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Abstract

Let Γ be a finitely generated torsion free nilpotent group, and
let Aω be the space of infinite words over a finite alphabet A. We
investigate two types of self-similar actions of Γ on Aω, namely the
faithfull actions with dense orbits and the free actions. A criterion for
the existence of a self-similar action of each type is established.

Two corollaries about the nilmanifolds are deduced. The first in-
volves the nilmanifolds endowed with an Anosov diffeomorphism, and
the second about the existence of an affine structure.

Then we investigate the virtual actions of Γ, i.e. actions of a
subgroup Γ′ of finite index. A formula, with some number theoretical
content, is found for the minimal cardinal of an alphabet A endowed
with a virtual self-similar action on Aω of each type.

Mathematics Subject Classification 37B10-20G30-53C30

Introduction

1. General introduction
Let A be a finite alphabet and let Aω be the topological space of infinite
words a1a2 . . . over A, where the topology of Aω = lim −A

n is the pro-finite
topology.
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An action of a group Γ on Aω is called self-similar iff for any γ ∈ Γ and
a ∈ A there exists γa ∈ Γ and b ∈ A such that

γ(aw) = bγa(w) for any w ∈ Aω.
The group Γ is called self-similar (respectively densely self-similar, re-

spectively freely self-similar, respectively freely densely self-similar) if Γ ad-
mits a faithfull self-similar action (respectively a faithfull self-similar action
with dense orbits, respectively a free self-similar action, respectively a free
self-similar action with dense orbits) on Aω for some finite alphabet A.

Self-similar groups appeared in the early eighties, in the works of R.
Grigorchuk [10] [11] and in the joint works of N. Gupta and S. Sidki [13] [14].
See also the monography [24] for an extensive account before 2005 and [25]
[2] [9] [16] [12] for more recent works. A general question is

which groups Γ are (merely, or densely ...) self-similar?
This paper brings an answer for finitely generated torsion-free nilpotent

groups Γ, called FGTF nilpotent groups in the sequel. Then we will connect
the main result with topics involving differential geometry and arithmetic
groups.

The systematic study of self-similar actions of nilpotent groups started
with [4], and the previous question has been raised in some talks of S. Sidki.

2. The main results
A few definitions are now required. A grading of a Lie algebra m is a decom-
position m = ⊕n∈Zmn such that [mn,mm] ⊂ mn+m for all n, m ∈ Z. It is
called special if m0∩ z = 0, where z is the center of m. It is called very special
if m0 = 0.

Let’s assume now that Γ is a FGTF nilpotent group. By Malcev Theory
[18][26], Γ is a cocompact lattice in a unique connected, simply connected
(or CSC in what follows) nilpotent Lie group N . Let nR be the Lie algebra
of N and set nC = C⊗R nR.

The main results, proved in Section 7, are the following

Theorem 2. The group Γ is densely self-similar iff the Lie algebra nC admits
a special grading.

Theorem 3. The following assertions are equivalent
(i) The group Γ is freely self-similar,
(ii) the group Γ is freely densely self-similar, and
(iii) the Lie algebra nC admits a very special grading.
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As a consequence, let’s mention

Corollary 4. Let M be a nilmanifold endowed with an Anosov diffeomor-
phism. Then there a free self-similar action of π1(M) with dense orbits on
Aω, for some finite A.

Corollary 8. Let M be a nilmanifold. If π1(M) is freely self-similar, then
M is affine complete.

Among FGTF nilpotent groups, some of them are self-similar but not
densely self-similar. Some of them are not even self-similar, since Theorem
2 implies the next

Corollary 7. Let M be one of the non-affine nilmanifolds appearing in [3].
Then π1(M) is not self-similar.

3. A concrete version of Theorems 2 and 3
Let N be a CSC nilpotent Lie group, with Lie algebra nR. Let’s assume
that N contains some cocompact lattices Γ. By definition, the degree of a
self-similar action of Γ on Aω is Card A. We ask the following question

For a given cocompact lattice Γ ⊂ N , what is the minimal degree
degree of a faithfull (or a free) self-similar action with dense orbits?
More notions are now defined. Recall that the commensurable class ξ of

a cocompact lattice Γ0 ⊂ N is the set of all cocompact lattices of N which
share with Γ0 a subgroup of finite index. The complexity cp ξ (respectively
the free complexity fcp ξ) of the class ξ is the minimal degree of a self-similar
action of Γ with dense orbits (respectively a free self-similar action of Γ), for
some Γ ∈ ξ.

For any algebraic number λ 6= 0, set d(λ) = Card O(λ)/πλ, where O(λ)
is the ring of integers of Q(λ) and πλ = {x ∈ O(λ)|xλ ∈ O(λ)}. For any
isomorphism h of a finite dimensional vector space over Q, set

hth =
∏

λ∈Spech/Gal(Q) d(λ)mλ ,

where Spech/Gal(Q) is the list of eigenvalues of h up to conjugacy by Gal(Q)
and where mλ is the multiplicity of the eigenvalue λ.

By Malcev’s Theory, the commensurable class ξ determines a canonical
Q-form n(ξ) of the Lie algebra nR. Let S(n(ξ)) (respectively V(n(ξ))) be the
set of all f ∈ Aut n(ξ) such that Spec f |zC (respectively Spec f) contains no
algebraic integer.

3



Theorem 9. We have
cp ξ = Minh∈S(n(ξ)) hth, and

fcp ξ = Minh∈V(n(ξ)) hth.

If, in the previous statement, S(n(ξ)) is empty, then the equality cp ξ =∞
means that no Γ ∈ ξ admits a faithfull self-similar action with dense Γ-orbits.

Theorem 9 answers the previous question only for the commensurable
classes ξ. For an individual Γ ∈ ξ, it provides some ugly estimates for the
minimal degree of Γ-actions, and nothing better can be expected.

The framework of nonabelian Galois cohomology shows the concreteness
of Theorem 9. Up to conjugacy, the commensurable classes in N are classi-
fied by the Q-forms of some classical objects with a prescribed R-form, see
Corollary 4 of ch. 9, and their complexity is an invariant of the arithmetic
group Aut n(ξ).

As an illustration of the previous vague sentence, we investigate a class
N of CSC nilpotent Lie groups N , with Lie algebra nR. The commensurable
classes ξ(q) in N are classified, up to conjugacy, by the positive definite
quadratic forms q on Q2. Then, we have

cp ξ(q) = F (d)e(N)

where e(N) is an invariant of the special grading of C⊗ nR, where −d is the
discriminant of q, and where F (d) is the norm of a specific ideal in Q(

√
−d),

see Theorem 11 and Lemma 28.
In particular, N contains some commensurable classes of arbitrarily high

complexity. In a forthcoming paper [22], more complicated examples are
investigated, but the formulas are less explicit.

4. About the proofs. The proofs of the paper are based on different ideas.
Theorem 1, which is a statement about rational points of algebraic tori, is
the key step in the proof of Theorems 2, 3 and 11. It is based on standard
results of number theory, including the Cebotarev’s Theorem. It is connected
with the density of rational points for connected groups proved by A. Borel
[6], see also [27].

Also, the proof of Corollary 4 is based on a paper of A. Manning [20]
about Anosov diffeomorphisms. The proof of Corollary 7 is based on very
difficult computations, which, fortunately, were entirely done in [3].
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1 Self-similar actions and self-similar data

Let Γ be a group. This section explains the correspondence between the
faithfull transitive self-similar Γ-actions and some virtual endomorphisms of
Γ, called self-similar data. Usually self-similar actions are actions on a rooted
tree A∗, see [24]. Here the groups are acting on the boundary Aω of A∗. This
equivalent viewpoint is better adapted to our setting.

1.1 Transitive self-similar actions
In addition of the definitions of the introduction, the following technical
notion of transitivity will be used.

A self-similar action of Γ on Aω induces an action of Γ on A. Indeed, for
a, b ∈ A and γ ∈ Γ, we have γ(a) = b if

γ(aw) = bγa(w),
for all w ∈ Aω. A self-similar action is called transitive if the induced action
on A is transitive. The group Γ is called transitive self-similar if it admits a
faithfull transitive self-similar action.

Similarly the self-similar action of Γ on Aω induces an action of Γ on
each level set An. Such an action is often called level transitive if Γ acts
transitively on each level An. Obviously, the level transitive actions on A∗ of
[24] corresponds with the actions on Aω with dense orbits.

1.2 Core and f -core
Let Γ be a group and Γ′ be a subgroup. The core of Γ′ is the biggest normal
subgroup K / G with K ⊂ Γ′. Equivalently the core is the kernel of the left
action of Γ on Γ/Γ′.

Now let f : Γ′ ! Γ be a group morphism. By defintion the f -core is the
biggest normal subgroup K / G with K ⊂ Γ′ and f(K) ⊂ K.

1.3 Self-similar data
Let Γ be a group. A virtual endomorphism of Γ is a pair (Γ′, f), where Γ′ is a
subgroup of finite index and f : Γ′ ! Γ is a group morphism. A self-similar
datum is a virtual endomorphism (Γ′, f) with a trivial f -core.

Assume given a faithfull transitive self-similar action of Γ on Aω. Let
a ∈ A, and let Γ′ be the stabilizer of a. By definition, for each γ ∈ Γ′ there
is a unique γa ∈ Γ such that

γ(aw) = aγa(w),
for any w ∈ Aω. Let f : Γ′ ! Γ be the map γ 7! γa. Since the action
is faithfull, γa is uniquely determined and f is a group morphism. Also it
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follows from Proposition 2.7.4 and 2.7.5 of [24] that the f -core of Γ′ is the
kernel of the action, therefore it is trivial. Hence (Γ′, f) is a self-similar
datum.

Conversely, a virtual endomorphism (Γ′, f) determines a transitive self-
similar action of Γ on Aω, where A ' Γ/Γ′. Moreover the f -core is the kernel
of the corresponding action, see ch 2 of [24] for details, especially subsection
2.5.5 of [24]). In conclusion, we have

Lemma 1. Let Γ be a group. There is a correspondence between the self-
similar data (Γ′, f) and the faithfull transitive self-similar actions of Γ on
Aω, where A ' Γ/Γ′.

This correspondence is indeed a bijection up to conjugacy, see [24] for a
precise statement.

1.4 Good self-similar data
Let Γ be a group, and let (Γ′, f) be a virtual endomorphism. Let Γn be the
subgroups of Γ inductively defined by Γ0 = Γ, Γ1 = Γ′ and for n ≥ 2

Γn = {γ ∈ Γn−1| f(γ) ∈ Γn−1}

Lemma 2. The sequence n 7! [Γn : Γn+1] is not increasing.

Proof. For n > 0, the map f induces an injection of the set Γn/Γn+1 into
Γn−1/Γn, thus we have [Γn : Γn+1] ≤ [Γn−1 : Γn].

The virtual endomorphism (Γ′, f) is called good if [Γn : Γn+1] = [Γ/Γ′] for
all n.

Let (Γ′, f) be a self-similar datum, and let A∗ be the corresponding tree
on which Γ acts. If a is the distinguished point in A ' Γ/Γ′, then Γn is
the stabilizer of an. If the self-similar datum (Γ′, f) is good, then [Γ : Γn] =
CardAn and therefore Γ acts transitively on An. Exactly as before, we have

Lemma 3. Let Γ be a group. There is a correspondence between the good
self-similar data (Γ′, f) and the faithfull self-similar actions of Γ on Aω with
dense orbits, where A ' Γ/Γ′.

1.5 Fractal self-similar data
Let Γ be a group. A self-similar datum (Γ′, f) is called fractal (or recurrent)
if f(Γ′) = Γ. A self-similar action of Γ on some Aω is called fractal if it is
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transitive and the corresponding self-similar datum is fractal, see [24] section
2.8. Obviously a fractal action has dense orbits.

The group Γ is called fractal (respectively freely fractal) if Γ admits a
faithfull (respectively free) fractal action on some Aω.

2 Rational points of a torus

We are going to prove Theorem 1, about the rational points of algebraic tori.
For the whole chapter, let H be an algebraic torus defined over Q and

let X(H) be the group of characters of H. For a number field K, let’s
denote by Gal(K) := Gal(Q/K) its absolute Galois group. The group X(H)
is a Gal(Q)-module which is isomorphic to Zr as an abelian group, where
r = dim H. The splitting field of H is the smallest Galois extension L of
Q such that Gal(L) acts trivially on X(H), or, equivalently such that H is
L-isomorphic to Gr

m, where Gm denotes the multiplicative group. Moreover,
we have

χ(h) ∈ L∗
for any χ ∈ X(H) and any h ∈ H(Q).

Let O be the ring of integers of L. Recall that a fractional ideal is a
nonzero finitely generated O-submodule of K. A fractional ideal I is called
integral if I ⊂ O. If the fractional ideal I is integral and I 6= O, then I is
merely an ideal of O.

Let I be the set of all fractional ideals and I+ be the subset of all integral
ideals. Given I and J in I, their product is the O-module generated by all
products ab where a ∈ I and b ∈ J . Since O is a Dedekind ring, we have

I ' ⊕π∈P Z [π]
I+ ' ⊕π∈P Z≥0 [π],

where P is the set of prime ideals of O. Indeed the additive notation is used
for for the group I and the monoid I+: view as an element of I the fractional
ideal πm1

1 . . . πmnn will be denoted as m1[π1] + · · ·+mn[πn].
Since Gal(L/Q) acts by permutation on P , I is a ZGal(L/Q)-module.

For S ⊂ P , set
IS = ⊕π∈P\S Z [π].

Lemma 4. Let S ⊂ P be a finite subset and let r > 0 be an integer.
The Gal(L/Q)-module I contains a free ZGal(L/Q)-module M(r) of rank

r such that
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(i) M(r) ∩ I+ = {0}, and
(ii) M(r) ⊂ IS.

Proof. Let S ′ be the set of all prime numbers which are divisible by some
π ∈ S. Let Σ be the set of prime numbers p that are completely split in K,
i.e. such that O/pO ' F[L:Q]

p . For p ∈ Σ, let π ∈ P be a prime ideal over p.
When σ runs over Gal(L/Q) the ideals πσ are all distinct, and therefore [π]
generates a free ZGal(L/Q)-submodule of rank one in I.

By Cebotarev theorem, the set Σ is infinite. Choose r + 1 distinct prime
numbers p0, . . . pr in Σ \ S ′, and let π0, . . . , πr ∈ P such that O/πi = Fpi .
For 1 ≤ i ≤ r, set τi = [πi] − [π0] and let M(r) be the ZGal(L/Q)-module
generated by τ1, . . . , τr.

Obviously, the Gal(L/Q)-module M(r) is free of rank r and M(r) ⊂ IS.
It remains to prove that M(r) ∩ I+ = {0}. Let

A =
∑

1≤i≤r,σ∈Gal(L/Q)

mi,σ τ
σ
i

be an element of M(r) ∩ I+. We have A = B − C, where
B =

∑
1≤i≤r,σ∈Gal(L/Q)

mi,σ [πσi ], and

C =
∑

σ∈Gal(L/Q)

(
∑

1≤i≤r
mσ
i )[πσ0 ].

Thus the condition A ∈ I+ implies that
mσ
i ≥ 0, for any 1 ≤ i ≤ k and σ ∈ Gal(L/Q), and∑

1≤i≤r
mσ
i ≤ 0, for any σ ∈ Gal(L/Q).

Thus all the integers mσ
i vanish. Therefore M(r) intersects I+ trivially.

For π ∈ P , let vπ : L∗ ! Z be the corresponding valuation.

Lemma 5. Let S ⊂ P be a finite Gal(L/Q)-invariant subset and let r > 0
be an integer.

The Gal(L/Q)-module L∗ contains a free ZGal(L/Q)-module N(r) of
rank r such that

(i) N(r) ∩ O = {1}, and
(ii) vπ(x) = 0 for any x ∈ N(r) and any π ∈ S.

Proof. Set L∗S = {x ∈ L∗|vπ(x) = 0, ∀π ∈ S} and let θ : L∗S ! IS be the
map x 7!

∑
π∈P vπ(x) [π].

By Lemma 4, IS contains a free ZGal(L/Q)-module M(r) of rank r such
that M(r) ∩ I+ = {0}. Let’s remark that Coker θ is a subgroup of the class
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group Cl(L) of L. Since, by Dirichelet Theorem, Cl(L) is finite, there is a
positive integer d such that d.M(r) lies in the image of θ. Since M(r) is
free, there is a free ZGal(K/Q)-module N(r) ⊂ L∗S of rank r which is a lift
of dM(r), i.e. such that θ induces an isomorphism N(r) ' d.M(r). Since
θ(O\0) lies in I+, we have θ(N(r)∩O) = {0}. It follows that N(r)∩O = {1}.

The second assertion follows from the fact that N(r) lies in L∗S.

For π ∈ P , let Oπ and Lπ be the π-adic completions of O and L. Let
x, y ∈ L and let n > 0 be an integer. In what follows, the congruence

x ≡ y modulo nOπ
means xπ ≡ yπ modnOπ, where xπ and yπ are the images of x and y in Lπ.

The case n = 1 of the next statement will be used in further sections. In
such a case, Assertion (ii) is tautological.

Theorem 1. Let H be an algebraic torus defined over Q, and let L be its
splitting field. Let n > 0 be an integer and let S ⊂ P be the set of prime
divisors of n.

There exists h ∈ H(Q) such that
(i) χ(h) is not an algebraic integer, for any non-trivial χ ∈ X(H), and
(ii) χ(h) ≡ 1 modnOπ for any χ ∈ X(H) and any π ∈ S.

Proof. Step 1. First an element h′ ∈ H(Q) satisfying Assertion (i) and
(iii) vπ(χ(h′)) = 0, for any π ∈ S and any χ ∈ X(H)

is found.
The abelian group X(H) is free of rank r where r = dim H. Therefore,

the comultiplication ∆ : X(H)! X(H)⊗ZGal(L/Q) provides an embedding
of X(H) into a free ZGal(L/Q)-module of rank r. By lemma 5, there a free
ZGal(L/Q)-module N(r) ⊂ L∗S of rank r with N(r) ∩ O = {1}. Let

µ : X(H)⊗ ZGal(L/Q)! N(r),
be an isomorphism of ZGal(L/Q)-modules, and set h′ = µ ◦∆.

Since H(Q) = HomGal(L/Q)(X(H), L∗), the embedding h′ is indeed an
element of H(Q). Viewed as a map from X(H) to L∗, h′ is the morphism
χ ∈ X(H) 7! χ(h′).

Since Imh′ ∩O = 1 and h′ is injective, χ(h′) is not an algebraic integer if
χ is a non-trivial character. Since Imh′ ⊂ L∗S, we have vπ(χ(h′)) = 0 for any
χ ∈ X(H). Therefore h′ satisfies Assertions (i) and (iii).
Step 2. Let χ1, . . . , χr be a basis of X(H). Since vπ(χi(h

′)) = 0 for any
π ∈ S, the element χi(h

′) modnOπ is an inversible element in the finite ring
Oπ/nOπ. Therefore there are positive integers mi,π such that
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χi(h
′)mi,π ≡ 1 modnOπ,

for all 1 ≤ i ≤ r and all π ∈ S. Set m = lcm(mi,π) and set h = h′m.
Obviously h satisfies Assertion (i). Moreover we have χi(h) ≡ 1 modnOπ,
for all π ∈ S and all 1 ≤ i ≤ r, and therefore h satisfies Assertion (ii) as well.

3 Special Gradings

Let n be a finite dimensional Lie algebra defined over Q and let z be its
center. The relations between the gradings of C⊗ n and the automorphisms
of n are investigated now.

The following important definitions will be used in the whole paper. Let
S(n) (respectively V(n)) be the set of all f ∈ Aut n such that Spec f |z (re-
spectively Spec f) contains no algebraic integers. Moreover let F(n) be the
set of all f ∈ S(n) such that all eigenvalues of f−1 are algebraic integers. Also
set F+(n) = F(n) ∩ V(n). Here, by eigenvalues of a Q-linear endomorphism
F , we always mean the eigenvalues of F in Q.

For any field K of characteristic zero, set nK = K⊗n and zK = K⊗z. Let
G = Aut n be the algebraic group of automorphisms of n. By definition, G is
defined over Q, and we have G(K) = Aut nK for any field K of characteristic
zero. The notation n underlines that n can be viewed as the functor in Lie
algebras K 7! nK . Let H ⊂ G be a maximal torus defined over Q, whose
existence is proved in [7], see also [6], Theorem 18.2.

By definition, a K-grading of n is is a decomposition of nK

nK = ⊕n∈Z nKn
such that [nKn , n

K
m] ⊂ nKn+m for all n, m ∈ Z. A grading is called special

(respectively very special) if zK ∩ nK0 = 0 (respectively if nK0 = 0). A grading
is called non-negative (respectively positive) if nKn = 0 for n < 0 (respectively
nKn = 0 for n ≤ 0).

For any field K of characteristic zero, a K-grading of n can be identified
with an algebraic group morphism

ρ : Gm ! G
defined over K, where Gm denotes the multiplicative group.

Consider the following two hypotheses
(HK) The Lie algebra n admits a special K-grading,
(H0

K) The Lie algebra n admits a very special K-grading.
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Lemma 6. Let K be the splitting field of H. Up to conjugacy, any grading
of nC is defined over K. In particular

(i) The hypotheses HC and HQ are equivalent.
(ii) The hypotheses H0

C and H0
Q are equivalent.

Proof. Let
nC = ⊕n∈Z nCn

be a grading of nC and let ρ : Gm ! G be the corresponding algebraic group
morphism. Since any maximal torus of G is G(C)-conjugate to H, it can be
assumed that ρ(Gm) ⊂ H.

Let X(H) be the character group of H. The group morphism ρ is deter-
mined by the dual morphism L : X(H) ! Z = X(Gm). However, Gal(K)
acts trivially on X(H). Thus ρ is automaticaly defined over K.

Lemma 7. Let Λ be a finitely generated abelian group and let S ⊂ Λ be
a finite subset containing no element of finite order. Then there exists a
morphism L : Λ! Z such that

L(λ) 6= 0 for any λ ∈ S.

Proof. Let F be the subgroup of finite order elements in Λ. Using Λ/F
instead of Λ, it can be assumed that Λ = Zd for some d an 0 /∈ S. Let’s
choose a positive integer N such that S ⊂ ] − N,N [d and let L : Λ ! Z be
the function defined by

L(a1, . . . , ad) =
∑

1≤i≤d aiN
i−1.

For any λ = (a1, . . . , ad) ∈ S, there is a smallest index i with ai 6= 0. We have
L(λ) = aiN

i−1 modulo N i. Since |ai| < N , it follows that L(λ) 6= 0 modN i

and therefore L(λ) 6= 0.

Lemma 8. Let f ∈ G(Q). There is a f -invariant Z-grading of nQ such that

all eigenvalues of f on nQ0 are roots of unity.

In particular, if Spec f contains no root of unity, then nQ admits a very
special grading.

Proof. Let Λ ⊂ Q∗ be the subgroup generated by the Spec f . For any λ ∈ Λ
denote by E(λ) ⊂ nQ the corresponding generalized eigenspace of f . Let R
be the set of all roots of unity in Spec f and set S = Spec f \R.

By Lemma 7, there is a morphism L : Λ! Z such that L(λ) 6= 0 for any
λ ∈ S. Let G be the decomposition
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nQ = ⊕k∈Z nQk
of nQ defined by nQk = ⊕L(λ)=k E(λ). Since [E(λ), E(µ)] ⊂ E(λµ) and L(λµ) =
L(λ)+L(µ) for any λ, µ ∈ Λ, it follows that G is a grading of the Lie algebra

nQ. Moreover we have
nQ0 = ⊕λ∈RE(λ),

from which the lemma follows.

Lemma 9. With the previous notations
(i) the Lie algebra nC admits a special grading iff S(n) 6= ∅.
(ii) the Lie algebra nC admits a very special grading iff V(n) 6= ∅.

Proof. In order to prove Assertion (i), let’s consider the following assertion

(A) H0(H(Q), zQ) = 0.
The proof is based on the following ”cycle” of implications
nC has a special grading ⇒ (A) ⇒ S(n) 6= ∅ ⇒ nC has a special grading.

Step 1: the existence of a special grading of nC implies (A). By hypothesis

and Lemma 6, nQ admits a special grading. Let ρ : Gm ! G be the corre-
sponding group morphism. Since all maximal tori of G are conjugate to H,
we can assume that ρ(Gm) ⊂ H. Therefore we have

H0(H(Q), zQ) ⊂ H0(ρ(Q∗), zQ) = 0.
Thus Assertion A is proved.
Step 2: proof that (A) implies S(n) 6= ∅. By Theorem 1, there exists f ∈
H(Q) such that χ(f) is not an algebraic integer for any non-trivial character
χ ∈ X(H). If we assume (A), then Spec f |z contains no algebraic integers
and therefore S(n) 6= ∅.
Step 3: proof that S(n) 6= ∅ implies the existence of a special grading. For any
f ∈ S(n), Since Spec f |z contains no roots of unity. It follows from Lemma 8

that the Lie algebra nQ (and therefore nC) admits a special grading. Therefore
S(n) 6= ∅ implies the existence of a special grading.

The proof of Assertion (ii) is almost identical. Instead of (A), the ”cycle”
of implications uses the following assertion

(A0) H0(H(Q), nQ) = 0.

Lemma 10. The following are equivalent:
(i) the Lie algebra nQ admits a non-negative special grading,
(ii) the Lie algebra nC admits a non-negative special grading, and
(iii) The set F(n) is not empty.
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Proof. Proof that (ii) ⇒ (iii). Let nC = ⊕k≥0 n
C
k be a non-negative special

grading of nC and let ρ : Gm ! G be the corresponding group morphism.
Up to conjugacy, we can assume that ρ(Gm) ⊂ H. It follows that the grading
is defined over the splitting field K of H.

Let g1 ∈ H(K) be the isomorphism defined by g1x = 2kx if x ∈ nCk . Set
n = [K : Q] and let g1, g2 . . . gn be the Gal(L/Q)-conjugates of g1. Since
all gi belongs to H(K), the automorphisms gi commute. Hence the product
g := g1 . . . gn is well defined and g belongs to H(Q). By hypotheses, all
eigenvalues of gi are power of 2, and all eigenvalues of gi|zC are distinct from
1. Therefore all eigenvalues of g are integers, and all eigenvalues of g|zC are
6= ±1. It follows that g−1 belongs to F(n). Therefore F(n) 6= ∅
Proof that (iii) ⇒ (i). Let f ∈ F(n) and set g = f−1. Set K = Q(Spec g)
and let L : K∗ ! Z be the map defined by

L(x) =
∑

p vp(NK/Q(x))
where the sum runs over all prime numbers p and where NK/Q : K∗ ! Q∗
denotes the norm map.

For any integer k, set

nQk =
⊕

L(x)=k

E(x)

where E(x) ⊂ nQ denotes the generalized eigenspace associated to x ∈ Spec g.
We have [E(x), E(y)] ⊂ E(xy) and L(xy) = L(x) + L(y), for any x, y ∈ K.
Therefore the decomposition

nK = ⊕k∈Z nQk
is a grading G of the Lie algebra nQ. Since the function L is Gal(Q)-invariant,
the grading G is indeed defined over Q. It remains to prove that G is non-
negative and special.

Since any x ∈ Spec g is an algebraic integer, we have L(x) ≥ 0 and the
grading is non-negative. Since no x ∈ Spec g|z is an algebraic unit, we have
NK/Q(x) 6= ±1 and L(x) > 0. Thus the grading is special, what proves that
(iii) =⇒ (i).

Lemma 11. The following are equivalent:
(i) the Lie algebra nQ admits a positive grading,
(ii) the Lie algebra nC admits a positive grading, and
(iii) The set F+(n) is not empty.

Since the proof is almost identical to the previous proof, it will be skipped.
The equivalence (i)⇔ (ii) also appears in [8].
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4 Height and relative complexity

For the whole chapter, V denotes a finite dimensional vector space over
Q. In this section, we define the notion of the height of the isomorphisms
h ∈ GL(V ) and the notion of a minimal lattice.

4.1 Height, complexity and minimality
Let h ∈ GL(V ). Recall that a lattice of V is a finitely generated subgroup
Λ which contains a basis of V . Let D(h) be the set of all couple of lattices
(Λ, E) of V such that E ⊂ Λ and h(E) ⊂ Λ. By definition, the height of h,
is the integer

ht(h) := Min(Λ,E)∈D(h) [Λ : E].
Let Dmin(h) be the set of all couples (Λ, E) ∈ D(h) such that [Λ : E] = ht(h).

Similarly, for a lattice Λ of V , the h-complexity of Λ is the integer
cph(Λ) := Min(Λ,E)∈D(h) [Λ : E].

It is clear that cph(Λ) = [Λ : E], where E = Λ ∩ h−1(Λ). The lattice Λ is
called minimal relative to h if cph(Λ) = ht(h).

For the proofs, a technical notion of relative height is needed. Let Endh(V )
be the commutant of h and let let A ⊂ C(h) ⊂ Endh(V ) be a subring. By
definition, an A-lattice Λ means a lattice Λ which is an A-module. Let DA(h)
be the set of all couple of A-lattices (Λ, E) in D(h). The A-height of h is the
integer

htA(h) := Min(Λ,E)∈DA(h) [Λ : E].
Obviously, we have htA(h) ≥ ht(h) = htZ(h). Let DAmin(h)) be the set of all
couples (Λ, E) ∈ DA(h)) such that [Λ : E] = htA(h).

4.2 Height and filtrations
Let V be a finite dimensional vector space over Q and let h ∈ GL(V ). Let A
be a subring of Endh(V ) and let A[h] be the subring of Endh(V ) generated
by A and h.

Lemma 12. Let 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V be a fitration of V , where
each vector space Vi is a A[h]-submodule. For i = 1 to n, set hi = hVi/Vi−1

.
Then we have

htA(h) ≥
∏

1≤i≤n htA(hi).
Moreover if V ' ⊕Vi/Vi−1 as a A[h]-module, we have

htA(h) =
∏

1≤i≤n htA(hi).
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Proof. Clearly it is enough to prove the lemma for n = 2. Let (Λ, E) ∈
DAmin(h). Set Λ1 = Λ ∩ V1, E1 = E ∩ V1, Λ2 = Λ/Λ1 and E2 = E/E1. We
have

[Λ : E] = [Λ1 : E1][Λ2 : E2].
Since (Λ1, E1) ∈ DA(h1) and (Λ2, E2) ∈ DA(h2), we have

htA(h) ≥ htA(h1) htA(h2),
what proves the first assertion.

Next, we assume that V ' V1 ⊕ V2 as a A[h]-module. Let (Λ1, E1) ∈
DAmin(h1), (Λ2, E2) ∈ DAmin(h2) and set Λ = Λ1 ⊕ Λ2 and E = E1 ⊕ E2. We
have

[Λ : E] = [Λ1 : E1][Λ2 : E2] = htA(h1) htA(h2).
Therefore htA(h) ≤ htA(h1) htA(h2). Hence htA(h) = htA(h1) htA(h2).

Let h ∈ GL(V ) as before. Its Chevalley decomposition h = hshu is
uniquely defined by the following three conditions: hs and hu commutes, hs
is semi-simple and hu is unipotent.

Lemma 13. We have
ht(h) = ht(hs).

Proof. By Lemma 12, it can be assumed that the Q[h]-module V is indecom-
posable. Therefore there is a vector space V0, a semi-simple endomorphism
h0 ∈ End(V0) and an isomorphism

V ' V0 ⊗Q[t]/(tn),
relative to which hs acts as h0⊗1 and hu acts as 1⊗t. Let (Λ0, E0) ∈ Dmin(h0)
and set Λ = Λ0 ⊗ Z[t]/(tn) and E = E0 ⊗ Z[t]/(tn). By Lemma 12, we have
ht(h) ≥ ht(hs) = ht(h0)n. Since (Λ, E) ∈ D(h) and

[Λ : E] = [Λ0 : E0]n = ht(h0)n,
it follows that ht(h) = ht(hs)

4.3 Complexity of O(h)-lattices
For any algebraic number λ, let O(λ) be the ring of integers of the number
field Q(λ). Set πλ = {x ∈ O(λ)|xλ ∈ O(λ)}. Then πλ is an integral ideal
and its norm is the integer

d(λ) := NQ(λ)/Q(πλ) = CardO(λ)/πλ.
Let h ∈ GL(V ) be semi-simple. Let P (t) be its minimal polynomial, let

P = P1 . . . Pk be its factorization into irreducible factors. For 1 ≤ i ≤ k, set
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Ki = Q[t]/(Pi(t)) and let Oi be the ring of integers of the number field Ki.
Set O(h) = ⊕1≤i≤kOi.

For each λ ∈ Spec h, let mλ be its multiplicity. Note that the functions
λ 7! mλ and λ 7! d(λ) are Gal(Q)-invariant, so they can be viewed as
functions defined over Spec h/Gal(Q).

Lemma 14. Let Λ be an O(h)-lattice of V . Then
cph(Λ) =

∏
d(λ)mλ,

where the product runs over Spech/Gal(Q).

Proof. With the previous notations, let ei be the unit of Oi and set Λi = eiΛ.
Since Λ = ⊕1≤i≤k Λi, it is enough to prove the lemma for k = 1, i.e. when
the minimal polynomial of h is irreducible.

Let λ be one eigenvalue of h. With these new hypotheses, we have
Q[h]/(P (t)) ' Q(λ), O(h) ' O(λ) and V is a vector space of dimension
mλ over Q(λ), relative to which h is identified with the multiplication by λ.
We have

rλΛ = Λ ∩ h−1Λ.
Since Λ/rλI ' (O(λ)/rλ)

mλ , it follows that cph(Λ) = d(λ)mλ .

4.4 Computation of the height
Let h ∈ GL(V ) be semi-simple.

Lemma 15. We have
ht(h) =

∏
d(λ)mλ,

where the product runs over Spech/Gal(Q).

Proof. Using Lemmas 13 and Lemma 12, we can be assumed V is a simple
Q[h]-module, and let n be its dimension. The eigenvalues λ1, . . . , λn of h are
conjugate by Gal(Q). Under these simplifying hypotheses, the formula to be
proved is

ht(h) = d(λ1).
Step 1: scalar extension. Set K = Q(λ1, . . . , λn), let U = K⊗V , let h̃ = 1⊗h
be the extension of h to U and let {v1, . . . , vn} be a K basis of U such that
h̃.vi = λi vi. We have U = ⊕1≤i≤nUi, where Ui = K vi.

Let O be the ring of integers of K. For each 1 ≤ i ≤ n, set h̃i = h|Ui .
Since each Ui is a O[h̃]-module, Lemma 12 shows that

htO(h̃) =
∏

1≤i≤n htO(h̃i).
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Next, the integers htO(h̃i) are computed. Let Λi ⊂ Ui be any O-lattice.
Since O contains O(λi) = O(h̃i), it follows from Lemma 14 that

cph̃i(Λi) = d(λi)
r

where r = rkO(Λi) = [K : Q(λi)]. Hence we have htO(h̃i) = d(λi)
[K:Q(λi)]. It

follows that
htO(h̃) =

∏
1≤i≤n d(λi)

[K:Q(λi)] = d(λ1)[K:Q]

Step 2: end of the proof. Now let (Λ, E) ∈ Dmin(h). Set Λ̃ = O ⊗ Λ and
Ẽ = O ⊗ E. Since Ẽ is an O-module, we have [Λ̃ : Ẽ] ≥ htO(h̃). It follows
that

ht(h)[K:Q] = [Λ : E][K:Q] = [Λ̃ : Ẽ] ≥ htO(h̃) = d(λ)[K:Q].
Thus we have d(λ1) ≤ ht(h). By Lemma 14, we have htO(h)(h) = d(λ1). It
follows that

d(λ1) ≤ ht(h) ≤ htO(〈)(h) = d(λ1),
what proves the formula.

Remark: In number theory, the Weil height of an algebraic number λ is
H(λ) = θd(λ)1/n, where θ involves the norms at infinite places. Therefore
ht(h) is essentially the Weil’s height of h, up to the factor at infinite places.

4.5 A simple criterion of minimality
An obvious consequence of Lemmas 14 and 15 is

Lemma 16. Let h ∈ GL(V ) be semi-simple and let Λ be an O(h)-lattice of
V . Then Λ is minimal relative to h.

5 Malcev’s Theorem and self-similar data

In this chapter, we recall Malcev’s Theorem. Then we collect some related
results, which are due to Malcev or viewed as folklore results. Then it is easy
to characterize the self-similar data for FGTF nilpotent groups.

5.1 Three types of lattices
Let n be a finite dimensional be a nilpotent Lie algebra over Q. The Lie
algebra n is endowed with two group structures, the addition and the the
Campbell-Hausdorff product. To avoid confusion, the Campbell-Hausdorff
product is called the multiplication and it is denoted accordingly.
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A multiplicative subgroup Γ of n means a subgroup relative to the Campbell-
Hausdorff product. In general, a multiplicative subgroup Γ is not an additive
subgroup of n. However, notice that Z.x ⊂ Γ for any x ∈ Γ, because xn = nx
for any n ∈ Z.

A finitely generated multiplicative subgroup Γ is called a multiplicative
lattice if Γ mod [n, n] generates the Q-vector space n/[n, n], or, equivalently,
if Γ generates the Lie algebra n. Let N be the CSC nilpotent Lie group with
Lie algebra nR = R ⊗ n. A discrete subroup Γ of N is called a cocompact
lattice if N/Γ is compact.

It should be noted that three distinct notions of lattices will be used in
the sequel: the additive lattices, the multiplicative lattices and the cocom-
pact lattices. When it is used alone, a lattice is always an additive lattice.
This very commoun terminology could be confusing: the reader should read
”multiplicative lattice” or ”cocompact lattice” as single words.

5.2 Malcev’s Theorem
Any multiplicative lattice Γ of a finite dimensional nilpotent Lie algebra over
Q is a FGTF nilpotent group. Conversely, Malcev proved in [18]

Malcev’s Theorem. Let Γ be a FGTF nilpotent group.
1. There exists a unique nilpotent Lie algebra n over Q wich contains Γ

as a multiplicative lattice.
2. There exists a unique CSC nilpotent Lie group N which contains Γ as

a cocompact lattice.
3. The Lie algebra of N is R⊗ n.

The Lie algebra n of the previous theorem will be called the Malcev Lie
algebra of Γ.

5.3 The coset index
From now on, let n will be a finite dimensional nilpotent Lie algebra. The
coset index, which is defined now, generalizes the notions of indices for ad-
ditive lattices and for multiplicative lattices.

A subset X of n is called a coset union if X is a finite union of Λ-coset
for some additive lattice Λ.

Recall that the nilpotency index of n is the smallest integer n such that
Cn+1n = 0, where (Cn n)n≥0 is its descending central series. The following
lemma is easily proved by induction on the nilpotency index of n.

Lemma 17. Any multiplicative lattice Γ of n is a coset union.
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Let X ⊃ Y be two coset unions in n. Obviously, there is a lattice Λ such
that X and Y are both a finite union of Λ-coset. The coset index of Y in X
is the number

[X : Y ]coset = Card X/Λ
Card Y/Λ

The numerator and denominator of the previous expression depends on the
choice of Λ, but [X : Y ]coset is well defined. In general, the coset index is not
an integer. Obviously if Λ ⊃ Λ′ are additive lattices in n, we have

[Λ : Λ′]coset = [Λ : Λ′].
Similarly, for multiplicative lattices there is

Lemma 18. Let Γ ⊃ Γ′ be multiplicative lattices in n, we have
[Γ : Γ′]coset = [Γ : Γ′].

The proof, done by induction on the nipotency index of n, is skipped.

5.4 Morphims of FGTF nilpotent groups

Lemma 19. Let Γ, Γ′ ⊂ n be multiplicative lattices in n and let f : Γ′ ! Γ
be a group morphism. Then f extends uniquely to a Lie algebra morphism

f̃ : n! n.
Moreover f̃ is an isomorphism if f is injective.

When f is an isomorphism, the result is due to Malcev, see [18], Theorem
5. In general, the lemma is a folklore result and it is implicitely used in
Homotopy Theory, see e.g. [1]. Since we did not found a precise reference, a
proof, essentially based on Hall’s collecting formula (see Theorem 12.3.1 in
[15]), is now provided.

Proof. Let x ∈ n. Since Γ contains an additive lattice by Lemma 17, we have
mZx ⊂ Γ for some m > 0. Thus there is a unique map f̃ : n! n extending
f such that f̃(nx) = nf̃(x) for any x ∈ n and n ∈ Z. It remains to prove
that

f̃(x+ y) = f̃(x) + f̃(y), and f̃([x, y]) = [f̃(x), f̃(y)],
for any x, y ∈ n.

Let n be the nilpotency index of n. Set L(2, n) = L(2)/Cn+1L(2), where
L(2) denotes the free Lie algebra over Q freely generated by X and Y . Let
Γ(2, n) ⊂ L(2, n) be the multiplicative subgroup generated by X and Y .

As before, m(X + Y ) and m[X, Y ] belongs to Γ(2, n) for some m > 0.
Thus there are w1, w2 in the free group over two generators, such that

w1(X, Y ) = m(X + Y ) and w2(X, Y ) = m[X, Y ].
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Since L(2, n) is a free in the category of nilpotent Lie algebras of nilpo-
tency index ≤ n, we have

w1(x, y) = m(x+ y) and w2(x, y) = m[x, y]
for any x, y ∈ n. From this it follows easily that f̃ is a Lie algebra morphism.

5.6 Self-similar data for FGTF nilpotent groups
Let z be the center of n. Recall that S(n) (respectively V(n)) is the set of
all f ∈ Aut n such that Spec f |z (respectively Spec f) contains no algebraic
integers. Let Γ ⊃ Γ′ be multiplicative lattices of n, let f : Γ′ ! Γ be a
morphism and let f̃ : n! n be its extension.

Lemma 20. Let’s assume that f is injective. Then
(i) (Γ′, f) is a self-similar datum iff f̃ belongs to S(n),
(ii) (Γ′, f) is a free self-similar datum iff f̃ belongs to V(n)
(iii) if (Γ′, f) is a fractal datum, then f belongs to F(n).

Proof. Let V be a finite dimensional vector space over Q and let f ∈ GL(V ).
We will repeatedly use the fact that Spec f contains an algebraic integer iff
V contains a finitely generated subgroup E 6= 0 such that f(E) ⊂ E.

Proof of Assertion (i). Since Γ′ contains a set of generators of n, the subgroup
Z(Γ′) := Γ′ ∩ z is the center of Γ′. Let K be the f -core of the virtual
endomorphism (Γ′, f).

Let’s assume that (Γ′, f) is not a self-similar datum. Since K 6= 1, the
additive group K ∩ Z(Γ′) is non-trivial, finitely generated and f̃ -invariant.
Therefore f̃ /∈ S(n).

Conversely let’s assume that f̃ /∈ S(n). Then there is a nonzero finitely
generated subgroup E ⊂ z such that f̃(E) ⊂ E. By Lemma 17, Z(Γ′) is an
additive lattice of z. Therefore we have mE ⊂ Z(Γ′) for some m > 0. Since
K contains mE, it follows that (Γ′, f) is not a self-similar datum.

Proof of Assertion (ii). Let A ⊂ Γ be a set of representatives of Γ/Γ′. Let’s
consider the action of Γ on Aω associated with the virtual endomorphism
(Γ′, f).

Let’s assume that f̃ /∈ V(n). Then there is a nonzero finitely generated
abelian subgroup F ⊂ n such that f̃(F ) ⊂ F . As before, it can be assumed
F lies in Γ′. Let e ∈ A be the representative of the trivial coset and let
eω = ee . . . be the infinite word over the single letter e. Since f(F ) ⊂ F , it
follows that γ(eω) = eω for any γ ∈ F . Hence Γ does not act freely on Aω.
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Conversely, let assume that Γ does not act freely on Aω. Let’s define
inductively the subsets H(n) ⊂ Γ by H(1) = ∪a∈A aΓ′a−1 and

H(n+ 1) = {γ ∈ Γ| ∃ a ∈ A : aγa−1 ∈ Γ′ ∧ f(aγa−1) ∈ H(n)},
for n ≥ 1. Indeed H(n) is the set of all γ ∈ Γ which have at least one fixed
point on An. It follows easily that H := ∩n≥1H(n) is the set of all γ ∈ Γ
which have at least one fixed point on Aω. There is an integer k such that

H ⊂ Ckn but H 6⊂ Ck+1n.
Let H be the image of H in Ckn/Ck+1n and let F be the additive subgroup of
Ckn/Ck+1n generated by H. Since Γ lies in a lattice, F is finitely generated.
Moreover we have axa−1 ≡ xmod Ck+1n, for any x ∈ Ckn and a ∈ A.
It follows that f̃k(H) ⊂ H, where f̃k is the linear map induced by f̃ on
Ckn/Ck+1n. Hence f̃k(F ) ⊂ F and Spec f̃k contains an algebraic integer.
Therefore f̃ /∈ V(n).

Proof of Assertion (iii). Let (Γ′, f) be a fractal datum. Let Λ be the additive
lattice generated by Γ. Since

f̃−1(Λ) ⊂ Λ,
all x ∈ Spec f̃−1 are algebraic integers. Therefore f̃ belongs to F(n).

6 Relative complexity of multiplicative lat-

tices

This chapter is the mutiplicative analogue of ch. 4. The main result is the
refined criterion of minimality. Together with Theorem 1, it is the main
ingredient of the proof of Theorem 2 and 3.

Throughout the whole chapter, n is finite dimensional nilpotent Lie alge-
bra over Q, and z is its center.

6.1 Complexity of multiplicative lattices
Let f ∈ Aut n and let Γ be a multiplicative lattice of n. The complexity of Γ
relative to f is the integer

cpf (Γ) = [Γ : Γ′],
where Γ′ = Γ ∩ f−1(Γ). The multiplicative lattice Γ is called minimal rel-
ative to f if cpf (Γ) = ht(f). Thanks to Lemma 18 the notation cpf (Γ) is
unambiguous.

Lemma 21. Let Γ be multiplicative lattices of n. Then we have
cpf (Γ) ≥ ht(f).
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Proof. The proof goes by induction on the nilpotency index of n.
Let Z be the center of Γ. Set Γ′ = Γ ∩ f−1(Γ), Z ′ = Z ∩ f−1(Z),

Γ = Γ/Z, Γ′ = Γ′/Z ′. Also set n = n/z and let f : n ! n and f0 : z ! z be
the isomorphisms induced by f .

By induction hypothesis, we have cpf (Γ) ≥ ht(f) and therefore

[Γ : Γ′] ≥ ht(f).
By definition, we have [Z : Z ′] = cpf0 Z ≥ ht(f0). Moreover by Lemma 15

we have ht(f) = ht(f0)ht(f). It follows that
cpf Γ = [Γ : Γ′] = [Z : Z ′] [Γ : Γ′] ≥ ht(f0)ht(f) = ht(f),

and the statement is proved.

6.2 A property of the minimal multiplicative lattices
Let Γ be a multiplicative lattice of n and let h ∈ Aut n. For simplicity, let’s
assume that h is semi-simple.

Lemma 22. The following assertions are equivalent
(i) Γ is minimal relative to h, and
(ii) the virtual morphism (Γ′, h) is good, where Γ′ = Γ ∩ h−1(Γ).
In particular, there is a multiplicative lattice Γ̃ ⊂ Γ which is minimal

relative to h.

Proof. By Lemma 17, Γ is a coset union. Any additive lattice contains a
O(h)-module of finite index. Therefore there is an O(h)-lattice Λ such that
Γ is an union of Λ-cosets.

Let Γ0,Γ1, . . . be the multiplicative lattices inductively defined by Γ0 = Γ,
Γ1 = Γ′ and Γn+1 = Γn ∩ h−1(Γn) for n ≥ 1. Similarly let Λ0,Λ1, . . . be the
additive lattices defined by Λ0 = Λ, and Λn+1 = Λn ∩ h−1(Λn) for n ≥ 0.

By Lemma 2, the sequence [Γn : Γn+1] is not increasing. By Lemma
21, we have [Γn : Γn+1] ≥ ht(f). Moreover, it follows from Lemma 16 that
[Λn : Λn+1] = ht(h) for all n.

Let’s assume now that Γ is minimal relative to h. We have [Γn : Γn+1] =
ht(f) for all n, and therefore the virtual morphism (Γ′, h) is good.

Conversely, let’s assume that the virtual morphism (Γ′, h) is good. By
hypotheses we have [Γ0 : Γn] = [Γ0 : Γ1]n and [Λ0 : Λn] = ht(h)n for all n ≥ 1.
It follows that

[Γ0 : Λn]coset = [Γ0 : Λ0]coset ht(h)n.
Since Γn ⊃ Λn, we have [Γ0 : Γn] ≤ [Γ0 : Λn]coset.

and therefore
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[Γ0 : Γ1]n ≤ [Γ0 : Λ0]coset ht(h)n, for all n ≥ 0.
Hence [Γ0 : Γ1] ≤ ht(f). It follows from Lemma 21 that [Γ0 : Γ1] = ht(f),
thus Γ is minimal relative to h.

In order to prove the last assertion, notice that the sequence [Γn : Γn+1] is
stationary for n ≥ N , for some N > 0. Therefore (ΓN+1, h) is a good virtual
morphism of ΓN . Thus the subgroup Γ̃ = ΓN is minimal relative to h.

6.3 A refined criterion of minimality
A refined version of Lemma 16 is now provided. Let Γ be a multiplicative
lattice in n and let h ∈ Aut n be semi-simple. Let L be the field generated
by Spech, let O be its ring of integers and let P be the set of prime ideals
of O.

Let Λ be an O(h)-lattice and let n > 0 be an integer. Let’s assume that
Λ ⊃ Γ and Γ is an union of nΛ-cosets.

Lemma 23. Let S be the set of divisors of n in P. Assume that
λ ≡ 1 modnOπ,

for any λ ∈ Spec h and any π ∈ S. Then Γ is minimal relative to h.

Proof. Step 1. Since Spec h lies in Oπ for all π ∈ S, there exists a positive
integer d, which is prime to n, such that dλ ∈ O for all λ ∈ O. Moreover we
can assume that d ≡ 1 modn.

Let λ ∈ Spec h. We have dλ ≡ 1 modnOπ for all π ∈ S. Therefore we
have

dλ ∈ 1 + nO,
for all λ ∈ Spec h. Set H = dh. Since Spec dH and Spec (H − 1)/n lie in
O, it follows that

H ∈ O(h) and H ∈ 1 + nO(h).
Step 2. Set Λ′ = Λ ∩ h−1Λ. Since all eigenvalues of h are units in Oπ
whenever π divides n, the height of h is prime to n. By Lemma 16, we have
[Λ : Λ′] = ht(h). Therefore we get

Λ = Λ′ + nΛ.
It follows that

Γ =
∐

1≤i≤k
gi + nΛ

for some g1, ..., gk ∈ Λ′, where k = [Γ : nΛ] and where
∐

is the symbol of the
disjoint union. Since H(gi) ≡ gi modnΛ, we get that h(gi) ∈ gi + nΛ ⊂ Γ.
Therefore we have
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Γ′ ⊃
∐

1≤i≤k
gi + nΛ′,

Therefore we have [Γ′ : nΛ′] ≥ k = [Γ : nΛ]. It follows that
[Γ : Γ′] ≤ [nΛ : nΛ′] = ht(h).

By Lemma 21, we have [Γ : Γ′] = ht(h). Thus Γ is minimal relative to h.

7 Proof of Theorems 2 and 3

7.1 Proof of Theorem 2 and 3.
Let n be a finite dimensional nilpotent Lie algebra over Q and let z be its
center and let Γ be a multiplicative lattice of n.

Theorem 2. The following assertions are equivalent
(i) The group Γ is transitive self-similar,
(ii) the group Γ is densely self-similar, and
(iii) the Lie algebra nC admits a special grading.

Proof. Let’s consider the following assertion
(A) S(n) 6= ∅.
The implication (ii) ⇒ (i) is tautological. Together with the Lemmas 6(i)
and 9(i), the following implications are already proved

(ii)⇒ (i)⇒ (A)⇔ (iii).
Therefore, it is enough to prove that (A)⇒ (ii).
Step 1. Definition of some h ∈ G(Q). Let’s assume that S(n) 6= ∅, and let
f ∈ S(n). Since the semi-simple part of f is also in G(Q), it can be assumed
that f is semi-simple. Let K ⊂ G be the Zariski closure of the subgroup
generated by f and set H = K0.

Let Λ be the O(f)-module generated by Γ. By Lemma 17, Γ is a coset
union. Therefore Λ is a lattice and Γ is an union of nΛ-coset for some positive
integer n.

Let X(H) be the group of characters of H, let K be the splitting field of
H, let O be the ring of integers of K, let P be the set of prime ideals of O
and let S be set set of all π ∈ P dividing n.

By Theorem 1, there exists h ∈ H(Q) such that, for any non-trivial χ ∈ X
we have

(i) χ(h) is not an algebraic integer, and
(ii) χ(h) ≡ 1 modnOπ for any π ∈ S.
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Step 2. Let Γ′ = Γ ∩ h−1(Γ). We claim that the virtual morphism (Γ′, h) is
a good self-similar datum.

Since K ⊂ G is the Zariski closure of the subgroup generated by f , we
have Q[h] ⊂ Q[f ] and therefore Λ is a O(h)-lattice. It follows from Lemma
23 that the virtual endomorphism (Γ′, h) is good.

Moreover, let Ω0 be the set of weights of H over zQ. There is an integer
l such that f l ∈ K0 = H. The spectrum of f l on zQ are the numbers χ(f l)
when χ runs over Ω0. Thus it follows that Ω0 does not contain the trivial
character, hence h belongs to S(n).

Therefore by Lemma 20, the virtual endomorphism (Γ′, h) is a good self-
similar datum. Thus by Lemma 3, Γ is a densely self-similar group.

Theorem 3. The following assertions are equivalent
(i) The group Γ is freely self-similar,
(ii) the group Γ is freely densely self-similar, and
(iii) the Lie algebra nC admits a very special grading.

Proof. Let’s assume Assertion (i). Let’s consider a free self-similar action of
Γ on some Aω and let A′ be any Γ-orbit in A. Then the action of Γ on A′ω

is free transitive self-similar, thus Γ is freely transitive self-similar.
The rest of the proof is identical to the previous proof, except that
1) the assertion (A) is replaced by (A′): V(n) 6= ∅,
2) the Lemmas 6(ii) and 9(ii) are used instead of Lemmas 6(i) and 9(i)

in order to prove that (ii)⇒ (i)⇒ (A′)⇔ (iii),
3) the proof that A′ ⇒ (ii) uses the weights of H and the eigenvalues of

f on n instead of z.

7.2 Manning’s Theorem
Let N be a CSC nilpotent Lie group N and let Γ be a cocompact lattice.
The manifold M = N/Γ is called a nilmanifold.

A diffeomorphism f : M !M is called an Anosov diffeomorphism if
(i) there is a continuous splitting of the tangent bundle TM as TM =

Eu ⊕ Es which is invariant by df , and
(ii) there is a Riemannian metric relative to which df |Es and df−1|Eu are

contracting.
For any x ∈ M , f induces a group automorphism f∗ of Γ ' π1(M).

By Lemma 19, f∗ extends to an isomorphism f̃∗ : nR ! nR, where nR is
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the Lie algebra of N . Strictly speaking, f̃∗ is only defined up to an inner
automorphism. Since f∗ is well defined modulo the unipotent radical of
Aut nR, the set Spec f∗ is unambiguously defined.

Manning’s Theorem. The set Spec f∗ contains no root of unity.

See [18]. Later on, A. Manning proved a much stronger result. Namely
Spec f∗ contains no eigenvalues of absolute value 1, and f is topologically
conjugated to an Anosov automorphism, see [19].

7.3 A Corollary for nilmanifolds with an Anosov diffeomorphim

Corollary 4. Let M be a nilmanifold endowed with an Anosov diffeomor-
phism. Then π1(M) is freely densely self-similar.

Proof. By definition, we have M = N/Γ, where N is a CSC nilpotent Lie
group and Γ ' π1(M) is a cocompact lattice. Set nR = LieN and nC =
C⊗nR. By Manning’s Theorem and Lemma 8, nC has a very special grading.
Therefore Γ is freely densely self-similar by Theorem 3.

7.4 Characterisation of fractal FGTF nilpotent groups
For completeness purpose, we will now investigate the non-negative gradings
of nC . Unlike Theorems 2 and 3, the proof of Propositions 5 and 6 are quite
obvious.

Let nQ be a finite dimensional nilpotent Lie algebra and let Γ be a mul-
tiplicative lattice in n. Set nC = C⊗ nQ.

Proposition 5. The following assertions are equivalent
(i) The group Γ is fractal
(ii) nC admits a non-negative special grading.
(iii) nQ admits a non-negative special grading.

Proof. It follows from Lemma 10 that Assertions (ii) and (iii) are equivalent.
Proof that (i) ⇒ (ii). By assumption, there is a fractal datum (Γ′, f). Let
g : Γ! Γ′ be the inverse of f and let g̃ ∈ Aut n be its unique extension.

Let Λ ⊂ n be the additive subgroup generated by Γ. By Lemmas 17, Λ
is an additive lattice. Since we have g̃(Λ) ⊂ Λ, it follows that all eigenvalues
of g̃ are algebraic integers.

Moreover (Γ′, g−1) is a self-similar datum, thus Spec g̃−1|z contains no
root of unity. Therefore, by Lemma 10, Assertion (ii) holds.
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Proof that (iii) ⇒ (i). Let’s assume Assertion (iii) and let
nQ = ⊕k≥0 n

Q
k

be a non-negative special grading of nQ.
By Lemma 17, Γ lies in a lattice Λ. Since it is possible to enlarge Λ, we

can assume that
Λ = ⊕k≥0 Λk,

where Λk = Λ ∩ nQk . Since Γ is a coset union, there is an integer d ≥ 1 such
that Γ is an union of dΛ-cosets.

Let g be the automorphism of nQ defined by g(x) = (d+ 1)k x if x ∈ nQk .
We claim that g(Γ) ⊂ Γ. Let x ∈ Γ and let x =

∑
k≥0 xk be its decomposition

into homogenous components. We have
g(x) = x+

∑
k≥1 ((d+ 1)k − 1)xk.

By hypothesis each homogenous component xk belongs to Λ. Since (d+1)k−1
is divisible by d, we have g(x) ∈ x+ dΛ ⊂ Γ and the claim is proved.

Set Γ′ = g(Γ) and let f : Γ′ ! Γ be the inverse of g. It is clear that
(Γ′, f) is a fractal datum for Γ, what proves Assertion (i).

Proposition 6. The following assertions are equivalent
(i) The group Γ is freely fractal
(ii) nC admits a positive grading.
(iii) nQ admits a positive grading.

Since the proof is strictly identical, it will be skipped.

8 Not self-similar FGTF nilpotent groups and

affine nilmanifolds

This section provides an example of a FGTF nilpotent group which is not
even self-similar, see subsection 8.6. The end of the section is about the
Milnor-Scheuneman conjecture.

8.1 FGTF nilpotent groups with rank one center
Let Γ be a FGTF nilpotent group and let Z(Γ) be its center.

Lemma 24. Let’s asssume that Γ is self-similar and Z(Γ) ' Z. Then Γ is
transitive self-similar.
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Proof. Assume that Γ admits a faithful self-similar action on some Aω, where
A is a finite alphabet. Let a1, . . . , ak be a set of representatives of A/Γ, where
k is the number of Γ-orbits on A. For each 1 ≤ i ≤ k, let Γi be the stabilizer
of ai. For any h ∈ Γi, there is hi ∈ Γ such that

h(aiw) = aihi(w),
for all w ∈ Aω. Since the action is faithfull hi is uniquely determined and
the map fi : Γi ! Γ, h 7! hi is a group morphism.

Let nQ be the Malcev Lie algebra of Γ, and let z be its center, and let
z 6= 0 be a generator of ∩i Z(Γi). By Lemma 19, the group morphism fi
extends to a Lie algebra morphism f̃i : nQ ! nQ. Since z = Q⊗ Z(Γ) is one
dimensional, it follows that either f̃i is an isomorphism or f̃i(z) = 0. In any
case, we have f̃i(z) = xiz, for some xi ∈ Q. However Zz is not invariant by
all f̃i, otherwise it would be in the kernel of the action. It follows that at
least one xi is not an integer.

For such an index i, the fi-core of Γi is trivial, and the virtual morphism
(Γi, fi) is a self-similar datum for Γ. Thus Γ is transitive self-similar.

8.2 Small representations
Let N be a CSC nilpotent Lie group with Lie algebra nR and let Γ be a
cocompact lattice.

Lemma 25. If Γ is transitive self-similar, then there exists a faithfull nR-
module of dimension 1 + dim nR.

Proof. By hypothesis, Γ is transitive self-similar. By Theorem 2, zC admits
a special grading

nC = ⊕n∈Z nCn .
Let δ : nC ! nC be the derivation defined by δ(x) = nx if x ∈ nn. Since
δ|zC is injective, it follows that there is some ∂ ∈ Der nR such that ∂|zR is
injective.

Set mR = R∂ n nR. Relative to the adjoint action, mR is a faithfull zR-
module. Therefore mR is a faithfull nR-module with the prescribed dimension.

8.3 Filiform nilpotent Lie algebras
Let n be a nilpotent Lie algebra over Q. Let Cnn be the decreasing central
series, which is inductively defined by C1n = n and Cn+1n = [n, Cnn]. The
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nilpotent Lie algebra n is called filiform if dimC1n/C2n = 2 and dimCkn/Ck+1n ≤
1 for any k > 1. Set n = dim n. It follows from the definition that
dimCkn/Ck+1n = 1 for any 0 < k ≤ n− 1 and Ckn = 0 for any k ≥ n.

Lemma 26. Let n be a filiform nilpotent Lie algebra over Q, with dim n ≥ 3.
Then its center z has dimension one.

Proof. Let z ∈ n be nonzero. Let k be the integer such that z ∈ Ckn\Ck+1n.
Since Ckn = Ck+1n⊕Qz

Ck+1n = [n, Ckn] = [n, Ck+1n] + [n, z] = Ck+2n.
It follows that Ck+1n = 0. Therefore z lies in Ckn, which is a one dimensional
ideal.

8.4 Benoist Theorem

Benoist’s Theorem. There is a nilpotent Lie algebra nRB of dimension 11
over R, with the following properties

(i) The Lie algebra nRB has no faithfull representations of dimension 12,
(ii) the Lie algebra nRB is defined over Q, and
(iii) the Lie algebra nRB is filiform.

The three assertions appear in different places of [3]. Indeed Assertion
(i), which is explicitely stated in Theorem 2 of [3], hold for a one-parameter
family of eleven dimensional Lie algebras, which are denoted a−2,1,t in section
2.1 of [3]. These Lie algebras are filiform by Lemma 4.2.2 of [3]. Moreover,
when t is rational, a−2,1,t is defined over Q. Therefore the Benoist Theorem
holds for the Lie algebras nB = a−2,1,t where t is any rational number.

8.5 A FGTF group which is not self-similar
Let NB the CSC nilpotent Lie group with Lie algebra nRB. Since nRB is defined
over Q, NB contains some cocompact lattice.

Corollary 7. Let Γ be any cocompact lattice in NB. Then Γ is not self-
similar.

Proof. Let’s assume otherwise. By Benoist Theorem and Lemma 26, the
center of nRB is one dimensional. Thus the center of Γ has rank one, and by
Lemma 24, Γ is transitive self-similar. By Lemma 25, nRB admits a faithfull
representation of dimension 12, which contradicts Benoist Theorem.

Therefore Γ is not self-similar.
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8.6 On the Scheuneman-Milnor conjecture
A smooth manifold M is called affine if it admits a torsion-free and flat
connection. Scheuneman [28] and Milnor [23] asked the following question

is any nilmanifold M affine?
The story of the Scheuneman-Milnor conjecture is quite interesting. For
many years, there are been a succession of proofs followed by refutations,
but there was no doubts that the conjecture should be ultimalely proved...
until a counterexample has been found by Benoist [3]. Indeed it is an easy
corollary of his previously mentionned Theorem.

The following question is a refinement of the previous conjecture
if π1(M) is densely self-similar, is the nilmanifold M affine?

A positive result in that direction is

Corollary 8. Let M be a nilmanifold. If π1(M) is freely self-similar, then
M is affine complete.

Proof. Set M = N/Γ, where N is a CSC nilpotent Lie group and Γ is a
cocompact lattice. Let nR be the Lie algebra of N . By Theorem 3, C ⊗
nR admits a very special grading, what implies that a generic derivation is
injective. Therefore there is a derivation δ of nR which is injective. Set
mR = Rδ n nR. Then N is equivariantly diffeomorphic to the affine space
δ + nR ⊂ mR. Therefore M is affine complete.

9 Absolute Complexities

For the whole chapter, N will be a CSC nilpotent Lie groups, with Lie algebra
nR. Let’s assumethat that N contains some cocompact lattices.

Under the condition of Theorem 2 or 3, any cocompact lattice Γ in N
admits a transitive or free self-similar action on some Aω. In this section, we
try to determine the minimal degree of these actions.

9.1 Three type of absolute complexities
The complexity of a cocompact lattice Γ ⊂ N , denoted by cp Γ, is the smallest
degree of a faithfull transitive self-similar action of Γ on some Aω, with the
convention that cp Γ =∞ if Γ is not transitive self-similar. Similarly, the free
complexity of Γ, denoted by fcp Γ, is the smallest degree of a free self-similar
action of Γ. Two cocompact lattices are called commensurable if they share a
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commoun subgroup of finite index. The complexity and the free complexity
of a commensurable class ξ are the integers

cp ξ = MinΓ∈ξ cp Γ, and
fcp ξ = MinΓ∈ξ fcp Γ.

Then, the complexity of the nilpotent group N is
cpN = Maxξ cp ξ,

where ξ runs over all commensurable classes in N . In what follows, we will
provide a formula for the complexity of commensurable classes. The question

under which condition cpN <∞?
is not solved, but it is a deep question. In chapter 10, a class of CSC nilpotent
Lie groups of infinite complexity is investigated.

9.2 Theorem 9
Let ξ be a commensurable class of cocompact lattices in N , and let Γ ∈ ξ.
The Malcev Lie algebra Γ is a Q-form of the Lie algebra nR. Since it depends
only on ξ, it will be denoted by n(ξ).

Theorem 9. We have
cp ξ = Minh∈S(n(ξ)) ht(h), and

fcp ξ = Minh∈V(n(ξ)) ht(h).

Proof. Let h ∈ S(n(ξ)) be an isomorphism of minimal height. In order to
show that cp ξ = ht(h), we can assume that h is semi-simple, by Lemma 13.

Further, let Γ be any cocompact lattice in ξ. By Lemma 20, we have
cp Γ = Minf∈S(n(ξ)) cpf Γ. By lemma 21, we have cpf Γ ≥ ht(f), therefore we
have cp Γ ≥ ht(h). In particular cp ξ ≥ ht(h).

By Lemma 22, Γ contains a finite index subgroup Γ̃ which is minimal
relative to h. Since cph Γ̃ = ht(h), it follows that cp ξ ≤ ht(h).

Therefore cp ξ = ht(h) and the first assertion is proved.
For the second assertion, let’s notice that an free action of minimal degree

is automatically transitive, see the proof of Theorem 3. Then the rest of the
proof is strictly identical to the previous proof.

9.3 Classification of lattices in a CSC nilpotent Lie groups
Obviously Malcev’s Theorem implies the following

Malcev’s Corollary. The map ξ 7! n(ξ) establishes a bijection between the
commensurable classes of lattices and the Q-forms of the Lie algebra nR.
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For the next chapter, it is interesting to translate this into the framework
of non-abelian Galois cohomology. Somehow, it is more concrete, since the
non-abelian Galois cohomology classifies Q-forms of classical objects.

Set G = AutnC, let U be its unipotent radical and set G = G/U. From
now on, fix once for all a commensurable class ξ0 of cocompact lattices. Then
n(ξ0) is a Q-form of nC, what provides a Q-form of the algebraic groups G
and G. It induces an action of Gal(Q) over G(Q).

Set Qre = Q ∩ R and let
π : H1(Gal(Q),G(Q))! H1(Gal(Qre),G(Q))

be the natural map. Recall that these two non-abelian cohomologies are
pointed sets, where the distinguished point ∗ comes from the given Q-form
and the induced Qre-form. Denote by Ker π the kernel of π, i.e. the fiber
π−1(∗) of the distinguished point.

Let L(N) be the set of all commensurable classes classes of lattices of N ,
up to conjugacy.

Corollary 10. There is a natural identification
L(N) ' Ker π.

Proof. For any field K ⊂ C, set nK = K⊗n(ξ0). For any two fields K ⊂ L ⊂
C, let F(L/K) be the set of K-forms of nL, up to conjugacy. Then F(L/K)
is a pointed set, whose distinguished point is the K-form nK .

By the Lefschetz principle, the Q-forms of nC (up to conjugacy) are in

bijection with the Q-forms of nQ. Similarly by the Tarski-Seidenberg principle
the real forms (up to conjugacy) of nC are in bijection with the Qre-forms of

nQ. So we have
F(C/Q) ' F(Q/Q) and F(C/R) ' F(Q/Qre)

Since a Lie algebra is a vector space endowed with a tensor (its Lie
bracket), it follows from [29], III-2, Proposition 1 that

F(Q/Q) = H1(Gal(Q),G(Q)), and
F(Q/Qre) = H1(Gal(Qre),G(Q)).

Moreover since U is unipotent, we have
H1(Gal(Q),G(Q)) ' H1(Gal(Q),G(Q)), and
H1(Gal(Qre),G(Q)) ' H1(Gal(Qre),G(Q)).

There is a commutative diagram of pointed sets
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F(C/Q)
θ
−! F(C/R)

# #

F(Q/Q)
θ′
−! F(Q/Qre)

# #

H1(Gal(Q),G(Q))
π
−! H1(Gal(Qre),G(Q))

# #

H1(Gal(Q),G(Q))
π
−! H1(Gal(Qre),G(Q))

where θ is the map R⊗Q − , θ′ is the map Qre⊗Q −, π and π are restrictions
maps. It is tautological that L(N) = Ker θ. Since all vertical maps are
bijective, it follows that L(N) is isomorphic to Ker π.

10 Some Nilpotent Lie groups of infinite com-

plexity.

This chapter is devoted to the analysis to a class of CSC nilpotent Lie groups
N , for which the classification of commensurable classes and the computation
of their complexity are very explicitely connected with the arithmetic of
complex quadratic fields.

For K = R or C, let O(2, K) be the group of linear automorphisms of R2

preserving the quadratic form x2 + y2. Let L be the class of nilpotent Lie
algebras nR over R satisfying the following properties

(i) nR has a Q-form
(ii) nR/[nR, nR] ' R2 has dimension two
(iii) the Lie algebra nC := C⊗ nR has a special grading
(iv) for K = R or C, the image of Aut nK in GL(nK/[nK , nK ]) is O(2, K).

Let be the class of CSC nilpotent Lie groups N whose Lie algebra nR is in L.
It should be noted that the class N is not empty. There is one Lie group

N112 ∈ N of dimension 112, see [22]. Indeed [22] contains a general method
to find nilpotent Lie algebras with a prescribed group of automorphisms,
modulo its unipotent radical. For the group O(2,R), N112 is the Lie group
of minimal dimension obtained with this method. However it is difficult to
provide more details, without going to very long explanations.

From now on, N will be any Lie group in class N , ξ0 will be one com-
mensurable class of lattices in N and n := n(ξ0) will be the corresponding
corresponding Q form of nR. As before, set nK = K⊗n for any field K ⊂ C.
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Let G = Aut n the algebraic automorphism group of n, let U be its unipo-
tent radical and set G = G/U. By hypothesis, G is the algebraic group
O(2).

10.1 The Z-grading of nC

Since G(C) = O(2,C), a maximal torus H of G(C) has dimension 1. There-
fore nC has a Z-grading

nC = ⊕k∈Z nCk ,
satisfying the following properties

(i) the grading is essentially unique, namely any other grading is a mul-
tiple of the given grading,

(ii) dim nCk = dim nC−k for any k. In particular nC does not admit a (non-
trivial) non-negative grading, and

(iii) the grading is not defined over R.
Indeed since G(C) = O(2,C), the normalizer K(C) of H(C) has two con-
nected components, and any σ ∈ K(C) \K(C)0 exchanges nCk and nC−k, what

shows Assertion (ii). Since G(R) = O(2,R), no torus of G(R) is split, what
implies Assertion (iii).

Moreover, the grading is not very special, so fcp(ξ) = ∞ for any com-
mensurable class ξ. For the forthcoming computation of cp(ξ), the following
quantity will be involved

e(N) =
∑

k>0 k dim nCk .
For example, for the Lie group N112 of [22], we have e(N112) = 126.

10.2 Classification of commensurable lattices in N

Lemma 27. Let N ∈ N . Up to conjugacy, there is a bijection between
(i) the commensurable class of cocompact lattices in N , and
(ii) the positive definite quadratic form on Q2.

Proof. Let q0 be a given definite quadratic form on Q2. It determines a
Q-form of the algebraic group O(2), and H1(Gal(Q), O(2,Q)) classifies the
quadratic forms on Q2, while the kernel of

H1(Gal(Q), O(2,Q))! H1(Gal(Qre), O(2,Q))
classifies the positive definite quadratic forms on Q2. Thus the lemma follows
from Corollary 10.

The classification of positive definite quadratic forms q on Q2 is well
known. Up to conjugacy, q can be written as
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q(x, y) = ax2 + ady2,
where a, d are positive and d is a square-free integer. Then q is determined
by the following two invariants

(i) its discriminant −d, viewed as an element of Q∗/Q∗2,
(ii) the value a, viewed as an element in Q∗/NK/Q(K∗), where K =

Q(
√
−d). Equivalently, this means that q(Q2 \ 0) = aNK/Q(K∗).

For any positive definite quadratic forms q on Q2, let ξ(q) be the cor-
responding commensurable class (or more precisely, the conjugacy class of
the commensurable class). By Theorem 9, cp ξ(q) only depends on O(q),
therefore it only depends on the discriminant −d.

10.3 The function F (d)
Let d be a positive square-free integer. Set K = Q(

√
−d), let O be its ring of

integers, let R be te set of roots of unity in K and set K1 = {z ∈ K|zz = 1}.
For z ∈ K∗, recall that the integer d(z) is defined by d(z) = NK/Q(πz) =
CardO/πz, where πz is the ideal πz = {a ∈ O|az ∈ O}. Set

F (d) = Minz∈K1\R d(z).
We will now show two formulas for F (d). Indeed F (d) is the norm of some
specific ideal in K = Q(

√
−d), and it is also the minimal solution of some

diohantine equation.
Let J be the set of all ideals π of O such that π and π are coprime and

π2 is principal.

Lemma 28. We have
F (d) = Minπ∈J Nk/Q(π).

In particular, we have F (1) = 5 and F (3) = 7.

Proof. The map z 7! πz induces a bijection (K1 \R)/R ' J , from which the
first assertion follows. Moreover, if Cl(K) = {0}, then F (d) is the smallest
split prime number. Therefore F (1) = 5 and F (3) = 7.

Let’s consider the following diophantine equation
(E) 4n2 = a2 + db2, with n > 0, a > 0 and b 6= 0.

A solution (n, a, b) of (E) is called primitive if gcd(n, a) = 1. Let Sol (E)
(respectively Sol prim(E)) be the set of solutions (respectively of primitive
solutions) of (E).

Let π ∈ J . Since π2 is principal, there are integers a(π) > 0 and b(π)
such that a(π) + b(π)

√
−d is a generator of 4π2. Moreover, let’s assume that
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d 6= 1 or 3. Then R = {±1} and the integers a(π) and b(π) are uniquely
determined. Thus there is a map θ : J ! Sol (E) defined by

θ(π) = (NK/Q(π), a(π), b(π)).

Lemma 29. Under the hypothesis that d 6= 1 or 3, the map θ induces a
bijection from J to Sol prim(E). In particular

F (d) = Min(n,a,b)∈Sol (E) n.

Proof. Step 1: proof that θ(J ) ⊂ Sol prim(E). An algebraic integer z ∈ O is
called primitive if there are no integer d > 1 such that z/d is an algebraic
integer. Equivalently, there are no integer d > 1 such that d | z + z and
d2 | zz.

Let π ∈ J and set z = 1/2(a(π) + b(π)
√
−d). Since z + z = a(π) and

z.z = NK/Q(π2), z is an algebraic integer which is a generator of π2. Since
π2 and π2 are coprime, z is primitive. Since z.z = NK/Q(π)2, it follows that
NK/Q(π) and a(π) are coprime. Hence θ(π) ∈ Sol prim(E) and the claim is
proved.
Step 2: proof that θ(J ) = Sol prim(E). Let (n, a, b) ∈ Sol prim(E) and z =
1/2(a(π) + b(π)

√
−d). Since z 6= z, z + z = a and zz = n, the number z is

an algebraic integer. Set τ = zO and let
τ = πm1

1 . . . πmkk
be the factorization of τ into a product of prime ideals of O, where, as usual
we assume that πi 6= πj for i 6= j and all mi are positive.

For 1 ≤ i ≤ k, let pi be the characteristic of the field O/πi. Since n and
a are coprime, τ and τ are coprime. It follows that πi does not divide τ . In
particular πi 6= πi and NK/Q(πi) = pi. Since πi and πi are the only two ideals
over pi, we have mi = vpi(NK/Q(τ)) = vpi(n

2). Since each mi is even, we
have τ = π2 for some ideal π ∈ J . Therefore θ(π) = (n, a, b), and the claim
is proved.
Step 3. It follows easily that θ is a bijection from J to Sol prim(E). In
particular F (d) = Min(n,a,b)∈Sol prim(E) n, from which the lemma follows.

10.4 Complexity computation

Theorem 11. Let q be a positive definite quadratic form on Q2 of discrimi-
nant −d. Then we have

cp ξ(q) = F (d)e(n
C)
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Proof. Step 1. Let G ⊂ EndQ(K) be the group generated by the multiplica-
tion by elements in K1 and by the complex conjugation. We have G ' O(2)
and SO(2) ' K1. As a O(q)-module, there is an isomorphism

V ' Q(
√
−d),

where V = n(ξ(q))/[n(ξ(q)), n(ξ(q))].
Step 2. Let S(n(ξ(q)) be the image of S(n(ξ(q)) in O(q). We claim that

S(n(ξ(q)) = K1 \R.
Indeed O(q) can be identified with a Levi factor of G(Q) and let ρ : O(q)!
G(Q) a corresponding lift. Any element in R∪O(q)\SO(q) has finite order,
hence we have

S(n(ξ(q)) ⊂ K1 \R.
Let z ∈ K1 \ R. It is clear that z is not an algebraic integer. Since the
grading is special, we have

zC = ⊕k 6=0z
C
k .

Since the eigenvalues of ρ(z) on zk is zk, it follows that z belongs to S(n(ξ(q)),
what proves the point.
Step 3. Let z ∈ K1 \R. We have z = z−1. Therefore by Lemma 15 we have

ht ρ(z) =
∏

k≥1 d(zk)dim nCk = d(z)e(N).
Therefore Theorem 4 implies Theorem 5.

Since F (d) ≥
√

1+d
2

, it follows that

Corollary 12. The group N has infinite complexity.

Since F (7) = F (15) = 2 and F (d) ≥ 3 otherwise, it follows that

Corollary 13. If the positive definite quadratic form q has discriminant −7
or −15 we have

cp ξ(q) = 2e(N),
and cp ξ(q) ≥ 3e(N) otherwise.
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