
SOME MIXING PROPERTIES OF CONDITIONALLY

INDEPENDENT PROCESSES
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Abstract. In this paper we consider conditionally independent pro-
cesses with respect to some dynamic factor. More precisely, we assume
that for all i ∈ N, the random variables X1, . . . , Xi are conditionally
independent with respect to vector V i = (V1, . . . , Vi). We study the
mixing properties of the Xi’s when conditioning is given with respect to
unbounded memory of the factor. Our work is motivated by some real
examples related to risk theory.
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1. Introduction

In risk theory the structure of dependence between individual risks may
come from a time-varying common factor which represents the evolution of
socio-economic and natural environment. Markov modulated models have
been applied to risk theory for the first time by Asmussen (1989)[2]. Cos-
sette et al. (2002)[12] studied a Poisson risk model with common shock
represented by a discrete random variable. More recently, Cossette et al.
(2004)[13] proposed a compound binomial model modulated by a Markov-
ian environment as an extension to the compound binomial model proposed
by Gerber (1988)[22]. Denote by V n the random vector (V1, . . . , Vn) corre-
sponding to the evolution of the factor up to time n ≥ 1. Cossette et al.
(2004)[13] considered a particular case of conditional independence: for any
multi-indices (i1, . . . , iu), i1 < · · · < iu and any integer n ≥ iu,

(1.1) E(f(Xi1 , . . . , Xiu)|V n) =

∫
xi1 ,...,xiu

f(xi1 , . . . , xiu)

u∏
j=1

Nij (dxij , Vij ),

where Ni(dxi, Vi) denotes the kernel transition of Xi given Vi.

Due to claim settlement delays, accounting standards and risk time-accumulation
phenomena, the whole memory of the factor often plays an important role
in the risk process evolution in insurance. To our knowledge, conditionally

Key words and phrases. Conditional independence, risk processes, mixing properties.

1
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independent variables with respect to a random vector with time-varying
length have not yet been considered in the literature. The aim of this paper
is to extend the dependence frame introduced in Cossette et al. (2004)[13]
by considering that dependence among risks may be explained by an un-
bounded memory of the common factor. This factor is not necessarily a
Markov chain and may influence claim amounts (and) or frequencies. In
this paper, we consider that r.v.’s (Xn)n∈N are conditionally independent
given the entire trajectory of the factor. More precisely, if we denote by
Nj(dxj , V j) the kernel transition of Xj given V j we assume that for any
multi-indices (i1, . . . , iu), i1 < · · · < iu and any integer n ≥ iu

(1.2) E(f(Xi1 , . . . , Xiu)|V n) =

∫
xi1 ,...,xiu

f(xi1 , . . . , xiu)

u∏
j=1

Nij (dxij , V ij ).

Note that in this last case sequences (V j)(j∈N) overlap. We introduce our
definition for mixing sequences and we derive some mixing properties for ran-
dom processes subject to our time dependence model. Mixing processes have
been initially studied by Rosenblatt (1956) [39], Kolmogorov and Rosanov
(1960)[30], Ibragimov (1962)[26] and Ibragimov and Linnik (1971)[27]. Mix-
ing condition for sequences of random variables breeds asymptotic inde-
pendence between past and distant future events. This means that past
is progressively forgotten. A simple way to check mixing conditions is to
provide a precise control of the covariance as the distance between past and
future goes to infinity or is sufficiently large. For a unified presentation of
the main mixing coefficients and their properties we refer to Bradley and
Bryc (1985)[7], Peligrad (1986)[34], Bradley (1986,2005)[8, 9], Merlevède
et al. (2006)[32] and Billingsley (1968)[5]. A large number of references
concerning mixing coefficients and related dependence measures are given
in Bradley (1986)[8] and Doukhan (1994)[19]. We follow the approach of
Doukhan et al. (2007)[17] where the concepts and properties of weakly de-
pendent processed are introduced.
It is well known that mixing properties are a key tool to derive moment
conditions and asymptotic properties of aggregated processes. This is very
important in economics and in actuarial science. In order to study asymp-
totic behavior of mixing sequences, one may either approximate mixing se-
quences with independent ones following Bernstein’s method (1927)[4], or
use Gordin’s method (1969)[23] and approximate mixing sequences by a se-
quence of martingale differences (see e.g [24, 25, 35, 31] for further details).

The paper is organized as follows. In Section 2 we give a definition of mixing
sequences thanks to a generalization of the one introduced in Doukhan and
Louhichi (1999)[20] for weakly dependent r.v’s., as well as the definitions of
conditionally independent r.v’s and conditionally strongly mixing sequences.
Our main result is then stated in Theorem 2.2 in which we provide some
mixing properties of the process (Xi)i∈N under necessary conditions on the
mixing properties of the factor process (Vi)i∈N and on the conditional mixing
structure. Section 3 is devoted to the proof of our main theorem. Section
4 deals with some examples that satisfy our assumptions. These examples
are relevant in risk theory contexts.
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2. Definitions and statement of results.

We first recall some standard definitions of mixing processes. Then we
state our standing assumptions on conditional mixing and provide some
basing properties. Finally, we state our main result (Theorem 2.2) which
relates the mixing properties of conditionally independent processes to the
mixing properties of the factor process and to the structure of the conditional
independence.

2.1. Mixing sequences. Doukhan and Louhichi (1999)[20] introduced a
unified weak dependence condition, more general than mixing condition, in
which they make explicit the asymptotic independence between functions of
the past and of the future of a sequence of random variable (and not between
the past and the future of a sigma algebra as in Rosenblatt (1956)[39]).

Definition 1. Doukhan and Louhichi (1999)[20]
The sequence (X1, . . . , Xn) of r.v.s is called (θ,H, ψ)− weakly dependent,

if there exist a class H of real-valued functions, a sequence θ = (θr)r∈N
decreasing to 0 at infinity, and a function ψ with arguments (f, g, u, v) ∈
H2 ×N2 such that for all r ∈ N and any
i1 ≤ · · · ≤ iu < iu + r ≤ j1 ≤ · · · ≤ jv one has

(2.1) |Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv))| ≤ ψ(f, g, u, v)θr,

for all functions f, g ∈ H that are defined respectively on Ru and Rv. Note
that θ depends on the class H and on ψ. The function ψ may depend on its
argument which is not the case for classical strongly mixing sequences.

Note that if a sequence (X1, . . . , Xn) is strongly mixing in the sense of
Rosenblatt (1956)[39], then it is (θ, L∞, ψ)− weakly dependent where L∞

denotes the class of real-valued and bounded functions on some space of the
form Rp. Note that a variant of this notion of weak dependence is proposed in
Coulon-Prieur and Doukhan (2000)[14]. Following the definition introduced
by Doukhan and Louhichi (1999)[20] we introduce the following definition.

Definition 2. Let u, v be integers, a random process (X1, . . . , Xn) is said
to be ηu,v-mixing, if there exist a function r 7→ η(r) decreasing to 0 as r goes
to infinity and a constant C(u, v) > 0 such that for any real valued bounded
functions f and g, for any integers u′ ≤ u, v′ ≤ v and for any multi-indices
satisfying the relation (?):

(?) i1 < · · · < iu′ ≤ iu < iu + r ≤ j1 < · · · < jv′ ≤ jv,
we have
(2.2)

sup
∣∣Cov

(
f(Xi1 , . . . , Xiu′ ), g(Xj1 , . . . , Xjv′ )

)∣∣ ≤ C(u, v)η(r)‖f‖a‖g‖b,
where the supremum is taken over all the sequences (i1, . . . , iu′) and (j1, . . . , jv′)
satisfying (?) and r ≥ j1 − iu is the gap of time between past and future.
‖ ‖a and ‖ ‖b are norms on bounded functions (or on subspaces of bounded
functions). With respect to these norms, we have various kind of mixing as
referred to the classical strongly mixing definitions.

(1) If ‖ ‖a = ‖ ‖b = ‖ ‖∞, we shall say that the process is α(u,v) mixing
and we shall write α(r) instead of η(r). If the process is α(u,v) for all
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u, v and if supu,v∈NC(u, v) ≤ C < ∞ then the process is α mixing
in the sense of Rosenblatt (1956)[39].

(2) If ‖ ‖a = ‖ ‖b = ‖ ‖2, we shall say that the process is ρ(u,v) mixing
and we shall write ρ(r) instead of η(r). If the process is ρ(u,v) mixing
for all u, v and if supu,v∈NC(u, v) ≤ C < ∞ then the process is ρ
mixing in the sense of Kolmogorov and Rozanov (1960)[30].

(3) If ‖ ‖a = ‖ ‖1 and ‖ ‖b = ‖ ‖∞, we shall say that the process is
Φ(u,v) mixing and we shall write Φ(r) instead of η(r). If the process
is Φ(u,v) mixing for all u, v and if supu,v∈NC(u, v) ≤ C < ∞ then
the process is Φ mixing in the sense of Ibragimov (1962)[26].

(4) If ‖ ‖a = ‖ ‖b = ‖ ‖1, we shall say that the process is Ψ(u,v) mixing
and we shall write Ψ(r) instead of η(r). If the process is Ψ(u,v)

mixing for all u, v and if supu,v∈NC(u, v) ≤ C <∞ then the process
is Ψ mixing in the sense of Blum et al. (1963)[6].

In the strongly mixing case, Davydov (1968)[15] first studied the prob-
lem of getting an upper bound for the covariance between two real-valued
r.v’s with given marginal distributions and given strong mixing coefficient.
Rio (1993)[37] established a new covariance inequality improving Davydov’s
(1968)[15] one. It is well-known that every Ψ mixing sequence is Φ mix-
ing, every Φ mixing sequence is ρ mixing and every ρ mixing sequence is α
mixing. The same proofs remain valid to get the chain

Ψ(u,v) mixing =⇒ Φ(u,v) mixing =⇒ ρ(u,v) mixing =⇒ α(u,v) mixing.

Of course, sequences of independent random variables and m− dependent
sequences satisfy mixing conditions.
Various examples of processes satisfying mixing conditions are presented in
the books of Doukhan (1994)[19] and Bradley (2007)[10].

Remark 1. For other choices of ‖ ‖a, ‖ ‖b (for example Lipschitz norms or
bounded variation norms), we shall recover the notions of weak dependence
(see [16, 18, 20, 17]). Note that for the classical mixing coefficients, C(u, v)
is uniform in u and v.

Let us now introduce the main notions of conditional independence that
we shall use.

2.2. Conditional independence. We shall make the following standing
assumptions.

• H1: For all i ∈ N, r.v’s Xi are conditionally independent given V i =
(V1, . . . , Vi).
• H2: The conditional law of Xi|V n is the same as the one of Xi|V i,

for all n ≥ i.
Assumptions H1 and H2 are equivalent to:
For any multi index i1 ≤ i2 . . . ≤ iu and for any n ≥ iu we have

(2.3) E (f(Xi1 , . . . , Xiu |V n)) =

∫
xi1 ,...,xiu

f(xi1 , . . . , xiu)
u∏
j=1

Nij (dxij , V ij ),

where Nij (dxij , V ij ) denotes the kernel transition of Xij given V ij .
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Proposition 2.1. Let u, v and r be integers and let f and g be real valued
bounded functions. Consider the multi-indices i1 < i2 . . . < iu < iu + r ≤
j1 < j2 . . . < jv. If H1 and H2 hold then

Cov(f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv))

= Cov(E(f(Xi1 , . . . , Xiu)|V iu),E(g(Xj1 , . . . , Xjv)|V jv)),(2.4)

This means that the covariance of f(Xi1 , . . . , Xiu) and g(Xj1 , . . . , Xjv) is
equal to the covariance of their conditional expectation whenever condition-
ing is done respectively with respect to V iu and V jv .

Proof. Denote by Xiu
i1

= (Xi1 , . . . , Xiu) and by Xjv
j1

= (Xj1 , . . . , Xjv). For
any multi-indices i1 < i2 < . . . < iu < j1 < j2 < . . . < jv and for any real
valued functions (f, g) for which the covariance function exists we have:

Cov(f(Xiu
i1

), g(Xjv
j1

))

= E
(
f(Xiu

i1
) · g(Xjv

j1
)
)
− E(f(Xiu

i1
))E(g(Xjv

j1
))

= E
(
E(f(Xiu

i1
)|V iu) · E(g(Xjv

j1
)|V jv)

)
− E

{
E(f(Xiu

i1
)|V iu)

}
E
{
E(g(Xjv

j1
)|V jv)

}
= Cov

(
E(f(Xiu

i1
)|V iu),E(g(Xjv

j1
)|V jv)

)
.

�

2.3. Conditionally strongly mixing sequences given an unbounded
memory. In our dependence framework we propose the following definition
for conditionally strongly mixing sequences.

Definition 3. Let u, v and r be integers and let (i1, . . . , iu) and (j1, . . . , jv)
satisfying (?) and let ‖ ‖a and ‖ ‖b be norms on bounded functions (or on
subspaces of bounded functions).
The sequence of r.v’s (Xn)n∈N is called conditionally ηu,v mixing with respect
to V n if there exist a positive sequence η(r) → 0 as r → ∞ and a constant
C(u, v) > 0 such that the following inequality holds for any real and bounded
functions f : Ru → R and g : Rv → R,

(2.5)
sup

∣∣∣Cov(E(f(Xi1 , . . . , Xiu′ )|V iu′
),E(g(Xj1 , . . . , Xjv′ )|V jv′

))
∣∣∣

≤ C(u, v)η(r) ‖f‖a ‖g‖b ,

where the supremum is taken over all sequences (i1, . . . , iu′) and (j1, . . . , jv′)
satisfying (?).

Remark 2. Note that Definition 3 can be seen as a generalization of Defi-
nition 1 in Doukhan and Louhichi (1999)[20] by replacing in (2.5), V iu′

with

X
iu′
i1

and V jv′
with X

jv′
j1

.

Remark 3. As for Definition 2, with respect to the choice of the norms ‖ ‖a
and ‖ ‖b, we shall say that the process is αu,v, ρu,v, Φu,v or Ψu,v conditionally
mixing with respect to (V n).

Let us mention that the terminology conditionally mixing has been used
with different meanings by Parakasa Rao (2009)[36], Dziubdziela (1986)[21]
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and Veijanen (1990)[40]. In particular, the work of Veijanen is concerned
with partially observable random fields. The author considers that (Xi, . . . , Xj)
is conditionally independent of Vr, r 6∈ [i, j] given (Vi, . . . , Vj) for any posi-
tive integers i and j, which is not our case here.
Below, we give an example showing that the conditional independence re-
lated to the whole vector V i implies a dependence that may be persistent for
the process (Xi)i∈N. In particular, our conditional independence condition
and some mixing condition on the factor process (Vi)i∈N are not sufficient
to get mixing properties for the process (Xi)i∈N.

Example 1. Consider Yi = Ii, ∀i ≥ 1, P (Ii = 1|V i) = 1
2(V1 + Vi). Let

(Vi)i∈N be a sequence of identically distributed r.v’s with E(V1) = p. Then
we have P (Ii = 1) = E(V1) = p and P (Ir = 1) = E(V1) = p. Let

P (I1 = 1, Ir = 1|V1, Vr) = P (I1 = 1|V1)P (Ir = 1|V1, Vr) =
1

2
V1(V1 + Vr).

Then we have P (I1 = 1, Ir = 1) = 1
2E(V1 × (V1 + Vr)). We thus get

P (I1 = 1, Ir = 1)− P (I1 = 1)P (Ir = 1)

=
1

2
(E(V 2

1 ) + E(V1Vr)− E(V1)(E(V1) + E(Vr)))

=
1

2
(E(V 2

1 )− E(V1)2 + E(V1Vr)− E(V1)E(Vr)︸ ︷︷ ︸
(∗∗)

).

If the factor process (Vi)i∈N is independent then (∗∗) = 0 and then,

P (I1 = 1, Ir = 1)− P (I1 = 1)P (Ir = 1) =
1

2
p(p− 1)

for all r ∈ N.

Therefore, in this example assuming that sequence (Yi) satisfies condi-
tional independence is not sufficient to have mixing condition. This is due
to the long memory of the factor taken into account when conditioning.

Proposition 2.1 proves that if the process (Xi)i∈N is conditionally indepen-
dent and conditionally ηu,v mixing with respect to (Vi)i∈N then it is ηu,v
mixing, with the same kind of η mixing.

2.4. Main result. Our main result emphasizes the relation between the
conditional mixing properties of the process (Xi)i∈N, the mixing properties
of the process (Vi)i∈N and the regularity of the transition kernels. Recall
Equation (1.2): if we denote by N i1,...,iu(·, V iu) the kernel transition of the
random vector (Xi1 , . . . , Xiu) given V iu = (V1, . . . , Viu), then the conditional
independence condition implies

N i1,...,iu(·, V iu) =
u∏
k=1

N ik(·, V ik
).

Consider multi indices (i1, . . . , iu) and (j1, . . . , jv), satisfying (?), let ` be an

integer such that 0 < ` ≤ j1−iu. Let Ṽiu,jv ,` = (0, . . . , 0, Viu+`+1, . . . , Vj1 , . . . , Vjv) ∈
Rjv and denote

D(V jv , Ṽiu,jv ,`) = N j1,...,jv(·, V jv)−N
j1,...,jv(·, Ṽiu,jv ,`).
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In what follows, given two measures ν and µ on the same σ-field, we shall
say that ν ≤ µ if for any measurable set A, ν(A) ≤ µ(A) or equivalently, if
for any non negative and bounded function f , ν(f) ≤ µ(f). We shall make

the following assumptions on D(V jv , Ṽiu,jv ,`) and N j1,...,jv .

Assumption 1. Kv and K ′v denote positive constants depending on v,

(κ(`))`∈N denotes a decreasing to zero sequence and Ñj1,...,jv(·) is a positive
finite measure on Rv. We denote k = j1 − iu − ` with 0 < ` ≤ j1 − iu. Let
us introduce the following assumptions satisfied for multi indices (i1, . . . , iu)
and (j1, . . . , jv) satifying (?).

(2.6) sup
V

∣∣∣D(V jv , Ṽiu,jv ,`)
∣∣∣ ≤ Kv‖N j1,...,jv(·, V jv)‖1κ(k).

(2.7) sup
V

∣∣∣D(V jv , Ṽiu,jv ,`)
∣∣∣ ≤ Ñj1,...,jv(·)κ(k).

(2.8)

∫
V

∫
xj1 ,...xjv

∣∣∣D(V jv , Ṽiu,jv ,`)
∣∣∣ ≤ κ(k)Kv.

(2.9) ‖N j1,...,jv(·, V jv)‖∞ ≤ K
′
v‖N j1,...,jv(·, V jv)‖1.

(2.10)

∫
xj1 ,...xjv

‖N j1,...,jv(·, V jv)‖∞ <∞.

Theorem 2.2. Assume (Xi)i∈N is conditionally independent with respect to
(Vi)i∈N.
The results are presented in Table 1. As an example, one can read the first
line of Table 1 as follows: if the process (Vi)i∈N is Ψu,v mixing and if (2.6)
of Assumption 1 is satisfied then the process (Xi)i∈N is Ψu,v-mixing.

Table 1.

Kind of mixing Satisfied equation Result: type of mixing

for(Vi)i∈N of assumption 1 for(Xi)i∈N

Ψu,v (2.6) Ψu,v

(2.7) Φu,v

Φu,v (2.7) and (2.10) Φu,v

αu,v (2.6) and (2.9) Ψu,v

(2.8) and (2.9) Φu,v

(2.8) and (2.10) αu,v

It is worth pointing out that with some additional condition, the process
(Xi)i∈N may satisfy a stronger mixing property than that satisfied by the
factor process (Vi)i∈N. For example, if the process (Vi)i∈N is αu,v mixing
and (2.6) and (2.9) are satisfied then the process (Xi)i∈N is Ψu,v mixing.
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3. Proof of the main result

The proof of Theorem 2.2 is based on a decomposition of the covariance.

Lemma 3.1. Assume that (Vi)i∈N is η(u,v) mixing in the sense of Definition
2. For any multi indices i1 < · · · < iu < j1 < · · · < jv and 0 < ` ≤ j1 − iu
and bounded functions f and g, we have∣∣Cov(E(f(Xi1 , . . . , Xiu)|V iu),E(g(Xj1 , . . . , Xjv)|V jv))

∣∣
≤ 2‖f‖1

∫
xj1 ,...,xjv

|g| · sup
V
|D(V jv , Ṽiu,jv ,`)|+

∫
xi1 ,...,xiu ,xj1 ,...,xjv

|fg| ηu,v(`)‖N i1,...,iu(·, V iu)‖a · ‖N j1,...,jv(·, Ṽiu,jv ,`)‖b.

Proof. We remark that∣∣Cov(E(f(Xi1 , . . . , Xiu)|V iu),E(g(Xj1 , . . . , Xjv)|V jv))
∣∣

=

∣∣∣∣∣∣∣Cov

 ∫
xi1 ,...,xiu

f ·N i1,...,iu(·, V iu),

∫
xj1 ,...,xjv

g ·N j1,...,jv(·, V jv)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∫

xi1 ,...,xiu ,xj1 ,...,xjv

fg · CovV
(
N i1,...,iu(·, V iu), N j1,...,jv(·, V jv)

)∣∣∣∣∣∣∣ ,
and∣∣CovV

(
N i1,...,iu(·, V iu), N j1,...,jv(·, V jv)

)∣∣ ≤ ∣∣∣CovV

(
N i1,...,iu(·, V iu), D(V jv , Ṽiu,jv ,`)

)∣∣∣
+
∣∣∣CovV

(
N i1,...,iu(·, V iu), N j1,...,jv(·, Ṽiu,jv ,`)

)∣∣∣ .
Now, because (Vi)i∈N satisfies the ηu,v mixing property,∣∣∣CovV

(
N i1,...,iu(·, V iu), N j1,...,jv(·, Ṽiu,jv ,`)

)∣∣∣ ≤ ηu,v(`)‖N i1,...,iu(·, V iu)‖a‖N j1,...,jv(·, Ṽiu,jv ,`)‖b.

On the other hand,∫
V

∫
xi1 ,...,xiu

|f | ·N i1,...,iu(·, V iu)dV = ‖f‖1.

This concludes the proof. �

Lemma 3.2. Assume that (Vi)i∈N is η(u,v) mixing in the sense of Definition
2. For any multi indices i1 < · · · < iu < j1 < · · · < jv and 0 < ` ≤ j1 − iu
and bounded functions f and g, we have∣∣Cov(E(f(Xi1 , . . . , Xiu)|V iu),E(g(Xj1 , . . . , Xjv)|V jv))

∣∣
≤ 2

∫
xi1 ,...,xiu

|f | sup
V
N i1,...,iu(·, V iu)× ‖g‖∞

∫
V

∫
xj1 ,...,xjv

|D(V jv , Ṽiu,jv ,`)|+

∫
xi1 ,...,xiu ,xj1 ,...,xjv

|fg| ηu,v(`)‖N i1,...,iu(·, V iu)‖a · ‖N j1,...,jv(·, Ṽiu,jv ,`)‖b.
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Proof. The proof is done in the same way as the previous one. �

Proof of Theorem 2.2. We shall give the complete proof of the fact that
If (Vi)i∈N is Ψu,v mixing and (2.6) of Assumption 1 is satisfied then (Xi)i∈N
is Ψu,v-mixing.
The other cases are treated similarly. Note that when (2.6) or (2.7) are
satisfied, we use Lemma 3.1 while when (2.8) is fulfilled, we use Lemma 3.2.
From Proposition 2.1, in order to prove that (Xi)i∈N is Ψu,v-mixing, it suf-
fices to prove that it is conditionally Ψu,v-mixing with respect to (Vi)i∈N.
Consider multi indices (i1, . . . , iu) and (j1, . . . , jv) satisfying (?). Let r =
j1 − iu and 0 < ` < r. From Lemma 3.1, (2.6) of Assumption 1 and the
Ψ(u,v) mixing of (Vi)i∈N, we have∣∣Cov(E(f(Xi1 , . . . , Xiu)|V iu),E(g(Xj1 , . . . , Xjv)|V jv))

∣∣
≤ 2‖f‖1κ(r − `)Kv

∫
xj1 ,...,xjv

g‖N j1...xjv (·, V jv))‖1 +

∫
xi1 ,...,xiu ,xj1 ,...,xjv

fg Ψu,v(`)‖N i1,...,iu(·, V iu)‖1 · ‖N j1...,jv(·, Ṽiu,jv ,`)‖1

= 2Kvκ(r − `)‖f‖1‖g‖1 + Ψu,v(`)‖f‖1‖g‖1.

We choose ` = b r2c+ 1 to conclude. �

4. Examples and some applications

In this section, we provide some examples of conditionally independent
random variables (Xn)n∈N given a factor (V1, . . . , Vn) that satisfy conditions
of Theorem 2.2. First of all, we remark that if the conditional mixing has
bounded memory - roughly speaking if the conditional law Xi|V is the same
as Xi|(Vi, . . . , Vi−`) - then we derive strong mixing properties of (Xi)i∈N
from the mixing properties of (Vi)i∈N; additional properties on the structure
of the conditioning are not required. Secondly, we provide examples with
unbounded memory that satisfy Assumption 1.

4.1. Mixing properties for sequence controlled by a bounded mem-
ory of the factor. Note that bounded memory means here memory of or-
der ` ∈ N. In classical risk theory related with conditionally independent
r.v’s (Xn)n∈N given a factor (V1, . . . , Vn) it is very useful to consider that
the conditional distribution of Xi depends only on the value of Vi. This
case corresponds to ` = 0 and is considered for example in Cossette et
al. (2004)[13]. In connection with mixing type of dependence the reader
is referred to Obrein’s (1974)[33] work where the factor is modulated by a
Markov chain.
Next we give the following proposition satisfied for all ` ≥ 0.
Let (u, v) be a couple of integers. Write V i,` = (Vi, . . . , Vi−`), V i1,iu,` =
(Viu , . . . , Vi1−`) and V j1,jv ,` = (Vjv , . . . , Vj1−`).

Proposition 4.1. Let (Xi)i∈N be a sequence of conditionally independent
random variables given (V i,`)i∈N . Let p, q ∈ [1,∞), assume that (Vi)i∈N is
ηu,v mixing with respect to the Lp and Lq norms, with mixing coefficient
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denoted by η(r). Then (Xi)i∈N satisfies also the ηu,v mixing condition with
respect to the Lp and Lq norms and the mixing coefficient is η′(r) = η(r−`).

Proof. With the notation

E(f(Xi1 , . . . , Xiu)|V i1,iu,`) = h1(V i1,iu,`),

and

E(g(Xj1 , . . . , Xjv)|V j1,jv ,`) = h2(V j1,jv ,`),

since f, g are two bounded real functions, we have∣∣Cov(E(f(Xi1 , . . . , Xiu)|V i1,iu,`),E(g(Xj1 , . . . , Xjv)|V j1,jv ,`))
∣∣

=
∣∣Cov(h1(V i1,iu,`), h2(V j1,iv ,`))

∣∣
≤ C(u, v)η(r − `) ‖h1‖p ‖h2‖q ≤ C(u, v)η(r − `) ‖f‖p ‖g‖q ,

using Jensen’s inequality. �

4.2. Mixing properties for sequence controlled by a factor with
an unbounded memory. It should be noted that by unbounded memory
of the factor we mean that the conditional independence is with respect
to a length varying factor vector. Such type of conditioning has not been
considered in the literature to our knowledge. In addition to this fact, our
study is motivated by the interest of such type of conditioning in describing
models with time dependent risks in finance and insurance. Indeed, we
wish to compare the aggregate risk of an insurance portfolio of conditionally
independent risks when the conditioning is done with respect to a bounded
memory of the factor or with respect to unbounded memory and hence
obtain additional information about the magnitude of risk.
Hereafter, we give examples in discrete, absolutely continuous and mixed
cases.

4.2.1. Example in a discrete case. Consider the process (Xi)(i∈N) such that
Xi = Ii ×Bi, where

• Ii’s are Bernoulli r.v.’s conditionally to V i and conditionally inde-
pendent with respect to V i,
• Bi’s are considered independent and identically distributed and in-

dependent of the Ii’s and of V i. We shall denote by µB the common
law.
• (Vi)(i∈N) is a mixing sequence of Bernoulli random variables.

This example is inspired from insurance risk theory: if Ii = 1 then there is
a claim and Bi is the claim amount.
In this example the factor sequence (Vi)i∈N can modulate the economic en-
vironment over time. For example, it could be a Bernoulli random variable,
taking value one in time of crisis and value zero in a stable period.
We shall consider that the conditional law of Ii has the following structure:

P(Ii = 1|V i) =

i∑
j=1

h(Vj)

2i−j
,



SOME MIXING PROPERTIES OF CONDITIONALLY INDEPENDENT PROCESSES 11

where h is a measurable, non negative and bounded function: 0 < ρ ≤
h(v) ≤ κ

2 , with κ < 1 to ensure that P(Ii = 1|V i) < 1. We have:

P(Ii = 0|V i) =
i∑

j=1

ξi0(Vj)

2i−j

with ξi0(v) =
1

2(1− 1
2i

)
− h(v).

Denoting ξi1(v) = h(v), we may write for a ∈ {0, 1}

P(Ii = a|V i) =
i∑

j=1

ξia(Vj)

2i−j
.

Note that ξia is bounded, 0 < τ1 ≤ ξia(v) ≤ τ2. The conditional kernel tran-
sition is N i(·|V i) = δ{0}P(Ii = 0|V i) + δ{1}µBP(Ii = 0|V i), which rewrites

N i(·|V i) =
∑

a∈{0,1}

δ{a}µ
a
BP(Ii = a|V i)

where µ1
B = µB and µ0

B = 1 and δ{.} is the dirac measure.

Lemma 4.2. The transition kernel N i1,...,iu(·|V iu) satisfies conditions (2.6)
and (2.9) of Assumption 1.

Proof. We have

N i1,...,iu(·|V iu) =
u∏
k=1

∑
ak∈{0,1}

δakµ
ak
B P(Iik = ak|V ik

) ≤
u∏
k=1

∑
ak∈{0,1}

δakµ
ak
B

=
∑

a1,...,au∈{0,1}u
δa1,...,auµ

a1
B · · ·µ

ak
B .

On the other hand,

‖N i1,...,iu(·|V iu)‖1 =

∫
V

u∏
k=1

∑
ak∈{0,1}

δakµ
ak
B P(Iik = ak|V ik

)dV

=
∑

a1,...,au∈{0,1}u
δa1,...,auµ

a1
B · · ·µ

ak
B P(Ii1 = a1 . . . Iiu = au).

We remark

P(Ii1 = a1 . . . Iiu = au) =

∫
V

u∏
k=1

ik∑
j=1

ξikak(Vk)

2ik−j
dV

≥ τu1 .

Finally,

sup
V
N i1,...,iu(·|V iu) ≤

(
1

τ1

)u
‖N i1,...,iu(·|V iu)‖1.
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This proves that condition (2.9) is satisfied.
Now, we consider multi indices such that i1 < · · · < iu < iu+ ` ≤ j1 < · · · <
jv

D(V jv , Ṽiu,jv ,`)

=
∑

(a1,...,av)∈{0,1}v
δa1,...,avµ

a1
B × · · · × µ

av
B ×[

P(Ij1 = a1 . . . Ijv = av|V jv)− P(Ij1 = a1 . . . Ijv = av|Ṽjv)
]
.

Denoting Ṽjv = (Ṽ1, . . . , Ṽjv), Ṽj = 0 for j = 1, . . . , iu + ` and Ṽj = Vj for
j > iu + `. We have,∣∣∣P(Ij1 = a1 . . . Ijv = av|V jv)− P(Ij1 = a1 . . . Ijv = av|Ṽjv)

∣∣∣
=

∑
p=1,...,v

kp=1,...,jp

1

2j1−k1
. . .

1

2jv−kv
[ξj1b1 (Vk1) . . . ξjvbv (Vkv)− ξ

j1
b1

(Ṽk1) . . . ξjvbv (Ṽkv)]

≤
(
v

0

)
2v sup

∣∣∣[ξj1b1 (Vk1) . . . ξjvbv (Vkv)− ξ
j1
b1

(ṽk1) . . . ξjvbv (ṽkv)]
∣∣∣+(

v

1

)
sup

∣∣ξia∣∣v 2

2j1−iu−`
× 2v−1 +(

v

2

)
sup

∣∣ξia∣∣v 22

2j1+j2−2(iu+`)
× 2v−2 +

...(
v

v − 1

)
sup

∣∣ξia∣∣v 2v−1

2
∑v−1
k=1 jk−(v−1)(iu+`)

× 2 +(
v

v

)
sup

∣∣ξia∣∣v ∑
kp≤(iu+`)

p=1,...,v

1

2j1−k1
. . .

1

2jv−kv
,

and finally,∣∣∣P(Ij1 = a1 . . . Ijv = av|V jv)− P(Ij1 = a1 . . . Ijv = av|Ṽjv)
∣∣∣ ≤ v∑

i=1

(
v

i

)
(2τ2)v

2i(j1−iu−`)

≤ (4τ2)v

2k
,

with k = j1 − iu − `. We have proved

|D(V jv , Ṽiu,jv ,`)| ≤
1

2k

(
4τ2

τ1

)v
‖N i1,...,iu(·|V iu)‖1,

thus (2.6) is satisfied. �

Remark 4. If the function h is not bounded from below, 0 < h(v) ≤ κ
2 ,

then the functions ξia are not bounded from below and (2.6) and (2.9) are
not satisfied anymore but (2.7) and (2.10) are satisfied. So that by using
Theorem 2.2 we derive mixing properties of the process (Xi)i∈N.
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4.2.2. Example in absolutely continuous case. This subsection is devoted to
the case where the conditional law Xi|V i is absolutely continuous. The
conditional kernel transition is denoted by Ni(dxi, V i) = f iV i

(·)dxi

Example 2. Consider that the conditional law Xi|V i is Pareto(α, θi) where
α > 2 is the shape parameter and θi > 0 is the scale parameter: the condi-
tional density of Xi, i ∈ N, has the form

f iV i(xi;α, θi) = α× θαi
xα+1
i

for xi ≥ θi,

where the scale parameter θi depends on V i with the following structure:

(4.1) θαi =

i∑
j=1

h(Vj)

2i−j
,

and where the function h satisfies 0 < h(v) ≤ τ2.
It is interesting to mention that this model has the following useful represen-
tation: let Xi be distributed as the following conditional distribution given
V i:

Xi|V i = Zi × θi,
where the parameter θi is depending on V i and where Zi is Pareto(α, 1)
distributed and is independent of θi then in this case Xi|V i is Pareto(α, θi)
distributed.

Remark 5. Conditional Pareto models has been proposed and used in some
actuarial contexts in Albrecher et al. (2011)[1] and Constantinescu et al.
(2011)[11]. In these papers, Xi = θi×Zi with Zi as in Example 2 and θi being
Vi-measurable. In our framework, this means that the Xi’s are conditionally
Pareto with respect to Vi i.e. the model is with bounded memory with respect
to (Vi)i∈N. Our model is more general because it allows long term memory.

If the process (Xi)i∈N is as in Example 2, the conditional density of
(Xi1 , . . . , Xiu)|V iu is

Fxi1 ,...,xiu (V iu) =
αu

u∏
k=1

xα+1
ik

u∏
k=1

θαik1{xik≥θik}
.

Proposition 4.3. If 0 < τ1 ≤ h(v) ≤ τ2 for any v then the process of
Example 2 satisfies (2.8) and (2.10) of Assumption 1.

Proof. The fact that (2.10) is satisfied is straightforward from the expression
of Fxi1 ,...,xiu (V iu) and the fact that τ1 ≤ h(v) ≤ τ2 implies: τ1 ≤ (θi)

α ≤ 2τ2.
On one other hand,∣∣∣Fxj1 ,...,xjv (v1, . . . , vjv)− Fxj1 ,...,xjv (0, . . . , 0, viu+`+1, . . . , vjv)

∣∣∣
=

αv

v∏
k=1

xα+1
jk

∣∣∣∣∣
v∏
k=1

θαjk1{xjk≥θjk}
−

v∏
k=1

θ̃αjk1{xjk≥θ̃jk}

∣∣∣∣∣ ,
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where

θ̃i =
i∑

j=1

h(Ṽj)

2i−j

with Ṽj = 0 for j = 1, . . . , iu + ` and Ṽj = Vj for j ≥ iu + `+ 1. Proceeding
as in Subsection 4.2.1, we have that

|
v∏
p=1

θαip −
v∏
p=1

θ̃αip | ≤
(4τ2)v

2p

with p = j1 − iu − `. Also,

|θαi − θ̃αi | ≤
2τ2

2p

and

(4.2) |θi − θ̃i| ≤
2τ2

2p
1

ατ
α−1
α

1

by applying Taylor’s equality. Let us denote by Θi the interval [min(θi, θ̃i),max(θi, θ̃i)].
We get:

D(V jv , Ṽiu,jv ,`) ≤
αv

v∏
k=1

xα+1
jk

(4τ2)v

2p

v∏
k=1

1
{xjk≥τ

1
α
1 }

+
αv

v∏
k=1

xα+1
jk

(2τ2)v
v∏
k=1

1{xjk∈Θjk}
.

So, we conclude that (2.8) is fulfilled by using that the Lebesgue measure of

Θi is |θi − θ̃i| and using (4.2) and Fubini’s Theorem. �

Remark 6. Note that the case of an Exponential conditional law (instead
of a Pareto conditional law) could also be considered. In particular if we
consider an Exponential law with parameter (1/θi) where θi is defined as in
(4.1) with α = 1 and 0 < τ1 ≤ h(v) ≤ τ2 for any v, then (2.8) and (2.10) of
Assumption 1 are satisfied.

4.2.3. Models for applications of the absolutely continuous case. It is inter-
esting to explain further how our conditionally independent model may have
applications in insurance or financial contexts.
Life insurance companies as well as financial institutions use hedging strate-
gies with different portfolio adjustment frequencies: hedging is more frequent
for banks, often weekly for life insurance companies offering variable annu-
ities, and more monthly or quarterly for classical life insurance companies,
even if some financial lines of business of some insurance companies corre-
spond to financial institutions. All those firms face transaction costs, which
prove to be very expensive when things go wrong, both due to liquidity is-
sues and due to other conditions like negative gamma situations. Optimal
hedging strategies in presence of liquidity risk and transaction costs have
been studied by various authors (see e.g. [28] and references therein). Here,
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we do not aim at studying those optimal strategies; if we rather adopt a
P& C loss model approach, we would try to study the impact of correla-
tions between elementary transaction costs on the aggregated transaction
cost. Correlations might come from factors like liquidity and market condi-
tions that vary over time but present some memory. We consider that the
aggregated transaction cost is the sum of infinitely many elementary, corre-
lated transaction costs. Assume that (Zi)i≥1 is a sequence of i.i.d. random
variables representing random transaction costs in a steady environment
(without liquidity shocks or bad market conditions), and that the Vj , j ≥ 1
are random variables which contribute to create liquidity shocks and market
conditions during some time when they take large values. Consider for each
i ≥ 1,

Xi = θi.Zi,

where

θi =

 i∑
j=1

1

2i−j
h(Vj)

1/α

corresponds to a multiplicative factor that takes into account liquidity and
market conditions at time i, the function h is as before, 0 < τ1 ≤ h(v) ≤ τ2.
The Zi, i ≥ 1 are independent from the Vj , j ≥ 1. If Zi is Pareto(α, 1) dis-
tributed then Xi is Pareto(α, θi) distributed and the Xi’s are as in Example
2.
If the variables Vi are bounded and

θi =

 i∑
j=1

1

2i−j
(1 + Vj)

1/α

then,

θαi+1 =
1

2
θαi + 1 + Vi+1,

which enables one to understand the correlation structure between θi and
θi+1, as Vi+1 is independent from θi.
As in the previous sections, in that case also, (2.8) and (2.10) of Assumption
1 are satisfied. The use of Theorem 2.2 then leads to strong mixing processes
of (Xi)i∈N.

4.2.4. Mixed cases. Other examples that have interest in insurance applica-
tions are so called mixed cases where the claim amount Xi has the following
form

• Xi = Ii ×Bi,
• Ii’s are Bernoulli r.v.’s conditionally to V i and conditionally inde-

pendent with respect to V i,
• Bi’s are conditionally independent and conditionally independent of

the Ii’s.

If the Ii’s are as in Subsection 4.2.1 and the Bi’s are as in Example 2
then following along the lines of the previous examples lead to prove that
Conditions (2.8) and (2.10) of Assumption 1 are satisfied.
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Concluding remark. It is well known in the literature that processes sat-
isfying some mixing properties have interesting statistical properties (see
[16, 17, 18, 20, 3, 27, 34, 38] and many others) such as moment inequali-
ties, central limit theorem ... The mixing properties satisfied by our models,
namely (ηu,v)-mixing properties, are not standard ones and some more work
is needed to get these statistical properties. This is the aim of a forthcom-
ing paper ([29]), in particular, we shall prove a self normalized central limit
theorem and study further applications to insurance risk processes.
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Probab. Statist. 29, (1993), 587–597. MR 1251142
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