic ratio

Fig. 8. Noise Robustness and Comparison to Region-based Appches.The elastic ratio extracts the object almost perfectly. dbwer it is robust to
noise, without the need to change any parameters. In cgnirath the piecewise constant Mumford-Shah [49] and theepiese smooth approximations (see
text) fail to differentiate the object from the backgrourttiere we show local minimizers (for details see text) for ¢hokfferent length weights.

v =0.01 v =0.05 v =0.25 v=20.3 v =0.5 v =0.75
Fig. 9. Effect of the length weight on the elastic ratio:for a fairly large parameter range a meaningful part of thagmis found.

snakes ratiowith v = 0.15.

snakes ratiowith v = 0.01.
Fig. 10. The snakes ratio revealsthe gradient absolute is a bit weak as a data term.



the results are discouraging: in most cases the curve gaes dg]
way, turns around and goes almost exactly the same way back.
We consider these solutions as valid in the original sen8g [4 [9
since they do not self-intersect. While some line segments
occur repeatedly with opposing directions of traversal, 0l
the continuous solution space there will be a curve without

repetitions and almost the same costs — at least if the imggg
gradient is continuous.

When reducing the influence of the length term -G 0)
larger regions are found. For most images these regions arg
very close to convex. Usually they do not correspond to
meaningful objects.

[12]

[14]

IX. CONCLUSION

In this paper we introduced curvature into ratio optimiza[-15]
tion. We present a contour-based, fully unsupervised naethidé]
which allows the global optimization of a discrete versidn 0[17]
the energy.

From a practical viewpoint, we showed that the proposétB]
method can handle shading effects where region-based ap-
proaches perform poorly. Our results also demonstrate thaj
in contour-based approaches curvature is an importane issu
to mimic human perception.

From a theoretical viewpoint the computation of globa{Fo]
optima allows to identify the strength and weaknesses pii
the cost functional. In this light we proved the existence of
minimizers in the continuous domain and we proved tha{ﬁz
as the resolution increases, sequences of minimizers of thg
discrete energy converge, possibly taking a subsequemee, t
minimizer in the continuous domain.

Lastly we gave a parameterization-invariant reformulatios)
of the snakes model and showed that the proposed method
allows to identify meaningful global solutions of this refo [25]
mulation. [26]
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