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0. Introduction: Start with a few notations. Let G be a simply connected connected
simple algebraic group over C, let B be a Borel subgroup, let H be a Cartan subgroup
of B, let P be the weight lattice, let P+ be the set of dominant weights and let W be
the Weyl group of G. For λ ∈ P , we denote by C(λ) the corresponding one-dimensional
B-module and by L(λ) the sheaf of sections of the line bundle C(λ)×B G → G/B. With
these definitions, we recall that Γ(G/B,L(λ)) 6= 0 if and only if −λ ∈ P+. For any
w ∈ W , let Sw = BwB/B be the Schubert variety, let Ow be its structural sheaf, and set
Lw(λ) = L(λ) ⊗ Ow. For any coherent sheaf M on G/B we denote by [M] its image in
the Grothendieck ring K(G/B) := K0(G/B) of the category of coherent sheaves on G/B.

It follows from the cell decomposition of G/B that ([Ow])w∈W is a Z-basis ofK(G/B).
Therefore, for any v, w ∈ W , µ ∈ P , we can define the integer svw(µ) by the following
identity in K(G/B):

[Lw(−µ)] =
∑

v∈W

svw(µ)[Ov].

Theorem 0.1: For any w, v ∈W and λ ∈ P+, the integer svw(λ) is ≥ 0.

To explain the title of the paper, note that [Lw(−µ)] is the intersection product of [L(−µ)]
with Sw in K(G/B). This result has been proved by Fulton and Lascoux [FL94] for the
group G = SL(n), and their paper was the motivation of the present work. We will show
that Theorem 0.1 is a very simple corollary of the main result of [M289]. Indeed our proof
is slighty more precise. Let KH(G/B) be the Grothendieck ring of the category of the
H-equivariant coherent sheaves on G/B and for any H-equivariant coherent sheaf M on
G/B we denote by [M]H its image in KH(G/B). By [KK87], ([Ow]H)w∈W is a Z[P ]-basis
of KH(G/B) (see also [Ar86]), and therefore we can define the characters σv

w(µ) by the
following identities in KH(G/B):

[Lw(−µ)]H =
∑

v∈W

σv
w(µ)[Ov]H .

We prove that for any dominant weight λ, the characters σv
w(λ) are effective, hence their

degrees svw(λ) are non-negative integers. Also in [M389], we proved that for any λ ∈ P+,
the sheaf Ow⊗C(−λ) has a B-equivariant filtration whose any subquotient is some Lv(µ).
At the end of Section 5, we will explain why this result is closely related with the effectivity
of σv

w(λ).
Using the same ideas, it easy to deduce two other posivity results. These results

hold in KH(G/B), but for simplicity we will state them in K(G/B). For w ∈ W , set
∂Sw = ∪v<w Sv, let Iw ⊂ Ow be the ideal defining ∂Sw in Sw and set Iw(λ) = L(λ)⊗Iw.
It is clear that ([Iw])w∈W is another basis of K(G/B). Therefore, we can define some
integers kvw(µ) for v, w ∈W , µ ∈ P by the following identities in K(G/B):
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[Iw(−µ)] =
∑

v∈W

kvw(µ)[Iv].

Theorem 0.2: For any w, v ∈W and λ ∈ P+, the integer kvw(λ) is ≥ 0.

Similarly we define the mixed numbers mv
w(µ) by the following identity in K(G/B):

[Iw(−µ)] =
∑

v∈W

mv
w(µ)[Ov].

For λ ∈ P+, denote by Wλ its stabilizer in W . Recall that each coset w.Wλ is an ordered
set which is isomorphic to Wλ. Therefore each Wλ-coset contains a unique maximal and
a unique minimal representative.

Theorem 0.3: Let w, v ∈ W and λ ∈ P+. If w is minimal in w.Wλ, the integer
mv

w(λ) is ≥ 0.

Indeed Theorem 0.3 is a corollary of [M289] only when λ is strictly regular. However
it follows from a refinement of a result of [M289], whose the proof is similar (a detailed
proof will be given in a subsequent paper). Also we will also introduce some refined
tensor product multiplicities in order to explain the relationship of these positivity results
with the PRV conjecture (independently proved by Kumar [K88] and the author [M189])
and the refined PRV conjecture (due to Kumar [K89]). At the end of the paper, we
show some identities between the numbers svw(µ), k

v
w(µ), m

v
w(µ), from which we deduce a

generalization of Pieri’s identity.

Aknowledgments: We heartily thank W. Fulton for its encouragemnts, M. Duflo for a
useful discussion about harmonic functions and their relations to Demazure’s operators and
P. Littelmann for discussion about his recent work [L98]. We also thank G. M. Cattaneo
and E. Strickland for the organization of the meeting in University of Rome Tor Vergata,
May 17-23 1998.

Main notations: Throughout the whole paper, we will use the notations of the intro-
duction, together with the following ones. We will denote by ∆+ the set of positive roots,
by Π the subset of simple positive roots. We set ρ = 1/2

∑
α∈∆+ α and for α ∈ Π we

denote by sα the corresponding simple reflection. We will use that W is an ordered set
relative to the Bruhat ordering and w0 denotes its maximal element. For w ∈W , let ǫ(w)
be its signature.

1. Demazure operators.
Denote by H the algebra EndC(H)W (C(H)) where C(H) denotes the field of rational
functions onH. By Galois theory, anyX ∈ H can be uniquely written asX =

∑
w∈W φww

and also as X =
∑

w∈W wψw, where φw, ψw ∈ C(H). For X ∈ H and φ ∈ C(H), it is
important to distinguish the operator X φ ∈ H from the character X(φ) ∈ C(H): the first
expression is the composition of X by the multiplication by φ, and the second one is the
value of X at φ.
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Lemma 1.1: There is a unique anti-involution X 7→ X∗ of the algebra H such that
(i) φ∗ = φ, for any φ ∈ C(H).

(ii) w∗ = ǫ(w)eρ−w−1ρ w−1.

Proof: For any φ, ψ ∈ C(H) and any v, w ∈W , we have:
((φw) ◦ (ψv))∗ = (φψwwv)∗

= ǫ(wv) eρ−(wv)−1ρ (wv)−1φψw

and we also have:
(ψv)∗ ◦ (φw)∗ = (ǫ(v) eρ−v−1ρ v−1ψ)(ǫ(w) eρ−w−1ρ w−1φ)

= ǫ(vw) eρ−v−1ρ ev
−1ρ−v−1w−1ρ v−1w−1ψwφ

= ǫ(vw) eρ−v−1w−1ρ v−1w−1ψwφ.
Hence (XY )∗ = Y ∗X∗ for any X, Y ∈ H, and ∗ is anti-morphism of algebras. Moreover

w∗∗ = (ǫ(w)eρ−w−1ρw−1)∗ = eρ−wρ w eρ−w−1ρ = w, therefore ∗ is involutive. Q.E.D.

For any α ∈ Π, set ∇sα = 1
1−eα

(1−eαs). For any reduced decomposition w = σ1 . . . σn
of an element w ∈ W , set ∇w = ∇σ1

. . .∇σn
. As it proved by Demazure [D74], the

element ∇w ∈ H is independent on a choice of a reduced decomposition for w. It is called
the Demazure operator. Moreover we have (∇sα)

2 = ∇sα . Therefore, for any v, w ∈W , we
have ∇v∇w = ∇v∗w, where the element v ∗w ∈W is defined by BvB.BwB = B(v ∗ w)B.

Lemma 1.2: For any φ ∈ Z[P ] and for any w ∈W , we have
φ∇w =

∑
v∈W ∇v S

v
w(φ),

for some Sv
w(φ) ∈ Z[P ].

Proof: It is clear that any X ∈ H can be uniquely written as X =
∑

v∈W ∇vφv, with
φv ∈ C(H). Therefore we have φ∇w =

∑
v∈W ∇v S

v
w(φ), for some Sv

w(φ) ∈ C(X). We only

have to prove that Sv
w(φ) belongs to Z[P ]. Let α ∈ Π. We have φ∇sα = φ

1−eα
(1− eα sα),

therefore we get:
φ∇sα = φ−φsα

1−eα
+∇sαφ

sα .

It is clear that φ−φsα

1−eα
belongs to Z[P ]. Then one proves the lemma by induction over w.

For w = 1, the lemma is obvious. For w 6= 1, we set w = sαu, where α ∈ Π and u < w. It
follows that φ∇w = φ−φsα

1−eα
∇u +∇sαφ

sα∇u, therefore we get:

φ∇w =
∑

v∈W ∇vS
v
u(

φ−φsα

1−eα
) +

∑
v∈W ∇sα∗vS

v
u(φ

sα),
what proves the lemma. Q.E.D.

Denotes by Hint the subring of H generated by Z[P ] and the Demazure operators
(∇w)w∈W . The following statement follows from Lemma 1.2:

Corollary 1.3: Any X ∈ Hint can be uniquely written as X =
∑

w∈W φw∇w and as
X =

∑
w∈W ∇wψw, where the elements φw, ψw belong to Z[P ].

For any α ∈ Π, set ∇
′

sα
= eα

1−eα
(1−sα). For any reduced decomposition w = σ1 . . . σn

of an element w ∈W , set ∇
′

w = ∇
′

σ1
. . .∇

′

σn
. The element ∇

′

w ∈ H is also well-defined. It

is called the modified Demazure operator. Moreover we have (∇
′

sα
)2 = −∇

′

sα
. Therefore,

for any v, w ∈W , we have ∇
′

v∇
′

w = ǫ(vw)ǫ(v ∗ w)∇
′

v∗w.
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Lemma 1.4: For any φ ∈ Z[P ] and any w ∈W , we have:
φ∇

′

w =
∑

v∈W ∇
′

vK
v
w(φ), and

φ∇
′

w =
∑

v∈W ∇vM
v
w(φ),

for some Kv
w(φ), M

v
w(φ) ∈ Z[P ].

Proof: We have ∇sα = 1 +∇
′

sα
. By induction we get:

∇w =
∑

v≤w ∇
′

v, and ∇
′

w = ǫ(w)
∑

v≤w ǫ(v)∇v.

Therefore (∇
′

w)w∈W is another left and right basis of the Z[P ]-module Hint and the lemma
follows. Q.E.D.

Lemma 1.5: We have (∇w)
∗ = ∇w−1 and (∇

′

w)
∗ = ∇

′

w−1 for any w ∈W .

Proof: For any α ∈ Π, we have s∗α = −eα sα and
(∇sα)

∗ = 1
1−eα

+ eα sα
eα

1−eα

= 1
1−eα

+ eα e−α

1−e−α sα

= 1
1−eα

− eα

1−eα
sα.

Therefore (∇sα)
∗ = ∇sα . Choose a reduced decomposition σ1 . . . σn of w. We get (∇w)

∗ =
(∇σn

)∗ . . . (∇σ1
)∗ = ∇w−1 . The proof for ∇

′

w is similar. Q.E.D.

Corollary 1.6: For any φ ∈ Z[P ] and any w ∈W , we have:

∇wφ =
∑

v∈W Sv−1

w−1(φ)∇v,

∇
′

wφ =
∑

v∈W Kv−1

w−1(φ)∇
′

v,

∇
′

wφ =
∑

v∈W Mv−1

w−1(φ)∇v.

Proof: By Lemma 1.2 and 1.5, we have
∇wφ = (φ∇w−1)∗ = (

∑
v∈W ∇v−1Sv−1

w−1(φ))∗ =
∑

v∈W Sv−1

w−1(φ)∇v,
what proves the first equality. The last two equalities are similar (use Lemma 1.4 instead
of Lemma 1.2). Q.E.D.

2. Filtrations of B-modules.
For any w ∈ W , λ ∈ P+, set Jw(λ) = Γ(Sw,Lw(−λ)) and Kw(λ) = Γ(Sw, Iw(−λ)). It is
easy to prove that the B-modules Jw(λ) are never 0, and Jw(λ) = Jv(µ) if and only if wλ =
vµ. It is also easy to prove thatKw(λ) 6= 0 if and only if w is minimal inWλ. Moreover two
non-zero B-modules Kw(λ) and Kv(µ) are isomorphic if and only if w = v and λ = µ. For
a B-equivariant coherent sheaf M on G/B, we set χB(M) =

∑
k≥0 (−1)kchHk(G/B,M).

Theorem 2.1 (Demazure character formulas) Let λ ∈ P and w ∈W . We have:
(i) χB(Lw(λ)) = ∇w(e

λ). Moreover if λ is dominant, we have ch Jw(λ) = ∇w(e
−λ).

(ii) χB(Iw(λ)) = ∇
′

w(e
λ). Moreover if λ is dominant, we have chKw(λ) = ∇′

w(e
−λ).

The reference for the theorem is [MR85][An85]. For any dominant weight λ, De-
mazure formulas follow from the vanishing of Hk(G/B,Lw(λ)) and Hk(G/B, Iw(λ)) for
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any k > 0. Formula 2.1(i) first appears in [D74]. Unfortunately, V. Kac found a serious
gap in the Demazure’s beautiful paper [D74]. This gap has been filled by the introduction
of Frobenius splittings in [MR85] and by slighty different method in [A85].

We say that a B-module M has a Joseph filtration (respectively: a van der Kallen
filtration) if it admits a filtration whose any subquotient is some Jw(λ) (respectively: some
Kw(λ)).

Theorem 2.2 Let λ, µ ∈ P+ and w ∈W . Then:
(i) Jw(µ)⊗C(−λ) has a Joseph filtration and
(ii) Kw(µ)⊗C(−λ) has a van der Kallen filtration.

The reference for this theorem is [M289]. The Joseph filtrations has been first con-
sidered in [J85] and Joseph conjectured Theorem 2.2 (i) for w = w0. The first step of a
Joseph filtration of Jw(µ)⊗C(−λ) is Ju(ν), where λ+wµ = vν: this fact, which is a cru-
cial ingredient in the proof of PRV conjecture independently proved by S. Kumar and the
author in [K88][M289], is an easy consequence of Joseph’s paper. Then for G = SL(n),
Theorem 2.1 (i) has been first proved by Polo [P89] by an had hoc method (a refinement
of Wang’s trick [W82]) based on the fact that any fundamental weight is minuscule. The
van der Kallen filtrations has been introduced in [vdK89] and van der Kallen proved the
remarkable cohomological criterion 7.1 for the existence of a Joseph filtration or a van der
Kallen filtration. It follows that Assertions (i) and (ii) are equivalent. For an arbitrary
group G, Theorem 2.1 was proved by the author [M289] and the proof is strongly based
on van der Kallen criterion [vdK89] and the Frobenius splittings invented by Metha,
Ramanan and Ramanathan (it was stated as an open question in [P89]). See also later
works [M389][M90] (extension to finite characteristics), [P93] (a more elementary proof
for some cases) and [vdK93] (a very nice introduction to the subject).

Theorem 2.3: Let w ∈ W , λ, µ ∈ P+. Assume that w−1 is minimal in w−1.Wλ.
Then Kw(µ)⊗C(−λ) has a Joseph filtration.

The references for this theorem is as follows: it is proved in [M289] under the condition
λ ∈ ρ+ P+. The proof of this refined version is similar, and the details will be given in a
subsequent paper.

Remark: As a matter of terminology, the Joseph filtrations has been previously called
strong or excellent, and the van der Kallen filtration has been called weak or relative
Schubert. The terminology ”excellent filtrations” conflicts with the well-established ter-
minology ”good filtrations” (not defined in the present paper). For any union of Schubert
varieties S and any dominant weight λ, set JS(λ) = Γ(S,L(−λ) ⊗OS). Following [P89],
the modules JS(λ) are called the Schubert modules, and we call a Polo filtration of a B-
module any filtration whose any subquotient is a Schubert module. Any Joseph filtration is
obviously a Polo filtration. Moreover any Polo filtration can be refined to a van der Kallen
filtration (what justified the strong/weak terminlogy). For any two unions of Schubert
varieties S1, S2, we have ch JS1

(λ)+ch JS2
(λ) = ch JS1∪S2

(λ)+ch JS1∩S2
(λ), therefore the

multiplicity of a Schubert module in a Polo filtration depends on the filtration. However
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in [L98] there is a combinatorial description of the multiplicities of Schubert modules in
a Polo filtration of Jw(µ)⊗ C(−λ).

3. The characters S, K and M are effective.
Let µ ∈ P , w, v ∈W . Recall from Section 1 that we define the characters Sv

w(e
µ), Kv

w(e
µ),

Mv
w(e

µ) ∈ Z[P ] by the following equalities in H:
eµ∇w =

∑
v∈W ∇vS

v
w(e

µ),
eµ∇′

w =
∑

v∈W ∇′
vK

v
w(e

µ),
eµ∇′

w =
∑

v∈W ∇vM
v
w(e

µ).
Denote by N the set of non-negative integers.

Theorem 3.1: Let λ ∈ P+, w, v ∈W .
(i) Sv

w(e
−λ) and Kv

w(e
−λ) belongs to N[P ].

(ii) If w−1 is minimal in w−1.Wλ, then M
v
w(e

−λ) belongs to N[P ].

Proof: Fix w ∈ W and λ ∈ P+. Set Sv
w(e

−λ) =
∑

ξ∈P mξ
v e

−ξ and Ω = {ξ ∈ P |mξ
v 6=

0 for some v}. Let µ ∈ P+ and assume that µ is far away from the walls. Then µ−ξ ∈ P++

for any weight ξ ∈ Ω, where P++ = ρ+ P+. By Demazure formula 2.1, we get:
e−λch Jw(µ) =

∑
v∈W

∑
ξ∈Ω mξ

vch Jv(µ+ ξ).
Up to repetitions, the family of characters (ch Jx(ν))x∈Wν∈P+ form a basis of Z[P ]. There-
fore the characters (ch Jx(ν))x∈Wν∈P++ are linearly independent. By Theorem 2.2(i),
Jw(λ) ⊗ C(−µ) has a Joseph filtration. Hence mξ

v is the multiplicity of Jv(µ + ξ) in a
Joseph filtration of Jw(µ)⊗C(−λ), for any ξ ∈ Ω, v ∈W , when µ ∈ P+ is far away from
the walls. Therefore mξ

v ≥ 0 and Sv
w(e

−λ) belongs to N[P ].
The proof for Kv

w(e
−µ) and Mv

w(e
−µ) is similar: use Theorem 2.2(ii) and Theorem 2.3

instead of Theorem 2.2(i).

4. Harmonic functions on h∗.
Let h be the Lie algebra of H. Identify S h∗ with the space of translation-invariant
differential operators on h∗, and denote by S+ h∗ its maximal homogenous ideal (therefore
the elements of S+ h∗ are differential operators without constant term). A polynomial
function F on h∗ is called harmonic if and only if θF = 0 for any θ ∈ (S+ h∗)W . We say
that a complex valued function f defined on P or on P+ is harmonic if it is the restriction
of a harmonic polynomial function F on h∗ (as P and P+ are Zariski dense in h∗, F is
uniquely determined by f). Denote by Har the space of harmonic functions on P . As S h

is a free (S h)W -module, Har is a regular representation ofW and its dimension is CardW .
For any coherent sheaf M on G/B, denote by χ(M) =

∑
k≥0 (−1)kdimHk(G/B,M) its

Euler characteristic.

Theorem: 4.1
(i) For any coherent sheaf M on G/B, the map λ ∈ P 7→ χ(M⊗L(−λ)) is harmonic.
(ii) The map C⊗K0(G/B) → Har, [M] 7→ χ(M⊗L(−λ)) is an isomorphism.

The reference for this statement is [J85].
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For any w ∈ W and λ ∈ P , set jw(λ) = χ(Lw(−λ)) and kw(λ) = χ(Iw(−λ)). It
follows from Theorem 4.1 that (jw)w∈W and (kw)w∈W are two bases of Har. Therefore
we have:

Corollary 4.2: Let w ∈W and λ, µ ∈ P . We have
(i) jw(λ+ µ) =

∑
v∈W svw(λ)jv(µ),

(ii) kw(λ+ µ) =
∑

v∈W kvw(λ)kv(µ),
(ii) kw(λ+ µ) =

∑
v∈W mv

w(λ)jv(µ).

Proof: The corollary follows from the previous theorem, Demazure character formulas
2.1 and the definitions of the numbers svw(λ), k

v
w(λ) and m

v
w(λ). Q.E.D.

5. Proofs of the Theorems 0.1, 0.2, and 0.3 and a filtration of Ow ⊗C(−λ).
The degree of a character φ =

∑
ξ∈P nξeξ ∈ Z[P ] is the integer deg φ =

∑
ξ∈P nξ.

Lemma 5.1: For any w, v ∈ W and λ ∈ P , we have svw(λ) = degSv−1

w−1(e−λ),

kvw(λ) = degKv−1

w−1(e−λ), and mv
w(λ) = degMv−1

w−1(e−λ).

Proof: By Corollary 1.6, we have
∇we

−λ =
∑

v∈W Sv−1

w−1(e−λ)∇v. Therefore we get for any µ ∈ P
jw(λ+ µ) = χ(Lw(−λ− µ))

= deg∇w(e
−λe−µ)

= deg [
∑

v∈W Sv−1

w−1(e−λ)∇v(e
−µ)]

=
∑

v∈W degSv−1

w−1(e−λ) jv(µ).

Therefore the equality svw(λ) = degSv−1

w−1(e−λ) follows from Corollary 4.2 and the fact that
(jw)w∈W is a basis of Har. The proof of the other two equalities is similar. Q.E.D.

Proofs of Theorems 0.1, 0.2, and 0.3. Under the hypotheses of the theorems (i.e.
λ ∈ P+ for the first two, and λ ∈ P+ and w is minimal in w.Wλ for the third one) the

characters Sv−1

w−1(e
−λ), Kv−1

w−1(e
−λ), andMv−1

w−1(e
−λ) are effective by Theorem 3.1. Therefore

their degrees are ≥ 0, and the theorems follows from Lemma 5.1. Q.E.D.

Relation with [M389]: By [KK87], KH(G/B) is a free Z[P ]-module with basis
([Ow]H)w∈W . Theorem 0.1 can be reinforced as follows: inKH(G/B), we have, [Lw(−λ)]H
=

∑
v∈W Sv−1

w−1(e−λ)[Ov]H and for any λ ∈ P+ the character Sv−1

w−1(e−λ) is effective. Note
that ([Ow ⊗C(µ)]H)w∈W,µ∈P is a Z-basis of KH(G/B). However there is another natural
Z-basis, namely ([Lw(µ)])w∈W,µ∈P . Define the integers nv,ξ

w (µ) by the following identity
in KH(G/B):

[Ow ⊗C(µ)]H =
∑

v∈W,ξ∈P

nv,ξ
w (µ)[Lv(ξ)]H.

In [M389], we proved that for any λ ∈ P+, Ow ⊗ C(−λ) has a B-equivariant filtration
whose any subquotient is some Lv(ξ). Therefore the integers nv,ξ

w (λ) are non-negative for
any λ ∈ P+. Indeed it is easy to see that Sv

w(e
−λ) =

∑
ξ∈P nv,ξ

w (λ) eξ.
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6. Some refined tensor product multiplicities.
For any λ ∈ P+, denote by L(λ) the simple G-module with lowest weight −λ. For λ, µ, ν,
define the tensor product multiplicities Kν

λµ by the identity

L(λ)⊗ L(µ) = ⊕ν∈P+ L(ν)K
ν
λµ .

The tensor product multiplicities Kν
λµ have been explicitely computed by Steinberg [S61].

We will now define some refined tensor multiplicities Kν
λµ(w, v) indexed by the additional

indices w, v ∈W by the following requirements:
(i) Assume that w−1 is minimal in w−1Wµ and v is maximal in v.Wν . Then by

Theorem 2.3, Kw(λ) ⊗ C(−µ) has a Joseph filtration and by definition Kν
λµ(w, v) is the

multiplicity of Jv(ν) in a Joseph filtration of Kw(λ)⊗C(−µ).
(ii) Otherwise, set Kν

λµ(w, v) = 0.
By definition the integers Kν

λµ(w, v) are non-negative.

Theorem 6.1: For any λ, µ, ν ∈ P+, we have
Kν

λµ =
∑

v,w∈W

Kν
λµ(w, v).

Proof: We have chL(µ) = ∇(e−λ), where ∇ = ∇w0
. Therefore chL(λ) ⊗ L(µ) =

∇(e−µchL(λ)). Moreover chL(λ) =
∑

w∈W chKw(λ). Hence we get:
chL(λ)⊗ L(µ) =

∑
w∈W ∇(e−µchKw(λ)).

If w in not minimal in w.Wλ, thenKw(λ) = 0. Therefore the in previous sum, we let w runs
over the minimal representatives ofW/Wλ. Fix such a w. If w−1 is not minimal in w−1.Wµ,
there is a root α ∈ Π such that µ(hα) = 0 and sαw ≤ w, therefore ∇sα(e

−µchKw(λ)) =
e−µ∇sα(chKw(λ)) = e−µ∇sα∇

′

sα
(chKsαw(λ)) = 0, and therefore ∇(e−µchKw(λ)) = 0.

Otherwise w−1 is minimal in w−1.Wµ, and by definition we have:
e−µchKw(λ) =

∑
v∈W Kν

λµ(w, v)chJv(ν).
Therefore, using the identity ∇(ch Jv(ν)) = chL(ν), we get:

chL(λ)⊗ L(µ) =
∑

ν∈P+v,w∈W

Kν
λµ(w, v) chL(ν),

from which we get the required equality. Q.E.D.

Lemma 6.2: Let λ, µ, ν ∈ P+. Let w, v ∈W such that w is minimal in w.Wλ, w
−1

is minimal in w−1.Wµ, v is maximal in v.Wν, and µ+ wλ = vν. Then Kν
λµ(w, v) = 1.

Proof: By Theorem 2.3, the B-module Kw(λ)⊗C(−µ) has a Joseph filtration. How-
ever, H0(U,Kw(λ)⊗C(−µ)) is a one dimensional H-module of weight −µ−wλ, where U
is the unipotent radical of B. Hence the first step of a Joseph filtration of Kw(λ)⊗C(−µ)
is Jv(ν), and Jv(ν) does not occur further. Therefore K

ν
λµ(w, v) equals one. Q.E.D.

Corollary 6.3: (refined PRV conjecture) Let λ, µ, ν ∈ P+. Let X be the set of all
w,∈W such that µ+ wλ ∈W.ν. Then Kν

λµ ≥ Wµ\X/Wλ.

Proof: It is clear that X is a union of double Wµ × Wλ-cosets. Each such double
coset contains a minimal representative w, and therefore w is minimal in w.Wλ and w−1 is
minimal in w−1.Wµ. For such a w choose v ∈W such that µ+wλ = vν and v is maximal
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in v.Wν . By Lemma 6.2, Kν
λµ(w, v) = 1. Therefore by Theorem 6.1, Kν

λµ ≥ Wµ\X/Wλ.
Q.E.D.

7. A generalization of Pieri’s identity.
For w ∈ W set w = ww0, for λ ∈ P set λ = −w0λ and denote by φ ∈ Z[P ] 7→ φ ∈ Z[P ]
the involution sending eµ to eµ. The following two theorems are due to van der Kallen
[vdK89].

Theorem 7.1: Let M be a B-module.
(i) M has a Joseph filtration if and only if Hk(B,M ⊗ Kw(λ)) = 0 for any k > 0,

λ ∈ P+ and w ∈W ,
(ii) M has a van der Kallen filtration if and only if Hk(B,M ⊗ Jw(λ)) = 0 for any

k > 0, λ ∈ P+ and w ∈ W .

Theorem 7.2: As a B ×B-module, C[B] has a filtration whose the subquotients are
Jw(λ)⊗Kw(λ) and each of them occurs exactly once.

Corollary 7.3: Let M be a B-module, let λ ∈ P+, v, w ∈ W . Assume that v is
minimal in v.Wλ and w is maximal in w.Wλ.

(i) If M has a Joseph filtration, then the multiplicity of Jw(λ) in a Joseph filtration
of M is dimH0(B,M ⊗Kw(λ)).

(ii) If M has a van der Kallen filtration, then the multiplicity of Kv(λ) in a van der
Kallen filtration of M is dimH0(B,M ⊗ Jv(λ)).

Proof: We have M ≃ H0(B,C[B] ⊗ M). Therefore the filtration of C[B] defined
in Theorem 7.1 induces a filtration of M . Assume that M has a Joseph filtration. By
Theorem 7.1, the subquotient of the filtration are Jw(λ)⊗H0(B,Kw(λ)⊗M). Therefore
Assertion (i) is proved. The second assertion is similar. Q.E.D.

Denote by τ : Z[P ] → Z[P ] the involution sending eµ to ew0µ.

Lemma 7.4: For any v, w ∈W , φ ∈ Z[P ], we have:
(i) Sv

w(φ) = τ Kw
v (φ),

(ii) Mv
w(φ) = τMw

v (φ),

(iii) Kν
λµ(w, v) = Kλ

νµ(v, w).

Proof: Let λ be any dominant weight and set Sv
w(e

−λ) =
∑

ξ∈P nξ e
−ξ, Kv

w(e
−λ) =

∑
ξ∈P n

′

ξ e
−ξ. Fix ξ ∈ P and choose a dominant weight µ which is far away from the

walls. It follows from the proof of Theorem 3.1 that nξ is the mutiplicity of Jv(µ+ ξ) in
a Joseph filtration of Jw(µ) ⊗C(−λ). By Corollary 7.3, we get nξ = dimH0(B, Jw(µ) ⊗
Kw(µ + ξ) ⊗C(−λ)). As µ is an arbitrary dominant weight far away from the walls, we
also get nξ = dimH0(B, Jw(µ− ξ)⊗Kw(µ)⊗C(−λ)). Using again Corollary 7.3, we get

nξ = n
′

−ξ
, what proves the first assertion for φ = e−λ. However, the maps φ 7→ Sv

w(φ) and
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φ 7→ τ Kw
v (φ) are element of the algebra H. Therefore they are uniquely determined on

by their values on e−λ for λ ∈ P+, and Assertion (i) follows. The proof of the other two
assertions is similar. Q.E.D.

For α ∈ Π, set ∆sα = 1
1−e−α (1−e

−α sα) and ∆
′

sα
= e−α

1−e−α (1−sα). For any reduced de-

composition σ1 . . . σn of an element w ∈W , set ∆w = ∆σ1
. . .∆σn

and ∆
′

w = ∆
′

σ1
. . .∆

′

σn
.

These operators do not depend on the reduced decomposition of w. Recall that for any
λ ∈ P+, the highest weight of L(λ) is λ. For any w ∈ W , let J∗

w(λ) be the B-submodule
of L(λ) generated by a vector vw of weight wλ, and set K∗

w(λ) = J∗
w(λ)/

∑
v<w J∗

v (λ). By
Demazure character formula 2.1, we have

ch J∗
w(λ) = ∆w(e

λ),

chK∗
w(λ) = ∆

′

w(e
λ).

Lemma 7.5: For any w ∈W , we have Sw−1

w0
(e−λ) = ∆

′

w(e
λ).

Proof: By Corollay 1.6, we have ∇
′

wφ =
∑

v∈W Kv−1

w−1(φ)∇
′

v. However ∇
′

v(1) = 0 for

any v 6= 1. Hence we get ∇
′

w(φ) = K1
w−1(φ). Therefore the lemma follows from Lemma

7.4. Q.E.D.

Corollary 7.6: Let λ ∈ P+. In K(G/B), we have
[L(−λ)] =

∑
w∈W kw(λ)[Ow].

The corollary follows from Corollary 4.2 and the Lemma 7.5. It provides a generalisa-
tion for any group of the classical Pieri formula. It should be noted that the Littelmann’
path model provides a nice combinatorial formula for kw(λ). More precisely, in L94] Lit-
telmann defined the Lakshmibai-Sheshadri path of shape λ: they are indexed by a pair
(a, τ), with a is an increasing sequence of rational numbers a : 0 = a0 < a1 < . . . < ar = 1
and a decreasing sequence of Wλ-cosets τ : τ1 > . . . > τr = 1 together with an integrality
condition on a (this condition depends on λ). He showed that jw(λ) is the number of
Lakshmibai-Sheshadri paths (a, τ) with τ1 ≤ w.Wλ. As jw(λ) =

∑
v≤w kv(λ), it is easy

to deduce that kw(λ) is the number of Lakshmibai-Sheshadi paths (a, τ) with τ1 = w.Wλ,
whenever w is minimal in w.Wλ (otherwise kw(λ) = 0).

Using Lemma 7.5, we also get the following identity:

Corollary 7.7: Let λ, µ ∈ P+. We have
chL(λ+ µ) =

∑

w∈W

ch Jw(λ)⊗K∗
w(µ).
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Université Paris 7, 2 place Jussieu, 75005 Paris, FRANCE.

11


