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Abstract

In this paper we derive explicit expressions for the probability of ruin
in a renewal risk model with dependence among the increments (Zk)k>0

among claims. We study the case where the dependence structure among
(Zk)k>0 is driven by a Markov chain with a transition kernel that can be
described via ordinary differential equations with constant coefficients.
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1 Introduction

Consider the classical collective risk model describing the evolution of the sur-
plus of an insurance company

U(t) = u+ ct−

Nt
∑

k=1

Xk, (1)

where u is the initial surplus, c represents the premium rate, Xk is the k-th
claim amount and Nt represents the number of claims that occurred up to time
t (see e.g. Asmussen and Albrecher (2010)). Immediately after the k-th claim,
for u ≥ 0, the surplus is

U(Tk) = u+ cTk −
k
∑

i=1

Xi = u+ c
k
∑

i=1

τi −
k
∑

i=1

Xi = u−
k
∑

i=1

Zi.

The event of the surplus falling below zero for the first time is called ruin.
Obviously, this can occur only at the time of a claim Tk. The probability of
ruin to happen, in infinite time, is defined as

ψ(u) = P(sup
k≥1

k
∑

i=1

Zi > u).
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While most classical models assume independence between inter-arrival times
and claim amounts, we consider a special dependence between the positive ran-
dom variable τk representing the k−th inter-arrival time and the subsequent
claim size denoted by the positive random variable Xk. More specifically, we
consider the real-valued random variable of the k−th increment

Zk = Xk − cτk, k = 1, 2, . . . (2)

where c represents the premium rate and E{Z} < 0. Here Xk and τk can have
any dependence structure. We are interested in providing explicit expressions
for the probability of ruin.

The sum of increments

Wn =

n
∑

k=1

Zk

represents the loss of the company after n claims. When the increments Zk are
independent, Wn is a random walk. For an initial capital amount u > 0, the
company is considered to be insolvent if Wn > u, and the probability ψ(u) of
this event is the ruin probability. W.l.o.g., in this paper P(Z = 0) = 0.

By characterizing the dependence in renewal risk models via the series of iden-
tical distributed losses (Zk)k>0, one has two possible scenarios:

S1. Z1, Z2, . . . are independent (random walk structure)

S2. Z1, Z2, . . . are not independent (with multiple possible dependence struc-
tures among Zks).

Since in risk theory literature several cases preserving (Zk)k>0 independent
(scenario S1) have already been addressed (see Albrecher and Teugels (2006),
Ambagaspitiya (2009) or Badescu et al. (2009)), we will concentrate on a case
pertaining to the second scenario. For a recent and more exhaustive sur-
vey of other dependence structures in risk theory see Asmussen and Albrecher
(2010)[Chapter XIII].

The challenging part of choosing (Zk)k>0 to be dependent is the impossibility
of relying on standard random walk theory. However, we show that one can still
use the decomposition into positive and negative parts

Z = IZ+ + (1 − I)Z−, I ∼ Bernoulli(p), (3)

with Z+ = {Z | Z > 0} and Z− = {Z | Z < 0}, introduced in the ran-
dom walk treatment, to find closed form solutions for the probability of ruin
ψ(u). Similarly to Albrecher et al. (2010), we derive exact forms via solving
ordinary differential equations. The difference is that while in Albrecher et al.
(2010) one exploits the independence of τk and Xk, here one focuses on the
dependence structure of the losses Zk, whereas the pair τk, Xk can have any
dependence structure. Thus the necessary conditions to be imposed for calcu-
lating the ruin probability exactly are no longer on the densities of τ and X as
in Albrecher et al. (2010), but on densities pertinent to Z or Z+ and Z−.
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In this paper we consider a dependence structure for the dependent losses
(Zk)k>0 given by a Markov chain with a transition kernel pk(x, y) (starting
at x, jumps from state x to state y at time k with probability pk) that can be
written as a product of two functions on each quadrant. The condition needed is
that combinations of these functions further satisfy certain ODEs with constant
coefficients (see Assumption 1). This condition is not intuitively evident. How-
ever, besides the mathematical amenability, the motivation of such a choice of
dependent model is the following. The weight p = P(Z > 0) not being constant
over time, but dependent on the previous step in a deterministic way, influences
the tendency of the future behavior of the steps Z. Thus, by the choice of the
mechanism to determine the next p, we can generate models where if one period
was bad (we earn less than we spend i.e. Z > 0) it is more likely than in the
independent case that the next period will also be bad.

To justify further our choice of such a Markov chain structure, we present as
a limiting case, the case of independent (Zk)k>0, with densities of Z+ and Z−

satisfying ODEs with constant coefficients. A further particular case of it is
the case present in risk theory literature, of the density of Z satisfying an ODE
with constant coefficients, as in Albrecher and Teugels (2006); Ambagaspitiya
(2009); Badescu et al. (2009).

Similarly to Albrecher et al. (2010), where one transforms an integral equa-
tion for the probability of ruin into an ordinary differential equation, here we
transform a system of integral equations into a system of ordinary differential
equations that one can solve explicitly. This way we show that even under this
dependence scenario, the probability of ruin has still a rational Laplace trans-
form.

Thus, the classes of distributions for which one can identify the probability of
ruin as having a rational Laplace transform are the following:

A. In the dependent case (S2): Markov chain structure on Zk with a kernel
satisfying certain ODE conditions, as in Propositions 1, 2 and 3.

B. In the independent case (S1): the classical result in random-walk theory of
Z+ with a rational Laplace transform, as in Proposition 4.

C. In the independent case (S1): the classical case in ruin theory literature of
Z with rational moment generating function as in Proposition 5.

Note that for the distribution class C one can always find a dependence struc-
ture where the marginal distributions of τ and X have rational Laplace transform
(see Lemma 1 in Appendix A). Equally natural, one can identify a dependence
structure with marginals (of τ and X) not having a rational Laplace transform.
For instance, one can have τ = Y1 + Y3 and X = Y2 + Y3, where Y1, Y2 and
Y3 are independent, Y1 and Y2 have a rational Laplace transform, but Y3 has
not. Actually, Y3 can have any positive distribution function, even heavy-tailed.

While the classes B and C are present in the applied probability literature, this
paper brings forth class A and shows that as in the other two classes of distri-
butions, the probability of ruin can be derived by means of ODEs with constant
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coefficients.

The paper is organized as follows. In Section 2 we analyze a risk model where
the steps Zk are dependent via a Markov chain. We consider a Markov chain
structure with a transition kernel described by some ODEs with constant co-
efficients and show that the ruin probability has a rational Laplace transform.
In Section 3, we present the case of independent steps Zk as a limiting case of
the Markov chain dependence from Section 2. We reformulate in ODE language
some well-known results from random walk and risk literature. In Section 4,
we look at a Markov chain dependent case with a transition kernel expressed
through exponential densities, and for a numerical example we compare the val-
ues of probability of ruin under a Markov chain dependence structure with the
one with independent increments. After the conclusions from Section 5, in the
Appendix we present some additional lemmas and some deferred proofs.

Note regarding notation and terminology. Depending on relevance and
purpose, we will switch back and forth between the following equivalent con-
cepts:

• the density function fX of the random variable X satisfies an ODE with
constant coefficients

• the moment generating function (mgf) MX(s) of the random variable X
is rational; or, equivalently, X has a rational Laplace transform.

These are both equivalent to matrix exponentials (Bladt and Nielsen, 2010).

2 (Zk)k≥1 dependent

In this section we study the case where (Zk)k≥0 are dependent and assume to
have a Markov chain structure. For a given Z0 = x, we define the probability
of ruin by

ψ(u, x) = P

(

sup
k≥1

k
∑

i=1

Zi > u | Z0 = x

)

. (4)

We denote the transition density of Z by

p(x, y)dx := P(Zi+1 ∈ dy|Zi = x) = P (Zi+1 ∈ dy|Zi = x, Zi−1 = x, . . .) .

For u ≥ 0, by conditioning on Z1 one has

ψ(u, x) = P (Z1 > u | Z0 = x) + P

(

Z1 ≤ u, sup
k≥1

k
∑

i=2

Zi > u− Z1 | Z0 = x

)

= P(Z1 > u | Z0 = x) +

∫ u

−∞

P

(

sup
k≥1

k
∑

i=2

Zi > u− Z1 | Z0 = x, Z1 = y

)

p(x, y) dy

= P(Z1 > u | Z0 = x) +

∫ u

−∞

P

(

sup
k≥1

k
∑

i=2

Zi > u− Z1 | Z1 = y

)

p(x, y) dy

=

∫ ∞

u

p(x, y) dy +

∫ u

−∞

ψ(u− y, y)p(x, y) dy. (5)
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To obtain a system of ODEs for the ruin probability we will assume a rather
special structure for the transition density, namely:

Assumption 1. Let

p(x, y) =



















g1(x)h1(y), (x, y) ∈ I1

g2(x)h2(y), (x, y) ∈ I2

g3(x)h3(y), (x, y) ∈ I3

g4(x)h4(y), (x, y) ∈ I4,

(6)

where Ik denotes the k−th quadrant of the cartesian plane. Further let g1(x) >
0, g4(x) > 0 for x > 0, g1(x) = g4(x) = 0 for x < 0, g1(x), g4(x) are linearly
independent and g1(x) + g4(x) = 1. Similarly g2(x) > 0, g3(x) > 0 for x <
0, g2(x) = g3(x) = 0 for x > 0, g2(x), g3(x) are linearly independent and
g2(x) + g3(x) = 1. Further assume that for

(k,m) ∈ {(1, 1), (1, 2), (4, 1), (4, 2), (2, 3), (2, 4), (3, 3), (3, 4)}

there exists polynomials qk,m(x) :=
∑n

i=0 q
k,m
i xi with

qk,m

(

d

du

)

gk(u)hm(u) = 0 u 6= 0

An interpretation of this kind of dependence is given in Section 4.

Remark 1. One can easily extend the results of this paper to a transition density
of the form

p(x, y) =



















∑n1

i=1 g
1
i (x)h1

i (y), (x, y) ∈ I1
∑n2

i=1 g
2
i (x)h2

i (y), (x, y) ∈ I2
∑n3

i=1 g
3
i (x)h3

i (y), (x, y) ∈ I3
∑n4

i=1 g
4
i (x)h4

i (y), (x, y) ∈ I4

(7)

with the obvious extension of the conditions to g1
i (x) and h1

i (y). Nevertheless
note that this generalization is straight-forward (one needs to replace all matrices
by corresponding block matrices). Hence, for ease of notation we consider only
the case n = 1.

In order to evaluate the ruin probability we first need to check that for a given
set of parameters the process tends to −∞. Therefore one needs to evaluate
the invariant distribution fZ(x) of p(x, y) (see Lemma 4 in the Appendix),
although this is not needed further for the derivation of the ruin probability. To
find explicit expressions for ψ(u, x) a key observation is:

Proposition 1. If Assumption 1 is fulfilled, then the probability of ruin has the
form

ψ(u, x) =

{

g1(x)ψ1(u) + g4(x)ψ4(u), x > 0

g2(x)ψ2(u) + g3(x)ψ3(u), x < 0,
(8)

where ψi =
∫∞

u hi(y)dy+
∫ u

0 ψ(u−y, y)hi(y)dy, for i = 1, 3 and ψi =
∫ 0

−∞ ψ(u−

y, y)h4(y)dy, for i = 2, 4. Further, for i = 1, . . . , 4,

lim
u→∞

ψi(u) = 0.
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Remark 2. Note that for x > 0, ψ1(u) is the probability of ruin given that the
first step (jump) is positive and ψ4(u) is the ruin probability given that the first
step is negative. Similarly, for x < 0, ψ2(u) is the probability of ruin given that
the first step is positive and ψ3(u) is the ruin probability given that the first step
is negative.

Next we provide a system of ODEs for the functions ψi.

Proposition 2. If Assumption 1 is fulfilled, then ψi(u), i = 1, . . . , 4 are a
solution of the system of ODEs

Aψ̃ = 0,

where ψ̃ = (ψ1, ψ2, ψ3, ψ4)T ,

A =













(r1,1−q1,1)q4,1

gcd(q1,1,q4,1) 0 0 q1,1r4,1

gcd(q1,1,q4,1)
r1,2q4,2

gcd(q1,2,q4,2) − q1,2q4,2

gcd(q1,2,q4,2) 0 q1,2r4,2

gcd(q1,2,q4,2)

0 r2,3q3,3

gcd(q2,3,q3,3)
(r3,3−q3,3)q2,3

gcd(q2,3,q3,3) 0

0 r2,4q3,4

gcd(q2,4,q3,4)
q2,4r3,4

gcd(q2,4,q3,4) − q2,4q3,4

gcd(q2,4,q3,4)













,

gcd(a, b) denotes the greatest common divisor of the polynomials a and b and
rk,m is defined by

Mk,m(−s) := Mgkhm(−s) :=

∫ ∞

−∞

e−sxgk(x)hm(x)dx =
rk,m(s)

qk,m(s)
. (9)

Further if h1(x) = h2(x) then ψ1(u) = ψ2(u) and if h3(x) = h4(x) then ψ3(u) =
ψ4(u).

Proof. Substituting (8) into the last two lines of (18) leads to

g1(x)

(∫ ∞

u

h1(y)dy +

∫ u

0

(

ψ1(u − y)g1(y) + ψ4(u− y)g4(y)
)

h1(y)dy

)

+ g4(x)

∫ 0

−∞

(

ψ2(u− y)g2(y) + ψ3(u− y)g3(y)
)

h4(y)dy

= g1(x)ψ1(u) + g4(x)ψ4(u)

Since g1(x) and g4(x) are linearly independent we get the equations
{

ψ1(u) −
∫ u

0

(

ψ1(u− y)g1(y) + ψ4(u − y)g4(y)
)

h1(y)dy =
∫∞

u
h1(y)dy

ψ4(u) −
∫ 0

−∞

(

ψ2(u− y)g2(y) + ψ3(u− y)g3(y)
)

h4(y)dy = 0

Analogously, using the linear independence of g2(x) and g3(x) from the last two
lines of equation (19) one has the system
{

ψ2(u) −
∫ u

0

(

ψ1(u− y)g1(y) + ψ4(u − y)g4(y)
)

h2(y)dy =
∫∞

u
h2(y)dy

ψ3(u) −
∫ 0

−∞

(

ψ2(u− y)g2(y) + ψ3(u− y)g3(y)
)

h3(y)dy = 0

In order to write this system of equations in matrix form, we introduce the
operators

K l,m
+ ψ :=

∫ u

0

ψ(u−y)gl(y)hm(y)dy and K l,m
− ψ :=

∫ 0

−∞

ψ(u−y)gl(y)hm(y)dy
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(note that gl, hm vanish either on the positive or negative half-line). Further,
denoting by 1 the identity operator, the above system of equations can be written
as









K1,1
+ − 1 0 0 K4,1

+

K1,2
+ −1 0 K4,2

+

0 K2,3
− K3,3

− − 1 0

0 K2,4
− K3,4

− −1

















ψ1

ψ2

ψ3

ψ4









=









−
∫∞

u
h1(y)dy

−
∫∞

u h2(y)dy
0
0









. (10)

If h1(x) = h2(x) then K1,1
+ = K1,2

+ and K4,1
+ = K4,2

+ , hence it follows by
subtracting the second line from the first line that ψ1(u) = ψ2(u). Similarly if
h3(x) = h4(x), then we get by subtracting the fourth line from the third line
that ψ3(u) = ψ4(u), Hence the second part of the proposition follows.
For the first part we want to reduce this system of IDEs to a system of ODEs
that one can solve. It is enough to act on the integral system with a matrix of
the form













q1,1q4,1

gcd(q1,1,q4,1) 0 0 0

0 q1,2q4,2

gcd(q1,2,q4,2) 0 0

0 0 q2,3q3,3

gcd(q2,3,q3,3) 0

0 0 0 q2,4q3,4

gcd(q2,4,q3,4)













formed by operators of the type qk,m
(

d
du

)

that annihilate each Kk,m
± . Apply-

ing this matrix to the right-hand side of the equation leads to a homogeneous
system, since the left-hand side becomes zero after differentiation. More specif-
ically, for i = 1, 2,

∫ ∞

u

hi(y)dy =

∫ ∞

u

g1(y)hi(y)dy +

∫ ∞

u

g4(y)hi(y)dy

=

∫ ∞

0

g1(u+ y)hi(u+ y)dy +

∫ ∞

0

g4(u + y)hi(u+ y)dy.

Each term in the sum is annihilated by the corresponding operator,

q1,i(
d

du
)

∫ ∞

0

g1(u + y)hi(u+ y)dy = 0,

respectively

q4,i(
d

du
)

∫ ∞

0

g4(u + y)hi(u+ y)dy = 0.

Now the result follows from Lemma 2 and 3 in the Appendix.

From Proposition 2 we have that ψi(u) is a solution of a system of linear
ODEs, meaning

ψi(u) =

n
∑

j=1

m
∑

k=0

cij,ku
ke−λju. (11)

The exponents λj are among the solutions of the equation det(A) = 0. Recall
that, in the independent case, solving this determinant equation is equivalent
to solving the Lundberg equation, MZ(s) = 1. Similarly, for the Markov chain
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described here one can derive the exponents λj by means of moment generating
functions. We give the details in the following proposition (the proof is given in
the Appendix).

Proposition 3. If Assumption 1 is fulfilled, then ψi(u) has the general form
(11), with −λj being either the negative roots of the polynomial

q1,1q1,2q2,3q2,4q3,3q3,4q4,1q4,2

gcd(q1,1, q4,1)gcd(q1,2, q4,2)gcd(q2,3, q3,3)gcd(q2,4, q3,4)

or the roots of

1 = −M1,1(−s)M3,3(−s) −M1,1(−s) −M3,3(−s)

−M2,3(−s)M3,4(−s)M4,2(−s) (M1,1(−s) − 1)

+M1,2(−s)M2,3(−s)M3,4(−s)M4,1(−s)

+M2,4(−s)M4,2 (M1,1(−s)M3,3(−s) −M1,1(−s) −M3,3(−s) + 1)

−M1,2(−s)M2,4(−s)M4,1(−s) (M3,3(−s) − 1) ,

where Mk,m are defined as in (9).

Note that for a fixed j, cij,k are linearly dependent. To get the cij,k we can plug

ψi(u) into Equation (10), which finally results in a linear system of equations
for cij,k. Further note that by setting u = 0 in the first two lines of Equation
(10) we get the conditions

ψ1(0) =

∫ ∞

0

h1(y)dy = 1 and ψ2(0) =

∫ ∞

0

h1(y)dy = 1.

An intuitive meaning of these expressions is that given that we have a positive
jump at zero, if u = 0 then ruin is certain.

3 The connection with (Zk)k≥1 independent

If we set h1(x) = h2(x) as the density of Z+ satisfying an ODE with constant
coefficients (e.g. phase-type distributions), h3(x) = h4(x) as the density of Z−,
g1(x) = g2(x) = P(Z > 0) and g3(x) = g4(x) = P(Z < 0), then our model
corresponds to the independent (Zk)k≥1 case. However, note that in this case
Assumptions 1 are not fullfilled, since g1(x) and g4(x) are now not independent.
A way around this problem is to set

g1(x) = g2(x) = P(Z > 0)e−θx and g3(x) = g4(x) = 1 − g1(x).

Thus, letting θ → 0 one recovers the independent case.
Moreover, taking θ → 0 in (10) and then applying the appropriate differential

operator (to eliminate the integrals on the right-hand side), one obtains a new
(simpler) system of ODEs

(

pr+ − q+ pr+
(1 − p)r− (1 − p)r− − q−

)(

ψ1

ψ4

)

=

(

0
0

)

,

where p = P(Z > 0). Let ∗ stand for either + or −. Then, here q∗ is polynomial
(as in characteristic equation) describing the ODE with constant coefficients
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that the densities of Z∗, whether r∗ is defined through the rational moment
generating functions of Z∗,

MZ∗(−s) =
r∗(s)

q∗(s)
.

Standard ordinary differential equation theory says that ψ1(u), ψ4(u) and im-
plicitly ψ(u), are a linear combination of exponential functions, where the ex-
ponents are solutions of the polynomial equation

(pr+ − q+)((1 − p)r− − q−) − p(1 − p)r+r− = 0. (12)

Equation (12) is equivalent to MZ(s) = 1, further equivalent to ψ(u) having
a rational Laplace transform. This can be related to the result of Asmussen
(1992)[Corollary 5.1.] for Z+ phase-type distributed. In the following propo-
sition, we (re)state a slight extension of this corollary (from phase-type to ra-
tional Laplace transform class) in our notation, to permit further connections
with other existing results from the (Zk)k≥1 i.i.d. literature.

Proposition 4 (Corollary 5.1, Asmussen (1992)). Assume that the density
function of Z+ satisfies an ODE with constant coefficients described by the
polynomial q+(x) = q0 + q1x+ · · ·+ qnx

n, with non-homogeneous boundary con-
ditions, and denote by MZ−(s) the moment generating function of Z−. Define
r+(s) through

MZ+(−s) =
r+(s)

q+(s)
,

and assume that for x0 with q+(x0) = 0 we have r+(x0) 6= 0. Then

ψ(u) =
n
∑

i=1

Ciu
mie−λiu, (13)

where Ci, and λi ∈ C, are the solutions of the Lundberg equation

MZ−(s) =
q+(−s) − pr+(−s)

(1 − p)q+(−s)
or equivalently MZ(s) = 1. (14)

Further, mi ∈ {0, . . . n} is the multiplicity of the root λi minus 1.

Thus, for the slightly less general case, namely when Z itself has a rational
moment generating function, one has the following result (see e.g the Notes and
Remarks on page 270 in Asmussen and Albrecher (2010)).

Proposition 5. Assume that the moment generating function of Z is rational
and

MZ(−s) =
r(s)

q(s)

and also assume that for x0 with q(x0) = 0 we have r(x0) 6= 0. Then the
probability of ruin is a solution of the ODE

(

q

(

d

du

)

− r

(

d

du

))

ψ(u) = 0.
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Namely it has form (13), where λi are the solutions of the characteristic equation

q(s) − r(s) = 0, (15)

with multiplicity mi plus 1. This is equivalent to saying that ψ has a rational
Laplace transform,

ψ̂(s) =
((q − r)+(s) − dq+(s))

s(q − r)+(s)
(16)

where (q − r)+(s) is the polynomial that has as only roots the positive roots of
the characteristic equation (15) and d = (q − r)+(0)/q+(0).

Remark 3. After partial fractions decomposition and inversion of the Laplace
transform, one obtains the explicit form of the probability of ruin this time down
to constants, not only up to constants as in the theorem.

As examples of models where Z has rational moment generating functions,
one can revisit all the models considered by Ambagaspitiya (2009) and derive
exact expressions for the ruin probability. For example, we consider in the
following the Kibble and Moran’s bivariate Gamma joint density for τ and X ,
defined through

MZ(s) = E(esZ) = E(e−cτ+X) = Mτ,X(s) =
1

(

(1 + cs
β1

)(1 − s
β2

) + ρ cs2

β1β2

)m ,

where ρ ≥ 0 is the correlation coefficient between τ and X .

Example 1 (Kibble and Moran’s bivariate Gamma joint density). According
to Proposition 5 one needs to first solve the Lundberg equation

MZ(s) = 1 or equivalently

(

(1 +
cs

β1
)(1 −

s

β2
) + ρ

cs2

β1β2

)m

= 1.

Assuming that cβ2 > β1, we get the roots (compare Ambagaspitiya (2009))

λi
± =

cβ2 − β1 ±
√

(cβ2 − β1)2 + 4c(1 − ρ)β1β2(1 − e4πk/m)

2c(1 − ρ)
,

where Re(λi
+) > 0 and Re(λi

−) ≤ 0. Hence ψ satisfies the ODE

((

(

1 −
c

β1

d

du

)(

1 +
1

β2

d

du

)

+ ρ
c2

β1β2

(

d

du

)2
)m

− 1

)

ψ(u) = 0,

with solution

ψ(u) =
m
∑

i=1

cie
−λi

+u.

Further, note that for i = 1, . . . ,m− 1,

ci =
s+ λi

s

(q − r)+(s) − dq+(s)

(q − r)+(s)

∣

∣

∣

∣

∣

s=−λi

.
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4 (Zk)k≥1 dependent with exponential densities

In this section we return to the dependent case endowed with a Markov chain
structure and provide an example for the results derived. We are again in
the set-up of gi(x), i = 1, . . . 4 being non-constant functions of the initial step
Z0 = x. Let



















g1(x) = 1 − g4(x) = 1 − e−θx (I)

g2(x) = 1 − g3(x) = 1 − eηx (1 − I)

h1(y) = λ1e
−λ1y, h2(y) = λ2e

−λ2y (Z+)

h3(y) = λ3e
λ3y, h4(y) = λ4e

λ4y (Z−).

More precisely we will further assume that λ1 = λ2 and λ3 = λ4. The interpre-
tation of such a model is the following: The size of the jumps are exponentially
distributed, having different parameters for positive and negative jumps. Thus,
the functions h1, h2 and h3, h4 respectively play the same role as the densities
of Z+ and Z− of (3) in the independent random-walk case of Asmussen (1992).
The parameters θ or η control the probability of going up or down in the next
step of the random walk. Functions g1, g4 (reps. g2, g3) correspond to 1 − I, I
for x > 0 (respectively x < 0) as in the decomposition (3). If θ is large, then it
is more likely that a positive jump is followed by another positive jump. On the
contrary, if η is close to zero then it is more likely that a negative jump is fol-
lowed by another negative jump (see Figure 1 compare the graph to paths when
sampled from the invariant distribution in Figure 2). Since the lucky events are
when the random walk goes to −∞, choosing a large θ one would emphasize the
bad tendencies. On the other hand, choosing a η close to zero would emphasize
the good tendencies. Also, note that choosing a small θ would lead to some
counter-cyclical, tamed behavior (see Figure 4 the invariant distribution is the
same as the one of the model in Figure 1).

Next we give a numerical example. We use the parameters λ1 = λ2 = 1,
λ3 = λ4 = 4/5, θ = 2 and η = 0.4 (see Figure 3 for a plot of some paths of
this process). Using Lemma 4 from the Appendix we derive the density of the
invariant distribution,

fZ(x) =

{

1
2e

−x x ≥ 0
1
2

4
5e

4
5

x x < 0.

With Plots 1 and 4 we emphasize the difference in the behavior of the paths
when θ and η have different values, even though they have the same invariant
distribution. Since ψ1(u) = ψ2(u) and ψ3(u) = ψ4(u), to calculate ψi(u) one
needs to solve the system of ODEs

A

(

ψ1

ψ4

)

=

(

0
0

)

.

In this case, the matrix A is

A =

(

(r1,1−q1,1)q4,1

gcd(q1,1,q4,1)
q1,1r4,1

gcd(q1,1,q4,1)
r2,3q3,3

gcd(q2,3,q3,3)
(r3,3−q3,3)q2,3

gcd(q2,3,q3,3)

)

,
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Figure 1: Paths of the risk process when λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 100
and η = 0.008

with the determinant

det(A) = s

(

s3 +
14s2

5
−

87s

25
−

6

25

)

.

Given the infinity condition, one needs to consider only the negative roots of
the polynomial det(A) = 0. Thus, the solution of the system of ODEs has the
form

ψi(u) = ci2e
−3.7185u + ci2e

−0.0655856u,

which once plugged back into Equation (10) leads to

ψ1(u) = ψ2(u) = 0.0488089e−3.7185u + 0.951191e−0.0655856u

ψ3(u) = ψ4(u) = 0.000839295e−3.7185u + 0.75528e−0.0655856u

and thus

ψ(u, x) =

{

(1 − e−2x)ψ1(u) + e−2xψ3(u) x > 0

(1 − e
4
10

x)ψ1(u) + e−
4
10

xψ3(u) x < 0.

Further, if we assume that Z0 is distributed according to the invariant distribu-
tion, then

ψ(u) = 0.0248241e−3.7185u + 0.853236e−0.0655856u.

We compare this to the ruin probability of a process with iid increments, which
follows the same invariant distribution,

ψZ(u) =
9

10
e−

u
10 .

Numerical values of these ruin probabilities are plotted in Figures 5 and 6. One
can clearly see that, in this case, dependence causes an increase of the risk of
ruin.
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Figure 2: Paths of the risk process when the claims are iid distributed with the
invariant distribution of a process with λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 100
and η = 0.008
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Figure 3: Paths of the risk process when λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 2
and η = 0.4
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Figure 4: Paths of the risk process when λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 100−1

and η = 80
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Figure 5: Comparison of the ruin probability (absolute values) of the Markov
chain with λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 2 and η = 0.4, and the correspond-
ing process of independent Z with the invariant distribution.
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Figure 6: Comparison of the ruin probability (− log10 of the values) of the
Markov chain with λ1 = λ2 = 1, λ3 = λ4 = 4/5, θ = 2 and η = 0.4, and the
corresponding process of independent Z with the invariant distribution.

5 Conclusions

One of the fundamental problems in random walk theory is the computa-
tion of the ladder height distributions. More specifically, for a random walk
Wn =

∑n
k=1 Zk, with increments having the distribution FZ and ladder epochs

defined as τ− = inf{n ≥ 1|Wn ≥ 0} respectively τ+ = inf{n ≥ 1|Wn > 0}, the
ladder height distributions are G−(u) = P(Zτ−

≤ u) and G+(u) = P(Zτ+
≤ u).

These quantities are relevant in sequential, queuing and risk theory. Results
have been derived for increments having a structure Z = pZ1+(1−p)Z2 (Feller,
1971) or a difference structure Z = τ −X (Asmussen, 1992).

Focusing on a risk theory model, one could analyze the probability of ruin in
this random-walk/ladder-height setting. In this paper we base our analysis on
the real-valued random variable Zk = −cτk +Xk describing the difference be-
tween the inter-arrival time τk and its consecutive claim size Xk. In the classical
model, τ and X are assumed to be independent. When Zk are independent, we
are in the random walk setting. A natural condition for Z in order to be able to
derive explicit forms of the ruin probability is that its mgf is rational. Or, the
more general version of it, that only the mgf of Z+ = {Z | Z > 0} is rational
(Asmussen, 1992).

We introduced a Markov chain dependence which still permits the exact cal-
culation of the probability of ruin. A motivation for such a model, besides
the mathematical amenability, consists in the fact that one can implement a
counter-cyclic behavior of the sample paths.

Acknowledgments. The authors would like to thank Hansjörg Albrecher for
helpful comments during the preparation of this paper. This work has been
partially supported by the French Research National Agency (ANR) under the

15



reference ANR-08-BLAN-0314-01 and the Swiss National Science Foundation
Project 200021-124635/1.

A

Lemma 1.

1. If the joint moment generating function Mτ,X(t, s) of the vector (τ,X) is
rational, then the moment generating functions of Z+ and Z−, MZ+ and
respectively MZ− are also rational.

2. If MZ+ and MZ− are rational, then there exists a vector (τ,X) such that
Mτ,X(t, s) is rational.

Proof. Ad 1. Since Mτ,X(t, s) is rational, the density FZ of Z = X − cτ =
IZ+ + (1 − I)Z− has a rational Fourier transform, implying

fZ(x) =

n
∑

i=1

cix
mie−λix1{sign(Re(λi))[0,∞]}(x).

Now 1 follows from

pfZ+(x) =

n
∑

i=1,Re(λi)>0

cix
mie−λix1{(0,∞)}(x)

and

(1 − p)fZ−(x) =

n
∑

i=1,Re(λi)<0

cix
mie−λix1{(−∞,0)}(x).

Ad 2. We have

MZ(s) = pMZ+(s) + (1 − p)MZ−(s) =
p

1 − s+ s
MZ+(s) +

1 − p

1 − s+ s
MZ−(s).

We use

Mτ,X(t, s) = p
1

1 − t− s
MZ+(s) + (1 − p)

1

1 − t− s
MZ−(−t).

To show that this is the moment generating function of a random vector, let I
be Bernoulli(p) and Y be Exp(1). Then the random vector

(τ,X) := P
(

Y, Y + Z+
)

+ (1 − P )
(

Y − Z−, Y
)

has Mτ,X(t, s) as moment generating function.

Lemma 2. Let g(y) and ψ(y) be two functions that are sufficiently often dif-
ferentiable and bounded for y > 0. Assume that there exists a polynomial
q(x) = q0 + q1x+ · · · + qnx

n with

q

(

d

dy

)

g(y) = 0, y > 0.
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Further define the polynomial

r(x) =

n−1
∑

l=0

n
∑

i=l+1

qig
(i−l−1)(0)xl.

Then the Laplace transform of g

∫ ∞

0

e−syg(y)dy =
r(s)

q(s)
,

and

q

(

d

du

)
∫ u

0

ψ(u− y)g(y)dy = r

(

d

du

)

ψ(u).

Proof. Note that for s > 0, using integration be parts

∫ ∞

0

e−syg(y)dy =

l
∑

k=1

1

sk
g(k−1)(0) +

∫ ∞

0

1

sl
e−sxg(l)(x)dx.

Multiplying with q(s) leads to

q(s)

∫ ∞

0

e−syg(y)dy =

n
∑

l=0

(

ql

l
∑

k=1

sl−kg(k−1)(0) +

∫ ∞

0

e−sxqlg
(l)(x)dx

)

=

n−1
∑

k=0

n
∑

l=k+1

qlg
(l−k−1)(0)sk +

∫ ∞

0

e−sxq

(

d

dx

)

g(x)dx

= r(s).

For the second part of the lemma note that by induction

(

d

du

)n ∫ u

0

ψ(u− y)g(y)dy =

(

d

du

)n ∫ u

0

ψ(y)g(u− y)dy

=
n−1
∑

k=0

ψ(k)(u)g(n−k−1)(0) +

∫ u

0

ψ(y)g(n)(u− y)dy.

It follows

q

(

d

du

)∫ u

0

ψ(u− y)g(y)dy =

n
∑

l=0

ql

l−1
∑

k=0

ψ(k)(u)g(n−k−1)(0)

+

∫ u

0

ψ(y)q

(

d

du

)

g(u− y)dy = r

(

d

du

)

ψ(u).

Lemma 3. Let g(y) and ψ(y) be two functions that are sufficiently often dif-
ferentiable, where g(y) is bounded for y < 0 and ψ(y) is bounded for y > 0.
Assume that there exists a polynomial q(x) = q0 + q1x+ · · · + qnx

n with

q

(

d

dy

)

g(y) = 0, y < 0.
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Further define the polynomial

r(x) = −
n−1
∑

l=0

n
∑

i=l+1

qig
(i−l−1)(0)xl.

Then
∫ 0

−∞

e−syg(y)dy =
r(s)

q(s)

and

q

(

d

du

)∫ 0

−∞

ψ(u− y)g(y)dy = r

(

d

du

)

ψ(u).

Proof. At first note that by partial integration

∫ 0

−∞

e−syg(y)dy = −

l
∑

k=1

1

sk
g(k−1)(0) +

∫ 0

−∞

1

sl
e−sxg(l)(x)dx.

Multiplying with q(s) leads to

q(s)

∫ 0

−∞

e−syg(y)dy = −
n
∑

l=0

(

ql

l
∑

k=1

sl−kg(k−1)(0) −

∫ 0

−∞

e−sxqlg
(l)(x)dx

)

= −

n−1
∑

k=0

n
∑

l=k+1

qlg
(l−k−1)(0)sk +

∫ ∞

0

e−sxq

(

d

dx

)

g(x)dx

= r(s).

For the second part of the lemma note that by induction

(

d

du

)n ∫ 0

−∞

ψ(u− y)g(y)dy =

(

d

du

)n ∫ ∞

u

ψ(y)g(u− y)dy

= −
n−1
∑

k=0

ψ(k)(u)g(n−k−1)(0) +

∫ ∞

u

ψ(y)g(n)(u− y)dy.

It follows

q

(

d

du

)∫ ∞

u

ψ(u− y)g(y)dy = −
n
∑

l=0

ql

l−1
∑

k=0

ψ(k)(u)g(n−k−1)(0)

+

∫ ∞

u

ψ(y)q

(

d

du

)

g(u− y)dy = r

(

d

du

)

ψ(u).

Lemma 4. Let Z be a Markov chain with transition density satisfying the As-
sumption 1. Denote with

K l,m =

{

∫∞

0 gl(x)hm(x)dx, if l ∈ {1, 4}, m ∈ {1, 2}
∫ 0

−∞
gl(x)hm(x)dx, if l ∈ {2, 3}, m ∈ {3, 4}

.
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Then the invariant distribution has the density

fZ(y) =
K1,2K2,3h1(y) +K2,3K4,1h2(y)

K1,2K2,3 + 2K2,3K4,1 +K3,4K4,1
, y > 0,

fZ(y) =
K3,4K4,1h3(y) +K2,3K4,1h4(y)

K1,2K2,3 + 2K2,3K4,1 +K3,4K4,1
, y < 0,

Proof. The invariant distribution is defined through

fZ(y) =

∫ ∞

0

p(x, y)fZ(x)dx.

We can split this equation into two equations, for y > 0 and y < 0,

fZ(y) =h1(y)

∫ ∞

0

g1(x)fZ(x)dx + h2(y)

∫ 0

−∞

g2(x)fZ(x)dx, y > 0,

fZ(y) =h4(y)

∫ ∞

0

g4(x)fZ(x)dx + h3(y)

∫ 0

−∞

g3(x)fZ(x)dx, y < 0.

It follows that the invariant distribution can be written as

fZ(y) = c1h1(y) + c2h2(y), y > 0,

fZ(y) = c3h3(y) + c4h4(y), y < 0,

and we are left with determining the constants cl, which are the solution of the
system of linear equations



















c1 = K1,1c1 +K1,2c2

c2 = K2,3c4 +K2,4c4

c3 = K3,3c4 +K3,4c4

c4 = K4,1c1 +K4,2c2.

In our matrix notation








K1,1 − 1 K1,2 0 0
0 −1 K2,3 K2,4

0 0 K3,3 − 1 K3,4

K4,1 K4,2 0 −1

















c1

c2

c3

c4









=









0
0
0
0









(17)

Using the fact that
∫

hi(x)dx = 1 and 1 − gi(x) = g5−i(x) one can rewrite the
matrix in (17) as









−K4,1 1 −K4,2 0 0
0 −1 K2,3 K2,4

0 0 −K2,3 1 −K2,4

K4,1 K4,2 0 −1









Moreover, by adding all other rows to the last one, it becomes








−K4,1 1 −K4,2 0 0
0 −1 K2,3 K2,4

0 0 −K2,3 1 −K2,4

0 0 0 0

















c1

c2

c3

c4









=









0
0
0
0
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It follows that

c1 = tK1,2

(

K3,4 +K2,4

K4,1

)

= t
K1,2

K4,1

c2 = t
(

K3,4 +K2,4
)

= t

c3 = t
K3,4

K2,3

c4 = t.

Since fZ(x) is a density function, t−1 = K1,2

K4,1 + K3,4

K2,3 + 2.

Remark 4. In the general case we have that
∫

hi(x)dx = 1 and 1−
∑

j g
i
j(x) =

∑

j g
5−i
j (x) and hence for fixed j and m,

∑

i

K l,m
i,j +K5−l,m

i,j = 1

(K l,m
i,j is defined as K l,m by replacing hm by hm

j and gl by gl
i). If we interpret

the matrix (17) as a block matrix where K l,m corresponds to the matrix with

elements K l,m
i,j and 1 to the identity matrix, then the sum of all rows is 0. Which

means that we get non-trivial candidates for fZ .

Proof of Proposition 1. Equation (5) for ψ(u, x) will have two expressions, de-
pending on the sign of x. For x ∈ I1 ∪ I4, (x > 0)

ψ(u, x) =

∫ ∞

u

g1(x)h1(y)dy +

∫ 0

−∞

ψ(u − y, y)g4(x)h4(y)dy

+

∫ u

0

ψ(u− y, y)g1(x)h1(y)dy

= g1(x)

(∫ ∞

u

h1(y)dy +

∫ u

0

ψ(u − y, y)h1(y)dy

)

+ g4(x)

∫ 0

−∞

ψ(u − y, y)h4(y)dy

= g1(x)ψ1(u) + g4(x)ψ4(u). (18)

Analogously for x ∈ I2 ∪ I3, (x < 0)

ψ(u, x) =

∫ ∞

u

g2(x)h2(y)dy +

∫ 0

−∞

ψ(u − y, y)g3(x)h3(y)dy

+

∫ u

0

ψ(u− y, y)g2(x)h2(y)dy

= g2(x)

(∫ ∞

u

h2(y)dy +

∫ u

0

ψ(u − y, y)h2(y)dy

)

+ g3(x)

∫ 0

−∞

ψ(u − y, y)h3(y)dy

= g2(x)ψ2(u) + g3(x)ψ3(u). (19)

Thus the first part of the theorem follows. The second part of the theorem
follows from limu→∞ ψ(u, x) = 0 for every x.
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Proof of Theorem 3. From the fact that ψi solve a system of ODEs with bound-
ary conditions limu→∞ ψi(u) = 0, we have

ψi(u) =

n
∑

j=1

m
∑

k=0

cij,ku
ke−λju,

where −λj are the negative roots of the polynomial det(A) = 0, equivalent to

0 =
(r1,1 − q1,1)(r3,3 − q3,3)q1,2q2,3q2,4q3,4q4,1q4,2

gcd(q1,1, q4,1)gcd(q1,2, q4,2)gcd(q2,3, q3,3)gcd(q2,4, q3,4)

+

(

r2,3r3,4q2,4q3,3 − r2,4(r3,3 − q3,3)q2,3q3,4
) (

r4,2(r1,1 − q1,1)q1,2q4,1 − r1,2r4,1q1,1q4,2
)

gcd(q1,1, q4,1)gcd(q1,2, q4,2)gcd(q2,3, q3,3)gcd(q2,4, q3,4)
.

Dividing by

q1,1q1,2q2,3q2,4q3,3q3,4q4,1q4,2

gcd(q1,1, q4,1)gcd(q1,2, q4,2)gcd(q2,3, q3,3)gcd(q2,4, q3,4)

leads to the equation

0 =
(r1,1 − q1,1)(r3,3 − q3,3)

q1,1q3,3
+
r2,3r3,4r4,2(r1,1 − q1,1)

q1,1q2,3q3,4q4,2
−
r1,2r2,3r3,4r4,1

q1,2q2,3q3,4q4,1

−
(r1,1 − q1,1)(r3,3 − q3,3)r2,4r4,2

q1,1q2,4q3,3q4,2
+

(r3,3 − q3,3)r1,2r2,4r4,1

q1,2q2,4q3,3q4,1

The claim follows from the definition of Mk,m.
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