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The Elastic Ratio: Introducing Curvature into
Ratio-based Globally Optimal Image Segmentation

Thomas Schoenemann, Simon Masnou and Daniel Cremers

Abstract— In this paper we present the first globally optimal
ratio-based image segmentation method allowing to impose cur-
vature regularity of the region boundary. The proposed method
is fully unsupervised and compares favorably to other such
approaches.

To identify the optimal foreground region in the image, the
algorithm minimizes the ratio of flux over a weighted sum of
length and curvature regularity of the region boundary. The key
concept is to find cycles in a product graph where each node
corresponds to a pair of image locations.

Furthermore our results allow to draw conclusions about
certain global optima of a reformulated snakes functional which
is independent of parameterization: the proposed algorithm
allows to find parameter sets where the modified snakes func-
tional has a meaningful solution and simultaneously provides the
corresponding global solution.

I. I NTRODUCTION

Curvature regularity plays an important role in many fields
of computer vision and image processing - among them image
segmentation, perceptual organization and inpainting. Psycho-
logical studies have identified curvature as a key component
for human scene interpretation.

In this paper we present a method that links curvature with
image segmentation: the optimal foreground region is obtained
by the minimization of an energy functional of the region
boundary that we term theelastic ratio:

∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds

ν L(C) +

∫ L(C)

0

|κC(s)|q ds

(1)

Here I : Ω → R denotes a gray-level image defined on a
domainΩ ⊂ R2, C : [0,L(C)] → Ω is a positively oriented
parameterization by arc-length of the region boundary thatwe
assume to be smooth, simple and closed with lengthL(C),
(

C′(s)
)⊥

coincides withC′(s) rotated by+π
2 , κC(s) is the

curvature vector at the pointC(s) – i.e., κC(s) = C′′(s)
due to arc-length parameterization [22] –q andν are positive
real weighting factors and· denotes the scalar product inR2.
Remark that changing the orientation of a curve changes the
sign of the associated elastic ratio.

Figure 1 demonstrates the effect of curvature in this func-
tional: it compares a version with length-regularity only to a
version with curvature-regularity only. The results with cur-
vature are much closer to human perception and we observed
this consistently throughout our experiments.

Thomas Schoenemann and Daniel Cremers are with the Department of
Computer Science, University of Bonn, Germany.

Simon Masnou is with the Laboratoire Jacques-Louis Lions, Université
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Fig. 1. Effects of length-based and curvature-based regularization in image
segmentation on artificial images. Results were generated using functionals
(4) and (1), the latter with absolute curvature (q = 1, ν = 0). Note that
curvature regularity gives rise to fundamentally different segmentations. In
particular it allows gap closing and contour completion.

The proposed method is fully unsupervised and allows to
compute global minimizers of a discrete version of the energy.
It is of practical value since it deals with shading effects where
region-based methods have problems.

It is also of theoretical value since the computation of
global minimizers helps when analyzing the usefulness of a
functional: it allows to identify the strengths and weaknesses
of a model.

Moreover, the class of optimizable functionals is not limited
to (1): we allow almost arbitrary dependencies on the position
of a pointC(t) on the curve, the tangent vectorC′(t) and the
curvature vectorκC(t) at C(t). That is, we consider ratios of
form

∫ L(C)

0

h(C(s), C′(s), κC(s)) ds

∫ L(C)

0

g(C(s), C′(s), κC(s)) ds

whereh : Ω×S
1×R2 → R is arbitrary andg : Ω×S

1×R2 →R+ such that the denominator is strictly positive for all closed
curvesC with strictly positive length.

Among these functionals, we study what we call thesnakes
ratio:

−

∫ L(C)

0

|∇I(C(s))|p ds

νL(C) +
∫ L(C)

0
|κC(s)|q ds

(2)

As we shall see later, the snakes ratio is closely related to a
parameterization-invariant formulation of the famous snakes
model [40]: it allows to compute global minimizers of this
reformulation and simultaneously provides a parameter setthat
leads to meaningful global optima.
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Before entering the details of our method, we first give
an introduction on related work on curvature and image
segmentation.

II. RELATED WORK AND CONTRIBUTION

In this work we propose a method for image segmentation
which relies on results on the influence of curvature regularity
in various fields. Both areas will now be reviewed, then the
contribution of this paper is described.

A. Curvature in Vision and Image Processing

Following results in Psychophysics [39], the curvature has
been introduced into various fields of computer vision. It
was first seen in the context of shape completion through
the celebrated Euler’s elastica energy

∫ L(C)

0
|κC(s)|2 ds, see

[57], [35], [48] and the subsequent developments in [25],
[41], [32], [17]. Other applications of curvature are image
segmentation [40], [3], [2], [51], [12], inpainting [4], [15],
[45], [28], [30], image smoothing and denoising (see [56]
and references in [11]), image analysis [52], [26] or surface
interpolation and smoothing [36], [55], [24], [6], [29].

A large body of this literature is devoted to optimizing
curvature-dependent functionals in a continuous and/or dis-
crete setting through a minimizing flow yieldinglocal optimiz-
ers. Very few methods are able to computeglobal optimizers,
as for instance [46], [45] where total absolute curvature is
optimized globally in the context of inpainting and [3], [2]
where Amini, Weymouth and Jain showed how to globally
optimize line integrals depending on curvature by means of
dynamic programming. However, the run-time of their method
is guaranteed to be quadratic in the number of image pixels.
In practice this is too slow for reasonable image sizes. As a
consequence they only consider curves in a band around an
initial curve.

B. Image Segmentation as an Optimization problem

Over the past few decades numerous methods have been
proposed for image segmentation. We focus on those that
are based on minimizing a suitable energy functional. The
corresponding functionals typically combine a data term with
a regularity term (for a recent review see [19]). Both terms
can incorporate either region or edge properties, yet the
regularity term generally penalizes certain properties ofthe
region boundaries.

a) Region-based Methods:In region-based image seg-
mentation the intensity inside the region is assumed to be
approximately constant [49], [16], to vary only slowly [49]or
to be generated by a suitable probability model [61]. Recent
methods allow to integrate flux into region-based formula-
tions [38], [58], [42], [43], in particular for the segmentation
of long elongated structures.

In the region-based framework, global optima are usually
not available in polynomial time. A region-based functional
with a very basic smoothness term could recently be optimized
globally [23]. For length regularity andgiven region statistics
global optima can be computed [7], [14], [50]. For curvature
regularity we are only aware of local methods [27], [51].

b) Edge-based Methods:Ever since the pioneering work
of Kass, Witkin and Terzopoulos [40], edge-based meth-
ods [13], [60], [37], [59] have formed one of the major
approaches to image segmentation.

In their seminal work on the snakes model, Kass et al. [40]
propose to minimize an energy computed along the region
boundary described by a curveC : [0, 1] → Ω. The criterion
to be minimized reads:

α

∫ 1

0

|C′(t)|2dt + β

∫ 1

0

|C′′(t)|2dt − λ

∫ 1

0

|∇I(C(t))|2 dt

where α, β and λ are real positive constants. The first two
terms of the criterion measure the smoothness of the curve
(recall that the second derivativeC′′(t) is directly related
to the curvature – they actually coincide for arc-length pa-
rameterization of the curve) whereas the third term aims at
attracting the curve to places with large image gradients. It
is a well known issue of the model that for some particular
values of the parameters, no meaningful global optima can be
found: the only minimizers would be either points or curves
with infinite length. In this paper we state a parameterization-
invariant version of the functional and show that the proposed
method allows to identify meaningful global optima of this
version.

Amini et al. [3] optimize a modified snakes functional
using dynamic programming. To avoid meaningless solutions,
they enforce the curve to be polygonal with an a priori
known number of points, such that no two neighboring points
are less than a given distance apart. Although their method
provides polynomial time solutions, due to its quadratic run-
time complexity it is only applied in a small band around an
initial curve.

Caselles et al. [13] propose to minimize a line integral of
a positive edge indicator functiong(|∇I|), whereg decreases
monotonically with increasing gradient strength. Although this
model is interesting for local optimization, it is easily seen
that the global minimizers are meaningless: any degenerate
curve reduced to a point in the image is a minimizer of this
functional. Meaningful global optima can be found when seed
nodes are given for foreground and background [8].

Methods that work without seed nodes are usually built on
ratio functionals. Shi and Malik [54] propose normalized cuts,
which leads to an NP-hard optimization problem. Using relax-
ation techniques one can find a solution which is independent
of initialization.

The ratio regions of Cox et al. [18] provide meaningful
global optima together with a polynomial time complexity.
However, the complete search over all starting points takes
prohibitively long in practice. Moreover the method is limited
to planar graphs.

Finally, Jermyn and Ishikawa propose in [38] a class of ratio
functionals for image segmentation, including the ratio offlux
over length, whose global minimizers can be efficiently found
by iterative negative cycle detection in a suitable graph. In this
paper we extend their approach to include curvature regularity.
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C. Contribution

In this paper we extend the class [38] of globally optimiz-
able ratio functionals: we show how to integrate curvature
regularity of the region boundary. The proposed method is
fully unsupervised and allows a great variety of data and
regularity terms: in the numerator any functional dependence
on the (local) curvature of the curve is allowed. In the
denominator we require functions yielding positive integrals
for all closed curves.

Moreover the proposed algorithm allows to draw con-
clusions about certain global optima of a parameterization-
invariant version of the snakes model: it allows to find a param-
eter set where the snakes functional has a meaningful global
optimum for the given image and simultaneously provides the
corresponding global solution.

A preliminary version of this work appeared in [53].
This extended version additionally addresses the issues of
an efficient parallel implementation as well as theoretical
considerations of the continuous optimization task: we address
the existence of minimizers in the continuous domain and
prove the convergence of discrete minimizers to “continuous”
minimizers as the resolution increases.

III. T HE JERMYN-ISHIKAWA SEGMENTATION METHOD

I.H. Jermyn and H. Ishikawa proposed in [38] to optimize
a criterion with two nice properties:

1) its discrete counterpart can beglobally optimized in
polynomial time, which is somewhat unusual: for most
segmentation models based on the optimization of an
energy, the global optima are either

2) it can indifferently be written as an edge-based or a
meaningless or not efficiently computable. region-based
criterion. Most criteria in the literature fall either in one
or the other category.

We will first state the contour-based formulation, then turnto
the region-based one.

A. Contour-based Problem Statement

In Jermyn and Ishikawa’s approach the image domain is
segmented into two regions separated by anorientedcurveC.
In the most general setting, this curve minimizes a ratio of the
form

∫ L(C)

0

~v(C(s)) ·
(

C′(s)
)⊥

ds

∫ L(C)

0

g(C(s)) ds

(3)

where the curveC is parameterized with arc-length,~v : Ω →R2 is a vector field,
(

C′(s)
)⊥

is the unit normal to the curve
that coincides withC′(s) rotated by+π

2 and g : R2 → R+

is a positive weight function.
In particular, Jermyn and Ishikawa propose to minimize the

average outward flux that we calllength ratio in this paper:
∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds

L(C)
(4)

It is worth noticing that we are dealing with oriented curvesC
and do not fix the orientation: when changing the orientation,
the curve normals

(

C′(s)
)⊥

switch sign and so does the entire
numerator term. Hence minimizing (4) over oriented curves is
equivalent to maximizing its absolute value.

It therefore amounts to finding curves perpendicular to
strong image edges. The normalization by length avoids trivial
optima (zero-length or infinite-length curves). Yet, in practice
the found regions tend to be small and usually do not coincide
with human perception. As a remedy Jermyn and Ishikawa
proposed a balloon force. To understand how this works we
must first look at the region-based interpretation.

B. Conversion to the Region-based Form

Criterion (3) is only apparently a pure edge criterion. As
observed in [38], the Gauss-Green Theorem forms a bridge
between curve energies and region energies. DenotingC a
simple and smooth curve inR2 andCin the connected region
enclosed byC, the Gauss-Green Theorem states that for any
smooth field~v onR2

∫

Cin

div~v dx = −

∫ L(C)

0

~v(C(s)) · ~nC(s) ds

where~nC(s) is theinner unit normal toC at C(s). It is easily
observed that any continuous functionf defined onR2 can
be associated with a vector field~vf such thatf = div~vf by

the simple formula~vf (x, y) =
1

2
(

∫ x

0

f(t, y) dt,

∫ y

0

f(x, t) dt).

With this formula, the minimization of (4) can equivalentlybe
written as

max
C

∣

∣

∣

∣

∫

Cin

∆I(x) dx

∣

∣

∣

∣

L(C)
,

where∆I = div(∇I) is the Laplace operator. This expression
gives some indications on the optimal regions and confirms
what can be observed experimentally: the optimal regions are
likely to contain high values of∆I with constant sign, which
often occurs for small regions in the vicinity of edges, i.e.in
zones where∇I changes a lot.

To include the balloon force weighted withβ one only has
to add±β1 to ∆I(x). The arising problem can be written as

max
C

∣

∣

∣

∣

∣

∣

∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds ±

∫

Cin

β dx

∣

∣

∣

∣

∣

∣

L(C)
, (5)

and will be termedextended length ratioin the following. It
provides substantially better results in practice.

C. Problems with Region-based Terms

In the considered framework, the inclusion of region-based
terms is actually a delicate issue. The reason is the use

1Here± means taking the sign which yields the highest energy.
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f(x) = 1 f(x) = -1

Fig. 2. The trouble with self-intersecting curves: the consideredalgorithm

provides curve normals
(

C′(s)
)⊥

(shown in blue) that are partially inner
normals and partially outer ones. With these normals, the region integral is

evaluated as

∫

L(C)

0

~vf (C(s)) ·
(

C′(s)
)⊥

ds = −2, wherediv~vf = f .

A correct application of the Gauss-Green theorem using consistent normals

gives the correct region integral

∫

Cin

f dx = 0.

of a contour-based algorithm which does not exclude self-
intersecting curves. Alternatively one could use the region-
based method in [43]. However, this method presently allows
only for a very restricted class of functionals.

In principle the Gauss-Green theorem is valid for a large
class of self-intersecting curves, e.g. the one in Figure 2.The
problem lies on the side of the optimization algorithm: to
calculate the region integral by processing along the curve, one
either needs consistently the outer curve normal everywhere or
consistently the inner normal. Yet, the optimization algorithm
provides the outer normal for a part of the curve and the
inner normal for the other part. To get consistent normals one
would have to consider the entire curve at once. Yet, to get a
polynomial time complexity the algorithm can only keep track
of small fragments of the curve.

Therefore, given a vector field~vf such thatdiv~vf = f , the
region integral for the oriented curve in Figure 2 is calculated
as

∫ L(C)

0

~vf (C(s)) ·
(

C′(s)
)⊥

ds = −2

because
(

C′(s)
)⊥

is defined as the unit tangentC′(s) rotated
by +π

2 . However, a correct computation should give
∫

Cin

div~vf dx =

∫

Cin

f dx = 0.

This implies that self-intersecting curves are not assigned
the desired costs which makes the inclusion of region terms a
non-trivial design task: one needs to make sure that the costs
assigned to self-intersecting curves do not form the global
minimum of the arising modified optimization problem. This
seems to impose severe limits on the use of region terms. For
this reason we will not consider region terms in the remainder
of this paper.

IV. I NTRODUCING CURVATURE REGULARITY INTO RATIO

OPTIMIZATION

We have previously seen that the ratio of flux over length
often leads to very small minimizing curves. One way to get
longer curves is the addition of region integrals. In the last
section we discussed the problems with such region terms.

As mentioned in the introduction, we propose a different
remedy to the problem: in addition to the length of the curve,
we will also penalize its curvature and thus consider the
minimization of (1):

min
C

∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds

ν L(C) +

∫ L(C)

0

|κC(s)|q ds

Why should this particular energy help to avoid small curves
more than the length ratio? The reason is that the curvature
term discourages direction changes: the curvature along a line
segment is zero. Hence the curvature term will not grow in
parts where the curve goes straight so that for long and not
oscillating curves the denominator will be roughly similarto
the length only and the ratio will not differ much from the
length ratio. In contrast, for small curves, the curvature term
will be much larger than the length so the ratio will be much
smaller, in absolute value, than the length ratio.

As the minimization of (1) will be intensively studied in
this paper, we now prove the existence of minimizers under
some mild assumptions on the imageI and on the length of
curves.

A. Existence of minimizers

Assuming thatΩ is bounded, the existence of minimizers
of (1) is rather easy to prove among closed curves with length
uniformly bounded by a constant and that admits a uniform
parameterization in the Sobolev spaceW2,q([0, 1], Ω̄), q > 1
[31]. Remark that the constant can be chosen arbitrarily large.
For simplicity, we assume that the imageI is continuously
differentiable onΩ̄.

Remark that if
∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds < 0 then

changing the orientation ofC also changes the sign of the
integral. Thus, minimizing (1) is equivalent to maximizing

∣

∣

∣

∣

∣

∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds

∣

∣

∣

∣

∣

ν L(C) +

∫ L(C)

0

|κC(s)|q ds

(6)

Using a uniform parameterization on[0, 1] this ratio can be
rewritten as

∣

∣

∣

∣

∫ 1

0

∇I(C(t)) · C′(t)⊥ dt

∣

∣

∣

∣

ν L(C) + [L(C)]1−2q

∫ 1

0

|C′′(t)|q dt

(7)

whereC′(t)⊥ denotes the vectorC′(t) rotated byπ
2 . Let A >

0 and define

W2,q
A ([0, 1], Ω̄) = {C ∈ W2,q([0, 1], Ω̄), L(C) ≤ A}.

We assume in the sequel thatI andA are such that there exists
at least a simple closed curve inW2,q

A ([0, 1], Ω̄) for which the
numerator in (7) is non zero, otherwise the problem is trivial.
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Take a maximizing sequence(Cn)n∈N of simple closed
curves in W2,q

A ([0, 1], Ω̄) with uniform parameterization on
[0, 1]. With no loss of generality, we can assume that there
existsa1 > 0 such that, for everyn ∈ N

∣

∣

∣

∣

∫ 1

0

∇I(Cn(t)) · C′
n(t)⊥ dt

∣

∣

∣

∣

ν L(Cn) + [L(Cn)]1−2q

∫ 1

0

|C′′
n(t)|q dt

≥ a1

Due to the regularity of the imageI, there exists alsoa2 such
that

∣

∣

∣

∣

∫ 1

0

∇I(Cn(t)) · C′
n(t)⊥ dt

∣

∣

∣

∣

≤ a2L(Cn) ≤ a2A

thus

ν L(Cn) + [L(Cn)]1−2q

∫ 1

0

|C′′
n(t)|q dt ≤

a2A

a1
(8)

and therefore there exists a constanta3 such that for every
n ∈ N

∫ 1

0

|C′′
n(t)|q dt ≤ a3

Observing thatΩ is bounded and|C′
n(t)| = L(Cn) ≤ A for

every t ∈ [0, 1] and everyn ∈ N, due to the assumption
of uniform parameterization, we conclude that the sequence
(Cn)n∈N is uniformly bounded inW2,q([0, 1], Ω̄). Therefore
(see for instance [31]), there exists a subsequence, still denoted
as (Cn)n∈N, that converges weakly inW2,q([0, 1], Ω̄) and
strongly in C1([0, 1], Ω̄) to a limit curve C. In addition,
L(Cn) → L(C) – in particularC ∈ W2,q

A ([0, 1], Ω̄) – and
∫ 1

0

|C′′(t)|q dt ≤ lim inf
n→∞

∫ 1

0

|C′′
n(t)|q dt. (9)

Remark thatC is not necessarily simple since tangential auto-
contacts may occur in the limit.

Let us now check that the limit curveC has strictly positive
length. From (8), we deduce that
∫ L(Cn)

0

|κCn
(s)|q ds = [L(Cn)]1−2q

∫ 1

0

|C′′
n(t)|q dt ≤

a2A

a1

Extending Fenchel’s Theorem [22][Theorem 5.7.3] toW2,q

curves by approximation, we know that for everyn ∈N,
∫ L(Cn)

0

|κCn
(s)| ds ≥ 2π. By the Hölder inequality, it

follows that

L(Cn)
q−1

∫ L(Cn)

0

|κCn
(s)|q ds ≥ (2π)q

thusL(Cn)
q−1

≥ a1(2π)q

a2A
. Passing to the limit, we conclude

thatL(C) > 0. Therefore, we can deduce from (9) that

ν L(C)+

∫ 1

0

|C′′(t)|q dt

[L(C)]2q−1
≤ lim inf

n→∞
(ν L(Cn)+

∫ 1

0

|C′′
n(t)|q dt

[L(Cn)]2q−1
).

Besides, the continuity of∇I and the pointwise convergence
of Cn(t) to C(t) andC′

n(t) to C′(t) for everyt ∈ [0, 1] imply
that

∫ 1

0

∇I(Cn(t)) · C′
n(t)⊥ dt →

∫ 1

0

∇I(C(t)) · C′(t)⊥ dt

and we finally get that
∣

∣

∣

∣

∫ 1

0

∇I(C(t)) · C′(t)⊥ dt

∣

∣

∣

∣

ν L(C) + [L(C)]1−2q

∫ 1

0

|C′′(t)|q dt

≥ lim sup
n∈N ∣

∣

∣

∣

∫ 1

0

∇I(Cn(t)) · C′
n(t)⊥ dt

∣

∣

∣

∣

ν L(Cn) + [L(Cn)]1−2q

∫ 1

0

|C′′
n(t)|q dt

The sequence(Cn) being maximizing, we conclude thatC
is a curve – limit of simple curves – that maximizes (6) in
W2,q

A ([0, 1], Ω̄). Remark that the same proof could be used to
establish the existence of minimizers among allW2,q curves,
simple or non simple.

B. The Class of Optimizable Functionals

The discrete approach that we use can handle a much wider
class of functionals with a great variety of data and regularity
terms: the integrands in both numerator and denominator can
depend on the pointC(t) of the curve, on the tangent vector
C′(t) and the curvatureκC(t) at C(t), so that the class of
solvable problems reads:

∫ L(C)

0

h(C(s), C′(s), κC(s)) ds

∫ L(C)

0

g(C(s), C′(s), κC(s)) ds

(10)

Here h : Ω × S
1 × R2 → R is arbitrary and the integral of

g : Ω × S
1 ×R2 → R+ over any closed curve with positive

length must be strictly positive.
In the next section, we will describe how ratios of the form

(10) can be globally optimized after a suitable discretization. It
should be noted that self-intersecting curves can occur. Yet, in
our experiments we observed them only for very small length
weightsν.

V. THE OPTIMAL CURVE AS CYCLE IN A GRAPH

To globally optimize functionals of form (10) we discretize
the space of all possible curves: a curve is now defined
as a contiguous subset among finitely many line segments.
Nevertheless we have the continuous optimization task in
mind and the optimal discrete curve is viewed as a polygonal
approximation of the optimal continuous one: its length and
curvature estimates approximate the values of the continuous
solution. Convergence is discussed in the next section.

To be able to use the path-based method described later on,
we build a graph where each edgee is assigned a numerator
edge weightn(e) and a denominator edge weightd(e). Each
closed curveC in the discrete search space corresponds to
some cycleΓ in the graph. In the end we will minimize the
ratio problem

min
Γ

∑

e∈Γ

n(e)

∑

e∈Γ

d(e)
(11)
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The numerator and denominator sums should hence reflect the
respective integrals in (10).

For the length ratio (4) Jermyn and Ishikawa [38] build
a graph with one node for each image pixel and edges
connecting pixels in an8-neighborhood. The edge weights
correspond to the respective integrals along the arising line
segments.

For functionals of form (10) a more elaborate graph struc-
ture is needed: the optimization algorithm supports only edge
weights depending onsingleedges. However, if edges directly
correspond to line segments, one cannot approximate the cur-
vature of the desired continuous curve: line segments always
have zero curvature.

In [53] we used a graph where a node corresponds to a
pair of an image pixel and an incoming direction. In this
work we take a slightly different approach: each node in the
graph corresponds to a pair of image pixels. More precisely
the search space consists of all pairs of pixels that are spaced
apart from one another not more than a certain distanceR :
if P is the pixel set of the image, the node setV ⊂ P2 of the
graph is expressed as (with| · | the L2-norm)

V = { (~p1, ~p2) | 0 < |~p1 − ~p2| ≤ R }.

Edges in the graph connect nodes sharing an image pixel.
More precisely the edge set is

E = {
(

(~p1, ~p2), (~p2, ~p3)
)

∈ V2 }.

An edge now represents an oriented polygonal curve consisting
of two line segments, both of length≤ R. We now turn to the
question of how to define suitable edge weights to approximate
the continuous functional (10).

A. Estimating Curvature, Normals and Tangent Angles

To define the edge weights one first needs to calculate the
tangent vector – or, equivalently, the tangent angle with respect
to thex-axis – and the curvature of the corresponding part of
the curve. Recall that an edge represents a polygonal curve
consisting of two adjacent line segments, say~p1~p2 and~p2~p3.
For these two line segments the corresponding tangent angles
with respect to thex-axisα1,2 andα2,3 are computed using the
C++-functionatan2 on the difference vector of the respective
end points. This vector also allows to calculate curve normals:
to this end the vector is normalized and rotated by90 degrees.

Estimating curvature is a more difficult issue. To allow
optimal convergence properties we follow the results of Bruck-
stein, Netravali and Richardson [10]. Denoting the length of
the two line segmentsl1,2 and l2,3, the absolute curvature at
point ~p2 is estimated as

|κ|(~p1, ~p2, ~p3) =
|α1,2 − α2,3|S1

1
2 min(l1,2, l2,3)

(12)

where the angle difference is taken on the manifoldS
1 to

correctly account for the jump over2π. The sign of the
curvature (if needed) is determined by whether the angle
between the line segments exceeds180 degrees or not. We
discuss below convergence properties of this process.

B. Computing the Edge Weights

We first give edge weights for the two ratios (1) and (2)
considered in the experimental section. For the numerator we
discretize each line segment via the method of Bresenham [9].
Then, we evaluate the data term for each pixel using the above
mentioned segment normal and sum the obtained values.

For the denominator we evaluate length-based and
curvature-based terms separately. The length of the curve is
readily calculated as the sum of all line segment lengths. For
the curvature term we evaluate the expression (12) and take
the desired power of it. Finally, to get the integral of this term,
the length of the segment needs to be included in the weights.
Here again we follow the results of [10], summing over all
edges(~p1, ~p2, ~p3) the quantity

1
2 min(l1,2, l2,3) · [|κ|(~p1, ~p2, ~p3)]

q
.

The general case (10) is more difficult to handle: e.g. it
could contain terms like

∫ L(C)

0 I(C(s)) |κC(s)| ds where the
integrand depends on position and curvature simultaneously.
This makes it much harder to reflect the continuous functional
in terms of discrete sums. Our solution is presently to calculate
the Bresenham lines, then calculate the values ofh(·, ·, ·) and
g(·, ·, ·) for each pixel, using the above given estimates for
normals and curvature. These values are then summed to form
the edge weights.

C. Convergence of the Process

We defer the question of how to compute the optimal
polygonal curve to the next section and assume for the
moment that it is solved. We should mention, however, that
the optimization algorithms requires the weightsn(e) andd(e)
to be subject to some regular quantization, i.e. they must be
multiples of a certainǫ > 0. Termination is guaranteed for any
such quantization, but the complexity depends onǫ. Details are
given in section VI-D.

We prove now that the limit of a converging sequence
of discrete simple minimizers is a minimizer of (1) in the
continuous domain. Let us first recall that the usual way to
study relations between discrete and continuous minimizers
involves a particular notion of convergence for functionals, the
Γ-convergence [20]. It has the particularly useful property: if a
sequence of energy functionalsFn Γ-converges to a functional
F and a sequence(xn) of minimizers ofFn converges tox
thenx is a minimizer ofF . In this framework the results of
Bruckstein et al. in [10] are directly related to our problem.
Bruckstein et al. consider the space of rectifiable curves with
finite total absolute curvature endowed with the metricd
defined by

d(C1, C2) = inf
Ψ:[0,1]→[0,1]

sup
t∈[0,1]

|C1(t) − C2(Ψ(t))|

with C1, C2 parameterized on[0, 1] and Ψ in the class of
all homeomorphisms from[0, 1] to [0, 1]. Then they prove,
using the discrete definition of curvature (12) and usingd as
convergence metric for sequence of curves, that the discrete
counterpart of

∫ L(C)

0 |κC(s)|q ds computed on polygons with

n edgesΓ-converges to
∫ L(C)

0
|κC(s)|q ds as n tends to∞
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and the maximal length of polygon edges tends to zero. Now
remark that the existence (in the continuous domain) of a curve
maximizing (6) is equivalent – if (6) is not trivially zero – to
the existence of a curve minimizing

ν L(C) +

∫ L(C)

0

|κC(s)|q ds
∣

∣

∣

∣

∣

∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds

∣

∣

∣

∣

∣

(13)

in the class ofW2,q curves with length uniformly greater than
a suitable constant. If1

n
denotes the pixel size, let us define

Fn as the functional that associates any polygonPn defined
on the grid with

Fn(Pn) =
∑

e∈Pn

d(e)

whered(e) is computed as in the previous section andPn is
assumed to have a maximal edge length smaller thanδ

n
with

δ a constant independent ofPn andn. According to the result
by Bruckstein et al.,Fn Γ-converges to the functional

F (C) = ν L(C) +

∫ L(C)

0

|κC(s)|q ds.

Besides, remark that the smoothness ofI implies that its
discrete gradient computed with finite differences uniformly
converges to the continuous gradient∇I. Take any sequence
of simple polygons(Pn) with uniformly bounded length that
converges for the metricd to a limit curveC. Let int(Pn) and
int(C) denote the sets enclosed byPn and C, respectively,
and1int(Pn), 1int(C) the associated characteristic functions. By
the theory of functions of bounded variation [1] and possibly
taking a subsequence, the derivativesD1int(Pn) weakly-⋆ con-
verge toD1int(C) asn → ∞. It follows from the Gauss-Green
Theorem forBV functions [1] that

∑

e∈Pn

n(e) →

∫ L(C)

0

∇I(C(s)) ·
(

C′(s)
)⊥

ds

and we deduce that the ratio

∑

e∈Pn
d(e)

∣

∣

∑

e∈Pn
n(e)

∣

∣

Γ-converges to

(13) asn tends to∞. Therefore, taking a sequence of simple
discrete minimizers of this ratio, there exists a subsequence
that converges to a minimizer of (13) in the continuous
domain. Such minimizer being non degenerate according to
our assumption that the length is uniformly bounded from
below, we conclude that for any sequence of simple discrete

minimizers of

∑

e∈Γn
n(e)

∑

e∈Γn
d(e)

, there exists a subsequence that

converges to a minimizer of (1) asn → ∞. This achieves
the proof of convergence.

VI. RATIO OPTIMIZATION OVER CYCLES IN A GRAPH

We now address the task of finding the cycle of optimal
ratio in the described graph, i.e. how to solve the task

min
Γ

∑

e∈Γ

n(e)

∑

e∈Γ

d(e)

Minimum Ratio Cycle Algorithm

Input: A graphG = (V, E) with two edges weightsn(e) and
d(e) for each edge.

Output: A cycle Γ minimizing the ratio
∑

e∈Γ
n(e)/

∑

e∈Γ
d(e).

1) Find an upper boundλ on the optimal ratioλopt

2) Compute edge weightsw(e) = n(e)−λd(e) for each edge
e ∈ E .

3) Call the Moore-Bellman-Ford algorithm (Fig. 4) for the
graphG and the edge weightsw. If it returns a negative
cycle, setλ to its ratio and go to 2). Otherwise output the
last found cycle andstop.

Fig. 3. Ratio optimization after Lawler [44]. Shown is the linear search
variant, also known as Dinkelbach’s method [21].

over all cyclesΓ, wheren(e) andd(e) are subject to a regular
ǫ-quantization withd(e) ≥ 0 and such that the denominator
sum is strictly positive for any cycle in the graph. To this
end we use a variant of the Minimum Ratio Cycle algorithm
proposed by Lawler [44]: instead of binary search we use
linear search as proposed by Dinkelbach [21], which is much
faster in practice.

The basic algorithm is shown in Figure 3. It is based on
iterated negative cycle detection in a graph with single edge
weights. Letλ be some ratio and define edge weights

w(e) = n(e) − λd(e).

Now suppose the graph contains a negative cycleΓ w.r.t. the
edge weightsw(e). By applying equivalence transformations
one sees that any such cycle must be of better ratio thanλ
and vice versa:

∑

e∈Γ

w(e) < 0

⇔
∑

e∈Γ

[n(e) − λd(e)] < 0

⇔
∑

e∈Γ

n(e) < λ ·
∑

e∈Γ

d(e)

⇔

∑

e∈Γ n(e)
∑

e∈Γ d(e)
< λ

Notice that the third line is valid only because of the positivity
of all conceivable denominator sums. This is the reason for the
previously introduced restriction on the denominator.

The above equivalence transformation shows that the graph
contains a negative cycle w.r.t.w(e) if and only if the optimal
ratio is lower thanλ. If one is able to find negative cycles, this
immediately gives rise to the algorithm in Figure 3: starting
from some upper bound on the optimal ratio, negative cycle
detection and ratio adjustments are alternated. Every timea
negative cycle is found,λ is set to its ratio. The last found
cycle must be of optimal ratio.

Negative cycle detection is performed efficiently by the
Moore-Bellman-Ford algorithm [33], [47], [5] for distance
calculations. The algorithm, depicted in Figure 4, is based
on dynamic programming: starting from an initial distance
labeling the distance label of any node is reduced whenever the
labels of its predecessors allow such an improvement. If the
graph does not have negative cycles, the algorithm terminates
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Moore-Bellman-Ford Algorithm

Input: A directed graphG = (V, E) with (possibly negative)
edge weightsw(e) for each edge. A root noder ∈ V.

Output: A distance labeld(v) and a predecessor nodep(v)
for every nodev ∈ V in the graph. If the graph contains
negative cycles such a cycle is returned.

1) Setd(r) = 0, d(v) = ∞ for v ∈ V\{r}. Mark p(v) as
invalid for all v.

2) Setchanges := false
For all v ∈ V: check all incoming edgese = (w, v). If
d(w) + w(e) < d(v)

d(v) = d(w) + w(e), p(v) = w
changes := true

3) If changes = false stop.
Otherwise check the predecessor entriesp for cycles. If a
cycle is found, return the cycle. Else go to 2).

Fig. 4. Distance calculation and negative cycle detectionvia the Moore-
Bellman-Ford algorithm [33], [47], [5].

with the correct distance labeling. Otherwise, after a few steps
the parent entries will permanently contain cycles. Regularly
checking for cycles then allows to extract a negative cycle,
which is necessary to update the ratio.

While the basic algorithm in Figure 3 must be carried out
sequentially, the negative cycle detection in Figure 4 allows
a lot of freedom for the implementation. We now discuss
how to efficiently implement negative cycle detection, both
in a sequential and in a parallel way. The key for efficiency
lies in how to implement step 2) in Figure 4. Concerning
the numerical implementation we noticed that both double
precision and integer optimization lead to the global optimum.
Since double precision is not available on current GPUs, we
use integer operations for both implementations.

A. Sequential Negative Cycle Detection

Efficient sequential implementations make use of a queue
for implementing step 2 in Figure 4. Nodes whose distance
label cannotchange in the present iteration (because none of
their neighbors changed their label in the last one) will then not
be visited. Every time the distance label of a node is changed,
the node is added to the end of a queue. As long as there are
nodes in the queue, the front one is removed and its neighbors
are checked for possible distance improvements. While the
worst case complexity remains the same, in practice significant
speed-ups are obtained.

To optimize the run-time an explicit representation of the
entire graph is suitable. However, its memory consumption is
very high: only images up to size256×256 can be processed
with 2 GigaByte of memory. We therefore implemented a
version where edges (and their weights) are computed on-the-
fly. This solves the memory issues, but increases the run-time
significantly.

B. Parallel Negative Cycle Detection

State-of-the-art graphics hardware allows highly parallel im-
plementations of a certain class of algorithms. This class does
not contain the queue-based implementation just described.
However, in the form described in Figure 4, step 2) can be

implemented in parallel. To this end one uses two buffers of
distance labels, where the second is updated based on the first.
Distances and parent pointers are stored in matrices, i.e. there
are no node structures at all. The cycle check is done on the
CPU every25 iterations, its computational costs (including
memory transfer between GPU and CPU) are negligible in
practice.

C. Choosing the Root Node

For the Moore-Bellman-Ford algorithm for distance calcu-
lation (Fig. 4) a root node must be fixed. While the choice of
this root node does not affect the optimality property of the
ratio optimization process, it can have significant influence on
the performance.

For the parallel implementation it is useful to add an extra
root node and connect it to every node by an edge weighted
with 0. This amounts to initializing all distance labels with
0. After k iterations the distance label of any node contains
the weight of the cheapest path of lengthk passing through it.
While in theory one can still have|V| iterations until a negative
cycle arises, in practice we expect a number of iterations in
the order of the length of the most negative cycle in the graph.

This initialization could be used for the sequential imple-
mentation as well. However, we do not consider this sensible:
first of all, the memory requirements are high since initially
every node in the graph is added to the queue. Also one will
have to visit every node in the graph at least once, which
reduces the efficiency of the method in practice. For the first
negative cycle detection we choose a root node in the center
of the image. In subsequent calls the root node is selected as
one of the nodes in the last found cycle.

D. Complexity of the Method

The described graph to estimate curvature containsO(|P| ·
R2) nodes. Since each node is connected withO(R2) neigh-
bors, there areO(|P| · R4) edges. The Moore-Bellman-Ford
algorithm is known to terminate in timeO(nm) on a graph
with n nodes andm edges. This gives us a worst case
complexity ofO(|P|2R6) for one negative cycle detection.

Finally there is the issue of the number of distance cal-
culation that need to be performed. Letǫ > 0 be the level
of quantization,wn be the maximum absolute numerator
weight andwd the maximal denominator weight, both before
quantization. One can show [38] that the number of iterations
is thenO(m3w2

dwn/ǫ3) in the worst case, withm the number
of edges. In practice the number of iterations is less than50
for ǫ = 10−3 and a radiusR = 3.

In total this results in a run-time ofO(|P|5R18w2
dwn/ǫ3).

While this seems very high, in practice we observe a linear
dependence on the number of image pixels. On the GPU, even
images of size640 × 480 are processed in less than half an
hour using a radius of3.

VII. M INIMUM RATIO CYCLES AND SNAKES

In this section we show that the presented class of opti-
mizable ratio functionals allows to draw conclusions abouta
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parameterization-invariant version of the snakes model. In the
original work of Kass et al. [40] the model was stated as

−

∫ 1

0

|∇I(C(s))|2 dt + α

∫ 1

0

|C′(t)|2 dt + β

∫ 1

0

|C′′(t)|2 dt.

This expression is not invariant to the chosen parameteriza-
tion of the curve. Kass et al. probably chose this formulation
as it allows to remove numerical instabilities when dealing
with explicit parameterizations of the curve. From a today’s
perspective one would want a parameterization-invariant for-
mulation which might read like this:

−

∫ L(C)

0

|∇I(C(s))|2 ds + λνL(C) + λ

∫ L(C)

0

|κC(s)|2 ds

(14)
Here we have modified the role of the weighting parameters:
one is now given a relative weightν > 0 to balance the relation
of length and curvature regularity as well as a weightλ > 0
to influence both regularity terms at once.

This functional is closely related to thesnakes ratiowe
introduced in (2) and recall here for convenience:

−

∫ L(C)

0

|∇I(C(s))|p ds

νL(C) +
∫ L(C)

0
|κC(s)|q ds

When applying the Minimum Ratio Cycle algorithm to this
ratio with p = q = 2, one ends up computing aλopt ≤ 0 and
an optimal curveCopt such that

−

∫ L(Copt)

0

|∇I(Copt(s))|
2 ds

+ |λopt|νL(Copt) + |λopt|

∫ L(Copt)

0

|κCopt(s)|
2 ds = 0

and any other curve has larger energy with respect to the same
parameter|λopt|. Hence, the snakes ratio provides valuable
insights into the modified snakes model (14): given a relative
weightν between length and curvature regularity, minimizing
the snakes ratio provides an absolute regularity weight|λopt|
for which the parameterization-invariant snakes model (14) has
a meaningful optimum and the algorithm also provides the
associated optimal curve. This means that now a model can be
optimized globally for which previously only local solutions
were available.

VIII. E XPERIMENTS

On several images from different domains we demonstrate
the performance of the proposed method. We focus on the
elastic ratio, but also discuss the snakes ratio (2). In particular
we show:

• The elastic ratio with squared curvature allows object
segmentation for a large variety of domains. The length
weight ν was adjusted experimentally on a variety of
images. We found0.15 to give reliable results.

• Our fully unsupervised method is able to outperform
region-based methods: it is less sensitive to shading
effects which allows to find more precise boundaries.

Image Run-time

Name Resolution CPU-expl. CPU-impl. GPU

Seal 200 × 133 364s 812s 35s

Bunny 260 × 180 1567s 1593s 101s

Berkeley #3 321 × 481 N/A 8673s 1046s

Baseball #2 450 × 314 N/A 14810s 151s

TABLE I

COMPARISON of run-times for the different implementations. For the CPU

run-time with explicit storage of edges and with on-the-fly computation are

shown. Experiments were run on the same machine and using compiler

optimization.

• Our method is robust to noise, i.e. even for very noisy
pictures it produces results comparable to those on noise-
free pictures. We stress that there is no need to adjust any
parameters.

A. Length Ratio vs. Elastic Ratio

In Figure 5 we show a comparison of ratio functionals on
images containing objects in front of cluttered background. In
two cases the length ratio finds a meaningful object: here the
entire object boundary has a high contrast. On these images
the elastic ratio produces comparable results.

In the majority of cases, however, the length ratio tends
to find small homogeneous regions. The figure shows that
in many of these cases the elastic ratio is able to locate
meaningful objects. This trend is confirmed by Figure 6, where
we show some results on the Berkeley database.

For this reason Jermyn and Ishikawa [38] proposed to
integrate a suitably weighted balloon force. Figure 72 demon-
strates that there are fairly large parameter ranges givingrise to
almost identical segmentations. The functional thereforeseems
robust to the choice of the area weight. However, there is no
parameter which works well for all the shown images.

Nonetheless the extended length ratio produces meaningful
objects in several cases and we consider it somewhat comple-
mentary to the elastic ratio: each gives rise to segmentations
that cannot be produced with the respective other one. In
general, whether one wants to favor objects with large area
or with low curvature of the region boundary will depend on
the application.

B. Efficiency on CPU and GPU

Due to the large search space an efficient optimization of
the elastic ratio is desirable. We implemented the algorithm
both on the CPU and on the GPU as described in Section VI.

The run-times for several images are given in Table I. For
the smallest image the explicit graph uses roughly half the
system memory. Here the explicit storage of edges is about
twice as fast as the implicit one – both on the CPU. For the
second image the two perform almost identical: here the entire
system memory of 4 GB was needed for explicit storage.

2We thank Greg Mori for sharing his data with us.
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Segmentations obtained with the length ratio.

Segmentations obtained with the elastic ratio.

Fig. 5. The elastic ratio gives rise to more meaningful segmentations than the length ratio. In particular, it is able to find objects in the presence of
partially low contrast.

Segmentations obtained with the length ratio.

Segmentations obtained with the elastic ratio.
Fig. 6. The results on the Berkeley database confirm:the elastic ratio is better suited for object segmentation than the length ratio.

The speed-up of the GPU version over the CPU one with
implicit storage is between a factor of8 and a factor of100.
The huge deviations are due to the different natures of the
algorithms (queue-based vs. full parallel). In particular, these
differences result in a different sequence of intermediateratios.

All given run-times are quite high, lying above half a
minute. However, we once again emphasize that the proposed
method separates objects from the background in afully
unsupervised manner (i.e. does not rely on any user input).

C. Robustness and Comparison to Region-based Approaches

For a comparison to region-based approaches we imple-
mented variants of Mumford-Shah-like functionals [49]3:

E(u1, u2, Ω1)=
∑

i=1,2

∫

Ω

(I−ui)
2

σ2
I

1Ωi
+ λ|∇ui|

2dx + ν|∂Ωi|.

(15)
where a piecewise smooth approximation by two functions
u1, u2 : Ω → R and a partition of the image planeΩ into

3Note that functional (15) is not identical with the originalMumford-Shah
approach since the smoothness terms in expression (15) are extended into the
entire domainΩ.

two disjoint regionsΩ1 and Ω2 is computed by alternating
globally optimal updates foru1, u2 andΩ1. The data fidelity
terms – normalized with respect to the intensity varianceσ2

I –
are only imposed in the regions indicated by the characteristic
functions1Ωi

associated with regionΩi, and |∂Ωi| denotes
the Euclidean boundary length ofΩi. The update with respect
to ui (for fixed Ωi) is obtained by solving the Euler-Lagrange
equations

(I−ui) 1Ωi
+ λσ2

I ∆ui = 0, i = 1, 2 (16)

using Successive Over-Relaxation (SOR). The update ofΩ1

for fixed ui can be computed in globally optimal manner for a
discrete approximation on a regular grid using graph cuts [7].4

For λ→∞ we obtain piecewise constant approximations with
scalar constantsui given by the mean gray value in regionΩi.

We know of no global optimization algorithms for either
the piecewise smooth or piecewise constant version of the
functional (the latter is obtained forα → ∞). In fact, solving

4A related efficient algorithm for minimizing the piecewise smooth Mum-
ford Shah functional by alternating graph cuts and smooth approximations
was independently developed and evaluated in greater detail in [34].
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The length ratio usually identifies small homogeneous regions.

β = 0.8 β ∈ [0.71, 0.88] β = 1.2 β = 1.375 β = 0.9

β ∈ [0.9, 1.4] β ∈ [0.9, 1.85] β ∈ [1.25, 1.4] β ∈ [1.38, 1.555] β ∈ [1, 1.9]

β = 1.41 β = 1.9 β = 1.45 β = 1.56 β = 1.925
With a suitable area weight (±β), the extended length ratiofinds meaningful regions.

The elastic ratio can identify body parts.

Fig. 7. Where the elastic ratio identifies body parts, the length ratio only finds small homogeneous regions. With a suitable areaweight the extended length
ratio can find meaningful regions.

the piecewise constant case reduces to thek-means problem
for ν = 0. The problem is known to be NP-hard.

The performances of the elastic ratio and (15) are compared
in Figure 8. Already for the noise-free image we could
not find a length parameter where the Mumford-Shah-type
implementation separates the object from the background. For
the highly noisy images, despite the adaptive smoothness terms
numerous small regions arise. In contrast, the elastic ratio
identifies the object almost perfectlywithoutneeding to adjust
any parameters.

Lastly we address the robustness of the elastic ratio with
respect to the length weightν. Figure 9 demonstrates that for
a fairly large range ofν the object is found. Up to a certain
point the contour becomes more complex with increasingν.
Then, from this point on the length term becomes dominant

and the functional approaches the length ratio.

D. Results for the Snakes Ratio

Figure 10 presents results for a slightly modified snakes
ratio: for robustness we use the gradient absolute instead
of its squared absolute. We recall from Section VII that
all these results are global solutions of a suitably weighted
parameterization-invariant reformulation of the snakes func-
tional. Since our algorithm always finds parameter sets where
the global solution has energy0, we cannot draw conclusions
about the entire functional. However, we believe that other
meaningful parameter sets do not lead to significantly better
results.

When using the balancing weightν = 0.15 for length
against curvature – which works well for the elastic ratio –
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piecewise constant Mumford-Shah piecewise smooth approximation elastic ratio

Fig. 8. Noise Robustness and Comparison to Region-based Approaches.The elastic ratio extracts the object almost perfectly. Moreover it is robust to
noise, without the need to change any parameters. In contrast, both the piecewise constant Mumford-Shah [49] and the piecewise smooth approximations (see
text) fail to differentiate the object from the background.Here we show local minimizers (for details see text) for three different length weights.

ν = 0.01 ν = 0.05 ν = 0.25 ν = 0.3 ν = 0.5 ν = 0.75 ν = 1

ν = 0.01 ν = 0.05 ν = 0.25 ν = 0.3 ν = 0.5 ν = 0.75 ν = 1

Fig. 9. Effect of the length weight on the elastic ratio:for a fairly large parameter range a meaningful part of the image is found.

snakes ratiowith ν = 0.15.

snakes ratiowith ν = 0.01.
Fig. 10. The snakes ratio reveals:the gradient absolute is a bit weak as a data term.
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the results are discouraging: in most cases the curve goes one
way, turns around and goes almost exactly the same way back.
We consider these solutions as valid in the original sense [40]
since they do not self-intersect. While some line segments
occur repeatedly with opposing directions of traversal, in
the continuous solution space there will be a curve without
repetitions and almost the same costs – at least if the image
gradient is continuous.

When reducing the influence of the length term (ν → 0)
larger regions are found. For most images these regions are
very close to convex. Usually they do not correspond to
meaningful objects.

IX. CONCLUSION

In this paper we introduced curvature into ratio optimiza-
tion. We present a contour-based, fully unsupervised method
which allows the global optimization of a discrete version of
the energy.

From a practical viewpoint, we showed that the proposed
method can handle shading effects where region-based ap-
proaches perform poorly. Our results also demonstrate that
in contour-based approaches curvature is an important issue
to mimic human perception.

From a theoretical viewpoint the computation of global
optima allows to identify the strength and weaknesses of
the cost functional. In this light we proved the existence of
minimizers in the continuous domain and we proved that,
as the resolution increases, sequences of minimizers of the
discrete energy converge, possibly taking a subsequence, to a
minimizer in the continuous domain.

Lastly we gave a parameterization-invariant reformulation
of the snakes model and showed that the proposed method
allows to identify meaningful global solutions of this refor-
mulation.
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