
Analysis of fast versions of the Euclid Algorithm

Eda Cesaratto ∗ Julien Clément † Benôıt Daireaux‡ Löıck Lhote §

Véronique Maume-Deschamps ¶ Brigitte Vallée ‖

Abstract

There exist fast variants of the gcd algorithm which are
all based on principles due to Knuth and Schönhage. On
inputs of size n, these algorithms use a Divide and Con-
quer approach, perform FFT multiplications and stop
the recursion at a depth slightly smaller than lg n. A
rough estimate of the worst–case complexity of these
fast versions provides the bound O(n(log n)2 log logn).
However, this estimate is based on some heuristics and
is not actually proven. Here, we provide a precise prob-
abilistic analysis of some of these fast variants, and we
prove that their average bit–complexity on random in-
puts of size n is Θ(n(logn)2 log logn), with a precise
remainder term. We view such a fast algorithm as a se-
quence of what we call interrupted algorithms, and we
obtain three results about the (plain) Euclid Algorithm
which may be of independent interest. We precisely
describe the evolution of the distribution during the ex-
ecution of the (plain) Euclid Algorithm; we obtain a
sharp estimate for the probability that all the quotients
produced by the (plain) Euclid Algorithm are small
enough; we also exhibit a strong regularity phenomenon,
which proves that these interrupted algorithms are lo-
cally “similar” to the total algorithm. This finally leads
to the precise evaluation of the average bit–complexity
of these fast algorithms. This work uses various tools,
and is based on a precise study of generalised transfer
operators related to the dynamical system underlying
the Euclid Algorithm.

1 Introduction

Gcd computation is a widely used routine in compu-
tations on long integers. It is omnipresent in rational
computations, public key cryptography or computer al-
gebra. Many gcd algorithms have been designed since
Euclid. Most of them compute a sequence of remainders

∗Facultad de Ingeniera, Universidad de Buenos Aires, Ar-

gentina and GREYC, Université de Caen, France
†GREYC, Université de Caen, F-14032 Caen, France
‡IrisResearch Center, Stavanger, Norway
§GREYC, Université de Caen, F-14032 Caen, France
¶IMB, Université de Bourgogne, F-21078 Dijon Cedex, France
‖GREYC, Université de Caen, F-14032 Caen, France

by successive divisions, which leads to algorithms with
a quadratic bit–complexity (in the worst-case and in the
average-case). Using Lehmer’s ideas [20] (which replace
large divisions by large multiplications and small divi-
sions), computations can be sped-up by a constant fac-
tor, but the asymptotic complexity remains quadratic.
Major improvements in this area are due to Knuth [19],
who designed the first subquadratic algorithm in 1970,
and to Schönhage [24] who subsequently improved it the
same year. They use both Lehmer’s ideas and Divide
and Conquer techniques to compute in a recursive way
the quotient sequence (whose total size is O(n)). More-
over, if a fast multiplication with subquadratic complex-
ity (FFT, Karatsuba...) is performed, then one obtains
a subquadratic gcd algorithm (in the worst-case). Such
a methodology has been recently used by Stehlé and
Zimmermann [25] to design a Least-Significant-Bit ver-
sion of the Knuth-Schönhage algorithm. According to
experiments due to [5] or [22], these algorithms (with a
FFT multiplication) become efficient only for integers of
size larger than 10000 words, whereas, with the Karat-
suba multiplication, they are efficient for smaller inte-
gers (around 100 words). A precise description of the
Knuth-Schönhage algorithm can be found in [29, 22] for
instance.

1.1 Previous results. The average-case behaviour
of the quadratic gcd algorithms is now well understood.
First results are due to Heilbronn and Dixon in the sev-
enties, who studied for the first time the mean number
of iterations of the Euclid Algorithm, then Brent anal-
ysed the Binary algorithm [4], and Hensley [15] provided
the first distributional analysis for the number of steps
of the Euclid Algorithm. Since 90, the Caen Group
[26, 28, 27] has performed an average-case analysis of
various parameters of a large class of Euclidean algo-
rithms. More recently, distributional results have also
been obtained for the Euclid algorithm and some of its
variants: first Baladi and Vallée prove that a whole class
of so–called additive costs of moderate growth follows
an asymptotic gaussian law [2] (for instance, the num-
ber of iterations, the number of occurrences of a given
digit, etc). This year, Lhote and Vallée [21] show that a

more general class of parameters also follows an asymp-
totic gaussian law. This class contains the length of a
remainder at a fraction of the execution, and the bit-
complexity. To the best of our knowledge, there are
yet few results on “efficient” gcd algorithms. In [9], the
authors perform an average-case analysis of Lehmer’s
algorithm, and exhibit the average speed-up obtained
using these techniques. But, as far as we know, there
does not exist any probabilistic analysis of subquadratic
gcd algorithms. This is the goal of this paper to perform
such a study.

1.2 Our results. There are two algorithms to be
analyzed, the HG algorithm and the G algorithm. The
G algorithm computes the gcd, and the HG algorithm
(for Half-gcd Algorithm) only simulates the “first half”
of the G algorithm. We first show that these algorithms
can be viewed as a sequence of the so–called Interrupted
Euclidean algorithms. An Interrupted Euclidean algo-
rithm is a subsequence formed by successive iterations of
the algorithm. On an input (A,B), the plain Euclid al-
gorithm builds a sequence of remainders Ai, a sequence
of quotients Qi, and a sequence of matrix Mi [see Sec-
tion 2.1]. On an input (A,B) of binary size n, the Inter-
rupted Euclidean algorithm E[δ,δ+γ] starts at the index
k of the execution of the Euclid Algorithm, as soon as
the remainder Ak has already lost δ n bits (with respect
to the initial A which has n bits) and stops at index
k+ i as soon as the remainder Ak+i has lost γ n supple-
mentary bits (with respect to the remainder Ak). The
HG algorithm is just an algorithm which simulates the
interrupted algorithm E[0,1/2]. A quite natural question
is: How many iterations are necessary to lose these γ n
bits? Of course, it is natural to expect that this sub-
sequence of the Euclidean algorithm is just “regular”
and locally similar to the “total” Euclidean Algorithm;
in this case, the number of iterations would be close to
γ P (where P is the number of iterations of the “total”
Euclid algorithm). We prove in Theorem 1 that this is
the case.

For a probabilistic study of these fast variants, a precise
description of the evolution of the distribution during
the execution of the plain Euclid Algorithm is of crucial
interest. For real inputs, we know that the continued
fraction algorithm does not terminate (except for ratio-
nals ...). Moreover, as the continued fraction algorithm
is executed, the distribution of reals tends to the distri-
bution relative to the Gauss density ϕ, defined as

(1.1) ϕ(x) =
1

log 2

1

1 + x
.

For rational inputs, one begins with some distribution
on the set of the inputs x := A1/A0 of size n, and

we consider the rationals xk := Ak+1/Ak. We focus
on the first index k where the binary size of xk is less
than (1− δ)n and we denote the corresponding rational
xk by x〈δ〉. What is the distribution of the rational
x〈δ〉? The evolution of this distribution is clearly more
intricate than in the real case, since at the end of the
Algorithm (when δ = 1), the distribution is the Dirac
measure at x = 0. We obtain here a precise description
of this distribution (see Theorem 2 and Figure 1) which
involves another density

(1.2) ψ(x) :=
12

π2

∑

m≥1

log(m+ x)

(m+ x)(m+ x+ 1)
.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

 p
ro

ba
bi

lit
y

x

Theoretical
Experimental

Figure 1: Density distribution of x〈δ〉 in the case δ = 1/2.
This corresponds to the density distribution of the rational
xk := Ak+1/Ak obtained as soon as ℓ(Ak) is smaller than
(1/2)ℓ(A0). The density distribution is plotted against its
theoretical counterparts ψ(x). Here we consider Ωn for
n = 48 (48 bits), the interval [0, 1] is subdivided into equal
subintervals of length 1/50 to estimate the density, and
3 537 944 rational are drawn from Ωn according to the initial
density distribution ϕ by Monte Carlo simulation.

We also need precise results on the distribution of
some truncatures of these remainders. This is done
in Theorem 3. Then, the choice of parameters in the
fast algorithms must take into account this evolution
of distribution. This is why we are led to design some
variants of the classical algorithms, denoted by HG and
G for which the precise analysis can be performed.

The fast versions also deal with other functions, which
are called the Adjust functions. Such functions perform
few steps of the (plain) Euclid Algorithm. However, the
bit-complexity of the Adjust functions depends on the
size of the quotients which are computed during these
steps. Even for estimating the worst–case complexity of
the fast variants, the Adjust functions are not precisely

analyzed. The usual argument is “The size of a quotient
is O(1)”. Of course, this assertion is false, since this is
only true on average. Since the Adjust functions are
related to some precise steps, the size of the quotients
computed at these precise steps may be large. We
are then led to study the probability that the Euclid
Algorithm only produces “small” quotients. This is
done in Theorem 4. And of course, we also need
this result for our truncated data. This is the goal of
Theorem 5.

Finally, we obtain the exact average-case complexity of
our versions of the two main algorithms of interest, the
HG algorithm, and the G algorithm itself. We prove the
following results [Theorems 6 and 7] about the average
bit-complexity B, G of both algorithms, on the set of
random inputs of size n

En[B] = Θ(n(logn)2 log logn),

En[G] = Θ(n(logn)2 log logn).

Furthermore, we obtain some precise information about
the constants which are involved in the Θ–terms. Then,
our proven average bit–complexity of the HG,G algo-
rithms is of the same order as the usual heuristic bound
on the worst-case complexity of HG,G algorithms.

1.3 Methods. All our main conclusions obtained
here are “expected”, and certainly do not surprise the
reader. However, the irruption of the density ψ is not
expected, and an actual proof of this phenomenon is
not straightforward. This is due to the fact that there
is a correlation between successive steps of the Euclid
Algorithm. Then, the tools which are usual in analysis
of algorithms [13], as generating functions, are not well-
adapted to study this algorithm. All the analyses which
will be described here are instances of the so–called
dynamical analysis, where one proceeds in three main
steps: First, the (discrete) algorithm is extended into
a continuous process, which can be defined in terms of
the dynamical system related to the Gauss map. Then,
the transfer operator Hs defined as

Hs[f](x) :=
∑

m≥1

1

(m+ x)2s
f

(
1

m+ x

)

explains how the distribution evolves, but only in the
continuous world. The executions of the gcd algorithm
are now described by particular trajectories (i.e., trajec-
tories of “rational” points), and a transfer “from con-
tinuous to discrete” must finally be performed.

The present paper mainly uses two previous works,
and can be viewed as an extension of them: first, the
average-case analysis of the Lehmer-Euclid algorithm

performed in [9], second the distributional methods de-
scribed in [2, 21]. First, we again use the general frame-
work that Daireaux and Vallée have defined for the anal-
ysis of the Lehmer-Euclid Algorithm, which explains
how the Lehmer-Euclid algorithm can be viewed as a
sequence of Interrupted Euclidean algorithms E[δ,δ+γ].
However, in [9], we only used some “easy” properties of
the transfer operator Hs. We now need proving that
properties which were already crucial in previous distri-
butional analysis [2, 1, 21] –namely, the US Property for
the quasi-inverse (I − Hs)

−1 of the transfer operator–
also hold in our context. The US property can be sum-
marized as follows:
For any ξ, there exists a vertical strip S of the form
|ℜs− 1| ≤ σ for which the following holds:

(i) The quasi-inverse has a unique pôle in S,

(ii) On the left line ℜs = 1−σ, one has (I−Hs)
−1[1] =

O(|ℑs|ξ).

Here, our various theorems lead to study parameters of
various type, whose generating functions involve various
operators Gs,w which depend on two variables s, w.
However, for small w’s, all these operators can be viewed
as a perturbation of the quasi-inverse (I − Hs)

−1 and
we have to prove that the US Property extends to these
perturbated quasi-inverses. In particular, the existence
of a strip S where the US property holds uniformly
with respect to w is crucial in the analysis: the main
choices of the parameters in our versions HG and G of
the fast algorithms depend on the width σ of this strip
(see Theorem 3).

Plan and notations. Section 2 describes the main
algorithms HG and G. Section 3 is devoted to explain
the main steps to be done for obtaining a proven
analysis. We then state our main results of general
interest. In Section 4, we describe the versions HG and
G to be analyzed, and we prove the two main results
about their average bit-complexity. The last Section is
devoted to the proof of the main results of Section 3.
We denote the logarithm in base 2 by lg x, and ℓ(x)
denotes the binary size of integer x, namely ℓ(x) :=
⌊lg x⌋ + 1.

2 Fast and Interrupted Euclidean algorithms

We present in this section the main algorithms studied
in this paper. We first describe the general structure of
the Knuth-Schönhage algorithm. We explain how the
HG algorithm can be seen as a sequence of interrupted
Euclidean algorithms, where the sequence of divisions
is stopped as soon as the integers have lost a fraction of
their number of bits.

2.1 Euclid’s algorithm. Let (A1, A0) be a pair of
positive integers with A1 ≤ A0. On input (A1, A0),
the Euclid algorithm computes the remainder sequence
(Ak) with a succession of divisions of the form

(2.3) Ak = Qk+1Ak+1 +Ak+2

with Qk+1 =

⌊
Ak
Ak+1

⌋
,

and stops when Ap+1 = 0. The integer Qk is the k–
th quotient and the successive divisions are written as

Ak = Qk+1Ak+1,

with Ak :=

(
Ak+1

Ak

)
and Qk :=

(
0 1
1 Qk

)
,

so that

(2.4) A0 = M(i)Ai with M(i) := Q1Q2 · · · Qi.

In the following, we consider a “slice” of the plain
Euclidean Algorithm E , between index i and index j,
namely the interrupted algorithm E(i,j) which begins
with the pair Ai as its input and computes the sequence
of divisions (2.3) with i ≤ k ≤ j − 1. Its output is the
pair Aj together with the matrix

(2.5) M(i,j) =

j∏

k=i+1

Qk, M(1,i) = M(i),

with matrix M(i) defined in (2.4). We define the size of
a matrix M as the maximum of the binary sizes of its
coefficients. The size ℓ(i,j) of the matrix M(i,j) satisfies

(2.6) ℓ(i,j) ≤ 2(j − i) +

j∑

k=i+1

ℓ(Qk)

The (naive) bit-complexity C(i,j) of the algorithm E(i,j),

C(i,j) :=

j∑

k=i+1

ℓ(Ak) · ℓ(Qk)

(2.7) satisfies C(i,j) ≤ ℓ(Ai+1) ·
j∑

k=i+1

ℓ(Qk).

The Lehmer Algorithm [20, 18] replaces large divi-
sions by large multiplications and small divisions. The
fast algorithm applies recursively the principles of
Lehmer, and using fast FFT multiplications of complex-
ity Θ(µ(n)) (with µ(n) = n logn log logn) replaces the
costly computation of the remainder sequence Ai (which

requires O(n2) bit operations), by a sequence of matrix
products: it divides the total Euclidean Algorithm into
interrupted Euclidean algorithms, of the form E(i,j) and
computes matrices of the form M(i,j), defined in (2.5).
The recursion, based on Divide and Conquer techniques,
is stopped when the integers are small enough, and, at
this moment, the algorithm uses small divisions. One
finally obtains a subquadratic gcd algorithm.

2.2 How to replace large divisions by small

divisions? Lehmer remarked that, when two pairs
(A,B) and (a, b) are sufficiently close (i.e., the rationals
A/B and a/b are close enough), the Euclid algorithm on
(A,B) or (a, b) produces (at least at the beginning) the
same quotient sequence (Qi). This is why the following
definition is introduced:

Definition. Consider a pair (A,B) with A ≤ B and an
integer b of length ℓ(b) ≤ ℓ(B). We denote by π[b](A,B)
any pair (a, b) which satisfies

∣∣∣∣
A

B
− a

b

∣∣∣∣ ≤
1

b
.

And the criterion (due to Lehmer and made precise by
Jebelean) is:

Lemma 1. [Lehmer, Jebelean] For a pair (A,B) with
A ≤ B and n := ℓ(B), consider, for m ≤ n, the small
pair (a, b) = π[b](A,B) of length ℓ(b) = m, and the
sequence of the remainders (ai) of the Euclid Algorithm
on the small input (a, b). Denote by k the first integer k
for which ak satisfies ℓ(ak) ≤ ⌈m/2⌉. Then the sequence
of the quotients qi of the Euclid Algorithm on the small
input (a, b) coincide with the sequence of the quotients
Qi of the Euclid Algorithm on the large input(A,B) for
i ≤ k − 3.

Usually, this criterion is used with a particular pair
π[b](A,B) where the integer b is obtained by the m-
truncation of B, i.e., the suppression of its (n − m)
least significant bits. Then a is easy to compute since
it may be chosen itself as the m-truncation of A. In
this case, the π[b] function corresponds to truncation of
both A and B and is denoted by Tm(A,B). However,
the Jebelean criterion holds for any choice of (a, b) =
π[b](A,B), even if the integer a is less easy to compute
in the general case: the integer a can be chosen as the
integer part of the rational (Ab)/B, and its computation
needs a product and a division.

2.3 Interrupted Algorithms. In Jebelean’s prop-
erty (Lemma 1), the Euclid Algorithm on the small pair
(a, b) of binary size m is stopped as soon the remainder
ak has lost ⌈m/2⌉ bits. This is a particular case of the

so–called Interrupted Euclidean Algorithm of parame-
ter δ (with 0 < δ < 1), which stops as soon as the
current remainder has lost ⌊δm⌋ bits (with respect to
the input which has m bits). This (general) interrupted
Algorithm denoted by Eδ, and described in Figure 2, is
defined as follows: On the input (A,B) of Ωn, this algo-
rithm begins at the beginning of the Euclid Algorithm,
and stops as soon as the remainder Ai has lost δ n bits
(with respect to the input B). Then, with the notations
defined in Section 2.1, one has Eδ = E(1,Pδ), with

(2.8) Pδ := min
{
k; ℓ(Ak) ≤ ⌊(1 − δ)n⌋

}
.

Figure 2 also describes the Êδ Algorithm, which is just
a slight modification of the Eδ Algorithm, where the
last two steps are suppressed (in view of applications of

Lemma 1), and P̂δ denotes the variable Pδ − 2. Then,

Pδ, and P̂δ are just the number of iterations of the Eδ, Êδ
algorithms and P1 = P is just the number of iterations
of the Euclid Algorithm.

In the following, it will be convenient to consider more
general interrupted algorithms, of the form E[δ,δ+γ].
The Algorithm E[δ,δ+γ] is defined as follows: On the
input (A,B) of Ωn, this algorithm begins at the Pδ-
th iteration of the Euclid Algorithm, as soon as the
remainder Ak has lost ⌊δ n⌋ bits (with respect to the
input B) and stops when the remainder Ai has lost
⌊γ n⌋ supplementary bits (with respect to the input B).
Then, E[0,δ] = Eδ = E(0,Pδ) and E[δ,γ+δ] = E(Pδ,Pδ+γ),
where Pδ is defined in (2.8). Of course, we can also
design the variants with a hat, where the last two steps
are suppressed.

2.4 Description of the HG Algorithm. The

general principles. This is the Ê1/2 algorithm which
is used in Jebelean’s Lemma. This lemma is a main tool
to compute (in a recursive way) a function HG [for Half-
gcd]. On an input (A,B) of binary size n, this function

returns exactly the same result as Ê1/2, but runs faster.
With the algorithm HG, it is possible to design a fast
algorithm denoted G which computes the gcd itself. Let
us explain the main principles of the HG algorithm.

Suppose that the Euclid Algorithm, on an input (A,B)
of length n, has already performed Pδ iterations. Now,
the current pair, denoted by (A′, B′) has a binary size
close to (1− δ)n. We may use the Jebelean Property to
continue. Then, we choose a length m for truncating,
an integer b of length m, and consider the small pair
(a, b) = π[b](A

′, B′). The HG algorithm on this pair
(a, b) will produce a matrix M which is a matrix which
would have been produced by the Euclid algorithm on
the pair (A′, B′). Then, the pair (C,D) computed as
(CD) = M−1

(
A′

B′

)
is a remainder pair of the Euclid

Algorithm Eδ(A,B)
n := ℓ(B)
i := 1
A1 := A,A0 := B
M0 := I
While ℓ(Ai) > (1 − δ) · n
Qi := ⌊Ai−1/Ai⌋
Ai+1 := Ai−1 −QiAi

Mi := Mi−1 · Qi

i := i+ 1
Return (Ai−1, Ai,Mi−1)

Algorithm bEδ(A,B)
n := ℓ(B)
i := 1
A1 := A,A0 := B
M0 := I
While ℓ(Ai) > (1 − δ) · n
Qi := ⌊Ai−1/Ai⌋
Ai+1 := Ai−1 −QiAi

Mi := Mi−1 · Qi

i := i+ 1
Return (Ai−3, Ai−2,Mi−3)

Figure 2: The Eδ Algorithm, and the Êδ algorithm,
which is a slight modification of the Eδ Algorithm.

algorithm on the input (A,B). The size of the matrix
M is approximately m/2, but smaller than m/2 (due to
the two backward steps of Lemma 1), and thus of the
form (m/2)− r(a, b), where r(a, b) is the number of bits
which are “lost” for the matrix M during the backward
steps. Then, with (2.6),

r(a, b) ≤ 2 max{ℓ(qi) + 1; 1 ≤ i ≤ p(a, b)},

where qi are the quotients that occur in E(a, b), and
p(a, b) the number of steps of E(a, b). If the truncature
length m is chosen as a linear function of the input size
n, of the form m = 2γn, then the size of the pair (C,D)
is approximately equal to [1−δ−γ]n, but slightly larger.
If we wish to obtain a remainder pair (C′, D′) of length
[1 − δ − γ]n, we have to perform, from the pair (C,D)
a certain number of steps of the Euclid Algorithm, in
order to cancel the loss due to the backward steps. This
is the goal of the Adjust function, whose cost will be
≈ (1 − δ)n · r(a, b) [see (2.7)].

Finally, we have designed an algorithm which produces
the same result as the interrupted algorithm E[δ,δ+γ],
and can be described as follows:

(i) it truncates the input (A′, B′), with a truncation
length m = 2γn, and obtains a small pair (a, b) of
length m.

(ii) it performs the HG algorithm on the pair (a, b):
this produces a pair (c, d) and a matrix M.

(iii) it performs the product (CD) := M−1
(
A′

B′

)
.

(iv) It uses the Adjust function, which performs some
steps of the Euclid Algorithm from the pair (C,D)
and stops as soon the current remainder pair
(C′, D′) has a size equal to ⌊(1 − δ − γ)n⌋.

2.5 The usual designs for the HG and G algo-

rithms. How to use this idea for computing (in a re-
cursive way) the HG Algorithm? The usual choice for
γ is γ = 1/4, more precisely m = ⌈n/2⌉. Then, the pre-
vious description provides a method to obtain E[0,1/4]

(with a first choice δ = 0), then Ê[1/4,1/2] (with a second

choice δ = 1/4). Since Ê[0,1/2] = E[0,1/4] · Ê[1/4,1/2], we
are done. Remark that using the “hat” algorithm in
the second step leads to modifying the Adjust function
for this step. We use (for this second step) a so–called
“hat Adjust” function, which may also perform some
backward steps in the Euclid Algorithm on the large
inputs.

The general structure of the algorithm HG is described
in Figure 3. The recursion is stopped when the naive
algorithm Ê1/2 becomes competitive. This defines a
threshold for the binary size denoted by S (remark that
S = S(n) is a function of the input size n).

With this HG algorithm, we can obtain an algorithm
named G which computes the gcd. The idea for
designing such an algorithm is to decompose the total
Euclid Algorithm into interrupted algorithms, as

E[0,1] = E[0,1/2] · E[1/2,3/4] · . . . · E[1−(1/2)k,1−(1/2)k+1] · . . .

Then, the HG algorithm, when running on inputs of
size n/(2k) produced by the E[0,1−(1/2)k] algorithm can
easily simulate the E[1−(1/2)k,1−(1/2)k+1] algorithm.

This decomposition also stops when the naive algorithm
gcd becomes competitive. This defines a threshold for
the length denoted by T (remark that T = T (n) is also
a function of the input size n).
We now consider the HG Algorithm, where all the
products use a FFT multiplication of order

µ(n) = Θ(n logn log logn).

In this case, we choose the recursion depth H so that
the main cost will be the “internal” cost, of order
Θ(µ(n)) logn, since the cost due to the leaves (where the

naive Ê1/2 is performed) will be of asymptotic smaller
order. Then, H satisfies the relation

2H ·
(n

2H

)2

≈≤ µ(n) logn,

Algorithm HG(A,B)
n := ℓ(B)
S := log2 n
Return HG(A,B, S)

Algorithm HG(A,B, S)
1 n := ℓ(B)

2 If n ≤ S then return bE1/2(A,B)
3 M := I
4 m := ⌊n/2⌋;
5 For i := 1 to 2 do

6 (ai, bi) := Tm(A,B)
7 (ci, di,Mi) := HG(ai, bi, S)

8

“
Ci
Di

”
:= M−1

i (A
B)

9 Adjusti(Ci,Di,Mi)
10 (A,B) := (Ci,Di)
11 M := M ·Mi

12 Return (A,B,M)

Algorithm G(A,B)
1 n := ℓ(B)
2 T :=

√
n log n

3 While ℓ(A) ≥ T do

4 (A,B,M1) := HG(A,B)
5 Return gcd(A,B)

Figure 3: General structure of the classical algorithms
HG and G.

so that
n

2H
≈≤ S(n) = log2 n, H ≈≥ lg n−2 lg lg n.

This is the “classical” version of the Knuth–Schönhage
algorithm. Clearly, the cost of this algorithm comes
from three types of operations:

(i) the two recursive calls of line 7;

(ii) the products done at lines 8 and 11: with a clever
implementation, it is possible to use in line 8 the
pair (c, d) just computed in line 7. If all the
matrices and integer pairs have –on average– the
expected size, the total expected cost due to the
products is [12 + 8 + 8] µ(n/4) = 28 µ(n/4);

(iii) the two functions Adjust performed at line 9,
whose total average cost is R(n).

We consider as the set of possible inputs of the HG
algorithm the set

Ωn := {(u, v); 0 ≤ u ≤ v, ℓ(v) = n}

endowed with some probability Pn. We denote by B(n)
the average number of bit operations performed by the

algorithm HG on Ωn. Since each of the two recursive
calls is made on data with size n/2, it can be “expected”
that B(n) asymptotically satisfies

(2.9) B(n) ≈ 2B(
n

2
) + 28 µ(

n

4
) +R(n) for n > S.

Moreover, the average cost R(n) can be “expected” to
be negligible with respect to the multiplication cost
µ(n). If the FFT multiplication is used, with µ(n) =
Θ(n logn log logn), the total average bit–cost is “ex-
pected” to be

B(n) ≈ Θ(µ(n) logn) = Θ(n(logn)2 log logn).

With this (heuristic) analysis of the HG algorithm, it
is easy to obtain the (heuristic) average bit–complexity
of the G algorithm which makes a recursive use of the
HG algorithm and stops as soon as the naive algorithm
becomes competitive. It then stops at a recursion depth
M , when (n

2M

)2

≈≤ µ(n) log n,

so that

n

2M
≈≤ T (n) =

√
n logn, M ≈≥

1

2
lg n− lg lg n.

The average bit–cost G(n) of the G algorithm on data
of size n satisfies

G(n) ≈
M−1∑

i=0

B(
n

2i
) so that G(n) ≈ Θ(B(n)).

3 The main steps towards a proven analysis.

The analysis is based on the Divide and Conquer
equation (2.9), which is not a “true” equality. It is not
clear why a “true” equality should hold, since each of
the two recursive calls is done on data which do not
possess the same distribution as the input data. And,
of course, the same problem will be asked at each depth
of the recursion. We have to make precise the evolution
of the distribution during the Euclid Algorithm, but also
the distribution of the truncated data.
Moreover, we have also to make precise the average bit–
complexity R(n) of the Adjust function. Even for esti-
mating the worst–case complexity of the fast variants,
the Adjust functions are not precisely analyzed. The
usual argument is “The size of a quotient is O(1)”. Of
course, this assertion is false, since this is only true on
average. Since the Adjust functions are related to some
precise steps, the size of the quotient computed at these
precise steps may be large. We are then led to study
the probability that the Euclid Algorithm only produces
“small” quotients.

3.1 Evolution of densities. Consider a density f
on the unit interval = [0, 1]. Any set Ωn is seen as a set
of rationals

Ωn := {x ∈ Q∩]0, 1], x = u/v, ℓ(v) = n}
and is endowed with the restriction of f to Ωn: for any
x0 ∈ Ωn,

Pn,f(x0) :=
1∑

x∈Ωn
f(x)

f(x0).

The evolution of the density during the execution of the
Euclid Algorithm is of crucial interest. We begin with
all the sets Ωn endowed with the probability Pn,f .

For x ∈ Ω, we recall that Pδ(x) is the smallest integer k
where the binary size of xk is less than (1 − δ)ℓ(x). We
are interested in describing the density of the rational
x〈δ〉 defined as

x〈δ〉 := xk when Pδ(x) = k.

This rational is the input for all interrupted algorithms
with a beginning parameter δ. It is then essential to
study the random variable Pδ. Since the rational x
loses ℓ(x) bits during P (x) iterations, it can be expected
that it loses δℓ(x) bits during δP (x) iterations, which
would imply that Pδ(x) is sufficiently close to δP (x).
This is what we call the regularity of the algorithm.
With techniques close to the renewal methods, we prove
a quasi-powers expression for the moment generating
function of Pδ, from which we deduce two results. The
first one is interesting per se, and provides an extension
of the result of Baladi-Vallée [2], which exhibits an
asymptotic gaussian law for P := P1.

Theorem 1. Consider the set Ωn endowed with a
probability Pn,f relative to a strictly positive function f
of class C1. Then, for any δ ∈]0, 1], the random variable
Pδ is asymptotically gaussian on Ωn [with a speed of
convergence of order O(1/

√
n)]. Moreover,

En,ψ[Pδ] ∼
2 log 2

|Λ′(1)| · δn,

Vn,f [Pδ] ∼ (2 log 2)2
∣∣∣∣
Λ′′(1)

Λ′(1)3

∣∣∣∣ · δn.

Theorem 2. There exist n0 and a constant σ > 0,
such that, for any n ≥ n0, for any real δ with 0 < δ < 1,
for any fonction ε : [0, 1] → [0, 1], such that ε(x) ≤ x, for
any interval J ⊂ I, for any strictly positive density f of
class C1, the probability that the rational x〈δ〉 computed
by the Euclid Algorithm belongs to the interval J
satisfies

Pn,f [x〈δ〉 ∈ J] =

(∫

J

ψ(t)dt

)
· [1 + β′

n(δ, J, ε)] .

Here, the density ψ is described in (1.2), the real σ is
the width of the US strip and

β′
n(δ, J, ε) =O

(
ε(|J |)
|J |

)
+

O

(
1

ε(|J |)|J |

) 1
2

2−σ(1−δ)n + O
(
2

σ
2 δn
)
.

The constants in the O-term only depend on the func-
tion f .

3.2 Probabilistic truncations. Finally, we are also
interested by the distribution of the truncated rationals.
We recall that the truncated rationals classically used
are obtained with truncations of numerator A and
denominator B of rational A/B. It is not clear how
to reach the distribution of such truncated rationals.
This is why we define a probabilistic truncation, which
leads to more regular distributions, and also allows us
to apply Jebelean’s Property (Lemma 1).

For x = A/B ∈ Ωn, and m ≤ n, we define πm(x) as
follows:

(1) Choose a denominator b in the set of integers of
binary size m, with a probability proportional to
b. More precisely, we choose a denominator b
according to the law

Pm[b = b0] =
1

θm
· b0 with θm =

∑

b;ℓ(b)=m

b.

(2) Compute the integer a which is the integer part of
x · b. This computation involves the product A · b
then the division of the integer A · b by B. This
can be done in O(µ(n)) with a O–constant larger
than the constant of the multiplication. Of course,
this does not give rise to a practical algorithm.
However, we will see that using this probabilistic
truncation does not change the order of the average
complexity of the HG algorithm.

(3) Define πm(A/B) as the rational a/b, and remark
that the set π−1

m (a/b) is the interval

J
(a
b

)
:=
[a
b
,
a

b
+

1

b

[
, with

∣∣∣J(
a

b
)
∣∣∣ =

1

b
= Θ(2−m).

This is sufficient for applying Jebelean’s criterion
(Lemma 1).

We start with a strictly positive density f of class C1 on
[0, 1]. The function gm = gm(f) defined on Ωm as

gm(f)(y0) =
1

|J(y0)|

∫

J(y0)

f(t)dt

satisfies Pn,f [x;πm(x) = y] = Pm,gm(f)[y]. Further-
more, the function gm(f) is a smoothed version of the
initial function f , and

gm(f)(x) = f(x) +O(|J | · ‖f‖1)

so that
Pm,gm(f)

Pm,f
= 1 +O(2−m).

Since f is a density on [0, 1], the cumulative sum of
gm(x) on Ωm satisfies

∑

x∈Ωm

gm(f)(x) = θm.

This allows a comparison between two probabilities:

Lemma 2. Consider a strictly positive density f of
class C1 on I. For any n, for anym ≤ n, for any y ∈ Ωm,
one has

Pn,f [x;πm(x) = y] = Pm,f [y] · [1 +O(2−m)],

where the constant in the O-term only depends on f .

3.3 Truncations and evolution of densities.

With Theorem 2, the previous comparison of densities
done in Lemma 2, and the optimal choice of ε(x) = x2,
we obtain the following result which will be a central
tool in our analysis.

Theorem 3. Consider the constant σ and the density
ψ of Theorem 2. There exists n0 such that, for any
n ≥ n0, for any real δ with 0 < δ < 1, for any pair of
strictly positive constants σ1, σ2 with σ1 < (2/3)σ, for
a truncation m which satisfies

σ2 δn < m < σ1 (1 − δ)n,

the distribution of the m–truncation of the rational x〈δ〉
computed by the Euclid Algorithm satisfies

Pn,ψ[x; πm(x〈δ〉) = y0] = Pm,ψ[y0] · [1 +O(βn)] ,

with βn = 2−σ3(1−δ)n + 2−σ4δn,

and σ3 = σ − (3/2)σ1, σ4 := inf(σ/2, σ2).

Remark that Lemma 2 is designed to deal with the case
δ = 0.

3.4 Analysis of the Adjust function: the rôle

of small quotients. In the design of fast versions of
the Euclid Algorithm, the rôle of the Adjust function
is important. This is due to the fact that Jebelean’s
Property does not produce rationals of the exact size.
We return to the notations of Section 2.4. Consider a
(large) input (A,B) of size n. During the two backward
steps that are necessary for the Euclid algorithm on the
small input (a, b), the matrix M gets smaller, so that
the rational (C,D) has a larger size. It is then necessary
to perform some steps of the Euclid algorithm on (C,D),
and the cost of these steps [see Section 2.4] is less than

2n · max{ℓ(qi) + 1; 1 ≤ i ≤ p(a, b)},

where qi are the quotients that occur in E(a, b), and
p(a, b) the number of steps of E(a, b). If we wish this cost
to be “small”, it is then crucial to study the probability
that the Euclid Algorithm produces small quotients,
and the set of interest gathers the rationals x for which
all the quotients qi(x) which occur in the Continued
Fraction Expansion of x are “small”. Of course, it is
natural to relate the size of the quotients to the size of
the rational itself, and we are led to introduce the subset
Un of Ωn defined as

Un := {x ∈ Ωn; ℓ(qi(x)) ≤ logn · (log logn)1/2,

(3.10) for 1 ≤ i ≤ p(x)}.

Remark that, by construction, when x = a/b belongs
to Um, the Adjust function for the large input (A,B) of
size n will be less than n logm(log logm)1/2: it will be
negligible with respect to µ(n). More generally, for any
sequence n 7→M(n), we may define

O[<M]
n := {x ∈ Ωn; qi < M(n), for 1 ≤ i ≤ p(x)}.

The following result provides a precise estimate of the
probability that the Euclid Algorithm on inputs of size
n, always produces quotients smaller than M(n).

Theorem 4. [7] There exist n0 and a real σ > 0 such
that, for any strictly positive density f of class C1, for

any n ≥ n0, the probability of the set O[<M]
n satisfies

Pn,f [O[<M]
n] = exp

(
− n

M(n)

)
·
[
1 +O

(
1

M(n)

)]
+

+O(2−σn).

In particular, when ℓ(M(n)) = logn · (log logn)1/2, the
probability of the set Un satisfies

Pn,f [Un] = 1 −O(n1−(log log n)1/2

).

We also need the same type of result for our variables
πm(x〈δ〉).

Theorem 5. Consider the general framework of The-
orem 3. The probability that the rational πm(x〈δ〉) be-
longs to the set Um of small quotients satisfies

Pn,ψ[x;πm(x〈δ〉) ∈ Um] = 1 −O(m1−(log logm)1/2

).

Due to Lemma 2, this is also true for the case δ = 0 .

4 The algorithms to be analyzed.

There are two main differences between the usual HG
and G Algorithm and our versions to be analyzed which
are denoted as HG and G. See Figure 4.

(i) the truncatures Tm defined in Section 2.2 are
replaced by probabilistic truncatures πm, as defined
in Section 3.3.

(ii) For the HG algorithm, the number of recursive calls
L and the degree of truncatures (i.e., the ratio
m/n) are not the same as in the HG Algorithm.
The algorithm HG is also built as a Divide and
Conquer Algorithm; however, the relations between
the truncation m and the parameter δ, crucial for
applying Theorems 3 and 5, lead to a recursive
algorithm HG with L recursive calls, where L
depends on the width of the US strip and can be
greater than 2.

(iii) The study is done when the initial density equals
ψ. This choice makes easier the study of various re-
cursions. The constants which appear in Theorems
6 and 7 are relative to this particular case. Since
any another strictly positive density f satisfies

min f

maxψ
≤ En,f [C]

En,ψ [C]
≤ max f

minψ
,

Theorems 6 and 7 hold with any strictly positive
density, with other constants, which depend on f .

As before, the recursive calls in the HG Algorithm

are stopped when the naive Ê1/2 Algorithm becomes
competitive. The calls of the G Algorithm to the HG
algorithm are stopped when the naive gcd algorithm
becomes competitive.
We now describe more precisely the point (ii).

4.1 The first recursive call. Inside the first recur-
sive call of G to HG, the parameter δ belongs to [0, 1/2],
and the possible values of (1 − δ) vary between 1 and

Algorithm HG(A,B)
1 n := ℓ(B)
2 S := log2 n
3 Return HG(A,B, S)

Algorithm HG(A,B, S)
1 n := ℓ(B)

2 If n ≤ S then return bE1/2(A,B)
3 M := I
4 m := ⌊n/L⌋;
5 For i := 1 to L do

6 (a, b) := πm(A,B)
7 (ci, di,Mi) := HG(a, b, S)

8

“
Ci
Di

”
:= M−1

i (A
B)

9 Adjusti (Ci,Di,Mi)
10 (A,B) := (Ci,Di)
11 M := M ·Mi

12 Return (A,B,M)

Algorithm G(A,B)
1 n := ℓ(B)
2 T :=

√
n log n

3 While n ≥ T do

4 (A,B,M) := HG(A,B)
5 Return gcd(A,B)

Figure 4: General structure of the algorithms HG and
G to be analyzed. The integer L ≥ 2 defined as
L := max(2, ⌈4/σ⌉) depends, via the strip width σ, on
the US property of the Euclidean Algorithm.

1/2. The truncation m is chosen of the form m = n/L
with an integer L ≥ 2. Then there are L recursive calls
of HG to himself, for values of δi of the form

(4.11) δi =
i

2L
, with 0 ≤ i ≤ L− 1.

For i ≥ 1, the following constraints

2

L
δn ≤ m =

1

L
n ≤ 2

L
(1 − δ)n,

lead to choose L greater than ⌈4/σ⌉, where σ is the strip
width, so that Theorems 3 and 5 can be applied with
σ4 = σ3 = 1/L. Denote by BL the bit–complexity of
the HG Algorithm with a number of calls equal to L.
Then, Theorem 3 and Lemma 2 (for i = 0) entail the
relation

En,ψ [BL] =

(
L−1∑

i=0

E(1−δi)n,ψ[BL]

)
·
[
1 +O

(
2−n/L

)]
+

L∑

i=1

En,ψ[Ai] +

L∑

i=1

En,ψ[Mi],

where Ai is the bit complexity of the i-th Adjust
function, and Mi is the bit complexity of the various
multiplications done during the i-th loop. We stop the
recursion at a recursion depth H for which

LH ·
(n

LH

)2

≈≤ Θ(L2)µ(n) log n,

so that H = Θ

(
logn

logL

)
,

n

LH
= log2 n.

Finally, with Theorem 3, the total cost of the first call
of G to HG is equal to

En,ψ[BL] = (1 +O(
1

log logn
)) [1 + ε(n)]Cn.

Here, the first error term comes from the cost of the
leaves due to the previous choice of H , and Cn is the
mean cost of all the functions Adjust and the products,
the sum taken over all the nodes of the tree of the
recursive calls and ε(n) is the error term which comes
from the comparison of the distributions made with
Theorem 3. Each application of Theorem 3, at each
node of a branch, gives rise to a multiplicative term of
the form [1 + εi]. The total error term ε(n) (along a
branch) is then of the form

ε(n) :=

H∑

i=1

εi = O(log n)O
(
2−n/(L

H)
)

= O
(
n− log n

)
.

Multiplications. The multiplications are done between
integers of size n/(2L) and integers of size (1 − δi)n
defined in (4.11). The cost En,ψ[Mi] of the products
performed during the i-th loop is thus (2L−i)µ(n/(2L)).
The total cost of the product is then

(4.12)

L∑

i=1

En,ψ[Mi] = Θ(L2)µ(
n

2L
).

Adjust functions. The mean cost of the i-th function
Adjust decomposes as

(4.13) En,ψ[Ai] = En,ψ[Ai · 1U(i)] + En,ψ [Ai · 1V(i)].

Here, U (i),V(i) are the ordinary and exceptional subsets
relative to small quotients, namely (with m = n/L)

U (i) := [x; πm(x〈δi〉) ∈ Um],

and the set Un is defined in (3.10). Together with
Theorem 5 which proves that

Pn,ψ[x 6∈ U (i)] = O(m1−(log logm)1/2

),

the decomposition (4.13) entails the estimate

En,ψ[Ai] = Θ(L) m logm (log logm)1/2 +

Θ(L)O(m2)O
(
m1−(log logm)1/2)

= Θ(L)µ(
n

L
)

(
1

log log(n/L)

)1/2

.

The total mean cost of the Adjust functions is then

(4.14) Θ(L2)µ(
n

L
) ·
(

1

log log(n/L)

)1/2

.

Total mean cost Cn. The mean cost Cn is the sum of the
mean costs of all the functions Adjust and the products,
at any node of the tree of the recursive calls. Relations
(4.12) and (4.14) entail the equality

Cn = Θ(L)
H∑

h=1

Lhµ(
n

2Lh
) +

Θ(L)

H∑

h=1

Lhµ(
n

Lh
) ·
(

1

log log n
Lh

)1/2

= Θ

(
L

logL

)
µ(n) logn ·

[
1 +O

(
1

log log logn

)1/2
]
.

Finally, we have proven the following

Theorem 6. Consider the HG algorithm defined in
Figure 3, relative to a parameter L which satisfies
L ≥ max(⌈4/σ⌉, 2), where σ is the width of the US strip.
The average bit–complexity BL of this HG algorithm on
inputs of size n satisfies

En,ψ[BL] = Θ
(L

logL

)
µ(n) log n

[
1 +O

(1

log log logn

) 1
2
]
,

where the constants in the O and Θ–terms are uniform
with respect to L.

4.2 The k-th recursive call. The k-th recursive
call of G to HG is made on integers with size nk =
n(1/2)k−1. It deals with values δ which belong to
the interval [1 − (1/2)k−1, 1 − (1/2)k]. We consider a
truncation mk of the form mk = nk/Lk with an integer
Lk ≥ 2, and the following constraints due to Theorem
3 are now:

1

2k−1Lk
δn ≤ mk =

1

Lk
nk ≤ 2k−1

Lk
(1−δ)nk =

1

Lk
(1−δ)n.

We can choose Lk equal to L, and then Theorems 3 and
5 can be applied. Then, in the same vein as previously,

the bit-complexity Bk,L of the k-th recursive call is

En,ψ[Bk,L] =
[
1 +O(2−nk)

]
Θ
(L

logL

)
µ(nk) lognk ×

[
1 +O

(
1

log log lognk

)1/2
]
,(4.15)

where the first factor is due to Theorem 3, and the other
factors due to Theorem 6.

4.3 End of the recursion. We stop calling the
algorithms HG inside the G algorithm when the naive
gcd algorithm becomes competitive, namely, when the
bound T (n) = nM (see Figure 4) satisfies

n2
M = Θ

(
L

logL

)
µ(nM) lognM ,

so that nM =
√
n logn, M = Θ(logn).

Then the total cost G of the G Algorithm satisfies

En,ψ[G] =

M∑

k=1

En,ψ[Bk,L]

= Θ

(
L

logL

)
n log2 n (log logn) · [1 + ε′(n)] ,

where the error term ε′(n) satisfies

1+ε′(n) =
[
1 +O(n−√

n)
]
·
[
1 +O

(
1

log log logn

)1/2
]
,

so that ε′(n) = O

(
1

log log logn

)1/2

.

Finally, we have proven the following:

Theorem 7. Consider the G algorithm defined in
Figure 3, relative to a parameter L which satisfies
L = max(⌈4/σ⌉, 2), where σ is the width of the US
strip. The average bit–complexity G of this G algorithm
on inputs of size n satisfies

En,ψ[G] = Θ

(
L

logL

)
n log2 n log logn ×

[
1 +O

(
1

log log logn

)1/2
]
,

where the constants in the O and Θ–terms are uniform
with respect to L.

5 Dynamical Analysis: Proofs of main

Theorems 1, 2, 4.

Here, we explain how to prove these Theorems. We
first present the general framework of the so–called dy-
namical analysis, which uses various tools, that come
from analysis of algorithms (generating functions, here
of Dirichlet types, described in 5.3) or dynamical sys-
tems theory (mainly transfer operators Hs, described
in 5.4). We introduce the main costs C of interest
(in 5.2), and their related Dirichlet series, for which we
provide an alternative expression with the transfer op-
erator (in 5.5). For obtaining the asymptotic estimates
of Theorems 1, 2, 3, 5, we extract coefficients from these
Dirichlet series, in a “uniform way”. Then, Property US

(already described in 1.3) is crucial here for applying
with success the Perron Formula, as in previous results
of Baladi and Vallée [2], where this Property is proven
to hold for the quasi-inverse (I − Hs)

−1. However, the
true quasi-inverse is replaced here by some of its pertur-
bated versions for which we have to prove that Property
US also holds. A sketch of this proof is done in 5.7.

5.1 The Euclidean Dynamical system. When
computing the gcd of the integer-pair (a0, a1), Euclid’s
algorithm performs a sequence of divisions. A division
a = bq + r replaces the pair (u, v) with the new pair
(r, u). If we consider now rationals instead of integer
pairs, there exists a map S which replaces the (old) ra-
tional u/v by the (new) rational r/u, defined as

S(x) =
1

x
−
⌊

1

x

⌋
, S(0) = 0.

When extended to the real interval I = [0, 1], the pair
(I, S) defines the so–called dynamical system relative to
Euclid algorithm. We denote by H the set of the inverse
branches of S,

H = {h[q] : x→ 1

q + x
; q ≥ 1},

and by Hp the set of inverse branches of depth p (i.e.,
the set of inverse branches of Sp), namely Hp = {h =
h1 ◦ · · · ◦ hp;hi ∈ H, ∀i}. The set H⋆ := ∪pHp is the set
of all the possible inverse branches of any depth. Then,
the sequence (2.3) builds a continued fraction

(5.16)
u

v
= h(0) with h = h1 ◦ h2 ◦ . . . ◦ hp ∈ Hp.

One then associates to each execution of the algorithm a
unique LFT h ∈ H⋆ whose depth is exactly the number
p of divisions performed. Remark that the i-th LFT
hi used by the algorithm is exactly the LFT relative to
matrix Qi of Section 2.1, so that the LFT h1◦h2◦. . .◦hi

is relative to matrix M(i) of Section 2.1. Then, the
CF–expansion (5.16) of a1/a0, when splitted at depth
i, creates two LFT’s bi := h1 ◦ h2 ◦ . . . ◦ hi−1 and
ei := hi ◦ . . . ◦ hp defining each a rational number: the
“beginning” rational bi(0), and the “ending” rational
ei(0). The “ending” rational ei(0) can be expressed with
the remainder sequence (ai)

ei(0) := hi+1 ◦ hi+2 ◦ · · · ◦ hp(0) =
ai+1

ai
,

while the “beginning” rational bi(0) can be expressed
with the two co-sequences (ui), (vi) related to coeffi-
cients of matrix M(i)

bi(0) := h1 ◦ h2 ◦ · · · ◦ hi−1(0) =
|ui|
|vi|

.

The main parameters of interest of the Euclid Algorithm
involve the denominators sequences ai, vi, which are
called the continuants. The continuants are closely
related to derivatives of LFT’s: for any LFT h, the
derivative h′(x) can be expressed with the denominator
function D defined by D[g](x) = cx+ d

for g(x) =
ax+ b

cx+ d
with gcd(a, b, c, d) = 1,

as

(5.17) h′(x) =
deth

D[h](x)2
.

And, finally, since any LFT h ∈ H⋆ has a determinant
of absolute value equal to 1, one has:

(5.18) vi = |b′i(0)|−1/2, ai = |e′i(0)|−1/2.

5.2 Costs of interest. We now describe the main
costs that intervene in this paper. For Theorem 1, we
consider the cost C1 := Pδ for δ ∈ [0, 1], defined by the
relation (2.8). This means that Pδ(x) = k iff

ℓ(xk) ≤ ⌊(1 − δ)ℓ(x)⌋ < ℓ(xk−1).

For Theorem 2, we consider the cost C2 (which depends
on the interval J),

C2(x) = 1{x〈δ〉∈J}.

For Theorem 4, we consider the cost C3 (which depends
on an integer M)

C3(x) = 1Ω[<M](x),

where Ω[<M] is the subset of Ω formed with the ratio-
nals whose all the quotients of the Continued Fraction
expansion are less than M .

5.3 Dirichlet series. For analysing a cost C, we deal
with the generating Dirichlet series of this cost C. We
denote by Ω, Ω̃ the set of possible inputs,

Ω := {(u, v); 0 ≤ u ≤ v},
Ω̃ := {(u, v); 0 ≤ u ≤ v, gcd(u, v) = 1}.

We denote by Ω̃n,Ωn the subsets of inputs with ℓ(v) =
n, and we will explain later why it will be sufficient to
deal with inputs of Ω (which is, from the algorithmic
point of view, the set of trivial inputs...).

To any cost C, defined on Ω or Ω̃, we associate Dirichlet
series

FC(s) =
∑

(u,v)∈Ω

1

v2s
C(u, v), F̃C(s) =

∑

(u,v)∈eΩ

1

v2s
C(u, v).

Then,

FC(s) =
∑

v≥1

cv
v2s

, F̃C(s) =
∑

v≥1

c̃v
v2s

,

where cv, c̃v denote the cumulative costs of C on

ωv := {(u, v) ∈ Ω}, ω̃v := {(u, v) ∈ Ω̃},

namely,

cv =
∑

(u,v)∈ωv

C(u, v), c̃v =
∑

(u,v)∈eωv

C(u, v).

For the trivial cost (C ≡ 1), the corresponding cumula-
tive costs av or ãv are just the cardinalities of subsets
ωv, ω̃v. The mean values of the cost C on Ωn, Ω̃n are
then given by the ratio of partial sums,

(5.19) En[C] =

∑
ℓ(v)=n cv∑
ℓ(v)=n av

, Ẽn[C] =

∑
ℓ(v)=n c̃v∑
ℓ(v)=n ãv

.

We are mainly interested by some particular costs C.
We will provide alternative expressions for FC(s), which
deal with the transfer operator Hs relative to the
Euclidean dynamical system. Then, the singularities
of the Dirichlet series will be related to the dominant
spectral objects of the transfer operator Hs, and become
apparent. This will lead to the asymptotic study of the
coefficients of these Dirichlet series. We first recall some
basic facts about transfer operators.

5.4 Transfer operators. The main tool of dynami-
cal analysis is the transfer operator [23], denoted by Hs.
It generalizes the density transformer H that describes
the evolution of the density: if f = f0 denotes the initial
density on I, and f1 the density on I after one iteration

of S, then f1 can be written as f1 = H[f0], where H is
defined by

(5.20) H[f](x) =
∑

h∈H
|h′(x)| f ◦ h(x).

It is useful to introduce a more general operator that
depends on a complex parameter s,

Hs[f](x) =
∑

h∈H
|h′(x)|s f ◦ h(x)

=
∑

m≥1

1

(m+ x)2s
f

(
1

m+ x

)
,

and multiplicative properties of derivatives entail that

Hp
s[f](x) =

∑

h∈Hp

|h′(x)|s f ◦ h(x),

(I − Hs)
−1[f](x) =

∑

h∈H⋆

|h′(x)|s f ◦ h(x).

Now, relation (5.17) between the denominator and the
derivative of a LFT, and the fact that any element of
H⋆ has a determinant equal to ±1, entail an alternative
expression for the transfer operator,

Hp
s[f](x) =

∑

h∈Hp

1

D[h](x)2s
f ◦ h(x)

(I − Hs)
−1[f](x) =

∑

h∈Hn

1

D[h](x)2s
f ◦ h(x),

which shows, with (5.18) that the transfer operator can
be viewed as a generating operator for denominator
sequences ai, vi.

5.5 The Dirichlet series FC(s). We look for an
alternative expression of the Dirichlet series FC(s), as a
function of operator Ht.

Cost C3 for Theorem 5. The Dirichlet series relative to
the third cost C3 is

F3(s) = (I − H[<M],s)
−1[f](0),

and involves the the constrained operator H[<M],s de-
fined by

H[<M],s[f] :=
∑

m<M

1

(m+ x)2s
· f
(

1

m+ x

)
.

This constrained operator can be viewed (when M is
large) as a perturbation of the plain transfer operator
Hs.

Cost C1 for Theorem 1. A main tool for studying
the second cost Pδ, via its moment generating function

E[exp(tPδ)], is the Dirichlet series F1(s, w, t) which
depends on three parameters s, w, t and is equal to

(I − Hs+w)−1 ◦ (Hs+w − Hs) ◦ (I − etHs)
−1[f](0).

Cost C2 for Theorem 2. A main tool for studying the
distribution of x〈δ〉 (via the estimate of Pn[x〈δ〉 ∈ J] is
the Dirichlet series which depends on three parameters
s, w, together with the interval J ,

F2(s, w, J) = (I − Hs+w)−1[fs,w,J](0) with

fs,w,J(x) = 1J(x) · (Hs+w − Hs) ◦ (I − Hs)
−1[f](x).

5.6 Spectral properties of the transfer operator

Hs We now recall the main properties of the transfer
operator Hs and its quasi-inverse (I − Hs)

−1. These
properties depend on the Banach space where the
operator acts. Here, the Banach space is C1(I), and
we recall now the main properties of the operator Hs,
when acting on this functional space.

For ℜ(s) > 1/2, the operator Hs acts on C1(I) and the
map s → Hs is analytic. For s = 1, the operator is
quasi–compact: there exists a spectral gap between the
unique dominant eigenvalue (that equals 1, since the
operator is a density transformer) and the remainder
of the spectrum. By perturbation theory, these facts —
existence of a dominant eigenvalue λ(s) and of a spectral
gap— remain true in a complex neighborhood V of s =
1. There, the operator splits into two parts: the part
relative to the dominant eigensubspace, denoted Ps,
and the part relative to the remainder of the spectrum,
denoted Ns, whose spectral radius is strictly less than
η|λ(s)|(with η < 1). This leads to the following spectral
decomposition

Hs[f](x) = λ(s)Ps[f](x) + Ns[f](x),

which extends to the powers Hn
s of the operator

(5.21) Hn
s [f](x) = λn(s)Ps[f](x) + Nn

s [f](x),

and finally to the quasi-inverse (I − Hs)
−1

(5.22)

(I−Hs)
−1[f](x) =

λ(s)

1 − λ(s)
Ps[f](x)+(I−Ns)

−1[f](x).

The first term on the right admits a pole (of order 1)
at s = 1, while the second term is analytic on the half–
plane {ℜ(s) > 1}. The dominant eigenvalue λ(s) is
analytic in a neighborhood of s = 1, and the pressure
function Λ(s) := logλ(s) plays an important rôle.

5.7 US Property for the Dirichlet series FC(s).
With this alternative expression of FC(s) at hand, we
now perform the second step: we find the dominant
singularities of this Dirichlet series and their nature, and
then transfer this information for obtaining asymptotic
expressions of their coefficients. As a main tool, we rely
on convenient “extractors” which express coefficients of
series as a function of the series itself. There exist
an easy “extractor” for Dirichlet series: Tauberian
Theorems. However, they do not provide remainder
terms, and they are not adapted for our study, since
we wish to obtain uniform estimates with respect to
auxiliary parameters δ, w, t, J . We then adopt the
Perron Formula, which may provide remainder terms,
as soon as we have a precise knowledge of FC(s) on
vertical strips.

The Perron Formula of order two (see [12]) is valid for a
Dirichlet series F (s) =

∑
n≥1 ann

−s and a vertical line
ℜs = L > 0 inside the convergence domain of F ,

Ψ(T) :=
∑

n≤T
an(T − n) =

1

2iπ

∫ L+i∞

L−i∞
F (s)

T s+1

s(s+ 1)
ds .

It is next natural to modify the integration contour
ℜs = L into a contour which contains a unique pole
of F (s), and it is thus useful to know that the Property
US [Uniform Estimates on Strips] holds [see Section 1.3].

From works of Dolgopyat [11] and Baladi-Vallée [2], we
know that (I − Hs)

−1 satisfies the US Property, with
a strip of width σ. The real σ mentioned in Theorem
2, 3 and 5 is precisely the one associated to this US

Property.

For Theorem 2, the Dirichlet series (1/w)F2(s, w, J)
defined in Section 5.5 can be viewed as a perturbation
of

F2(s, J) := (I − Hs)
−1[1J · H′

s ◦ (I − Hs)
−1[f]](0).

This Dirichlet series F2(s, J) involves the operator
H′
s := (d/ds)Hs, has a pôle of order 2 at s = 1, and

satisfies for s close to 1,

F2(s, J) ∼ 1

(s− 1)2

(
1

λ′(1)

)2

ϕ(0)

(∫

J

H′[ϕ](t)dt

)
,

where ϕ is the Gauss density defined in (1.1). This
explains why ψ = H′[ϕ] introduced in (1.2) plays a
central rôle in our analyses.

For Theorem 4, Cesaratto and Vallée studied in [7] the
constrained operator H[<M],s defined by

H[<M],s[f] :=
∑

m<M

1

(m+ x)2s
· f
(

1

m+ x

)

and proved that it satisfies the US Property on the same
strip as the plain quasi-inverse.

6 Conclusion

This paper provides the first average-case analysis of
a subquadratic gcd algorithm. We therefore extend
the domain of applicability of dynamical analysis tech-
niques, and show that such methods are also efficient
for studying more complex Euclidean algorithms. The
type of analysis performed here requires a precise study
of the interrupted algorithms, and a precise description
of the evolution of the distribution during the execution
of the algorithm. This heavily uses the powerful tools
of distributional analysis provided by [2, 21].
It would be also interesting to adapt the methodology
developed here to other subquadratic gcd algorithms.
We have in mind the algorithm recently designed by
Stehlé and Zimmermann [25], based on a division using
the least significant bits of the integers. The analysis
of the plain gcd algorithm using this division is done
in [10]. This is clearly a first step in that direction;
however, a complete analysis of the SZ Algorithm would
use Property US, and this Property is not known to hold
in the context of the dynamical system related to this
gcd using the least significant bits. Anyway, comparing
the average–case behaviour of the SZ algorithm to other
HG algorithms would be interesting since it would point
out the influence of the division used, and explain
experimental results observed in [25, 22].

References

[1] Baladi, V. and Vallée, B. Exponential Decay
of Correlations for surface semi-flows without finite
Markov partitions, Proceedings of the American Math-
ematical Society, 133 (3) pp 865-874, 2004.

[2] Baladi, V. and Vallée, B. Euclidean Algorithms
are Gaussian, Journal of Number Theory, Volume 110,
Issue 2 (2005) pp 331–386.

[3] Bedford, T., Keane, M., and Series, C., Eds.
Ergodic Theory, Symbolic Dynamics and Hyperbolic

Spaces, Oxford University Press, 1991.
[4] Brent, R.P. Analysis of the Binary Euclidean

algorithm, Algorithms and Complexity, New directions
and recent results, ed. by J.F. Traub, Academic Press
1976, pp 321–355.

[5] Cesari, G. Parallel Implementation of Schönhage’s
Integer GCD Algorithm, Proceedings of ANTS-III,
LNCS 1423, pp64-76.

[6] Cesaratto, E. Remarks and extensions on the paper
“Euclidean algorithms are gaussian”, by V. Baladi et
B. Vallée, in preparation.

[7] Cesaratto, E. and Vallée, B. Personal communi-
cation, to be submitted.

[8] Dixon, J. D. The number of steps in the Euclidean
algorithm, Journal of Number Theory 2 (1970), 414–
422.

[9] Daireaux, B., and Vallée, B. Dynamical analysis
of the parameterized Lehmer-Euclid Algorithm, Com-
binatorics, Probability, Computing, pp 499–536 (2004).

[10] Daireaux, B., Maume-Deschamps, V., Vallée, B.

The Lyapounov Tortoise and the Dyadic hare, Discrete
Mathematics and Theoretical Computer Science 2005,
Proceedings of AofA’05, pp 71-94 (2005).

[11] Dolgopyat, D. On decay of correlations in Anosov
flows, Ann. of Math. 147 (1998), pp 357–390.

[12] Ellison, W. and Ellison, F. Prime Numbers,

Hermann, Paris, 1985.
[13] Flajolet, P. and Sedgewick, R. Analytic Combi-

natorics, Book in preparation (1999), see also INRIA
Research Reports 1888, 2026, 2376, 2956.

[14] Heilbronn, H. On the average length of a class of
continued fractions, Number Theory and Analysis, ed.
by P. Turan, New-York, Plenum, 1969, pp 87-96.

[15] Hensley, D. The number of steps in the Euclidean
algorithm, Journal of Number Theory 49, 2 (1994),
142–182.

[16] Jebelean, T. Practical Integer Division with Karat-
suba Complexity Proceedings of ISSAC’97.

[17] Jebelean, T. A Double-Digit Lehmer–Euclid Algo-
rithm for finding the GCD of Long Integers. Journal of
Symbolic Computation (1995) 19, pp 145–157.

[18] Knuth, D.E. The art of Computer programming,
Volume 2, 3rd edition, Addison Wesley, Reading,
Massachussets, 1998.

[19] Knuth, D.E. The analysis of algorithms, Actes du
Congrès des Mathématiciens, Volume 3, pp 269-274,
Gauthier-Villars 1971.

[20] Lehmer, D. H. Euclid’s algorithm for large numbers.
Am. Math. Mon. (1938) 45 pp 227–233.

[21] Lhote, L. and Vallée, B. Sharp estimates for the
main parameters of the Euclid Algorithm, Proceedings
of LATIN’06, LNCS 3887, pp 689-702.

[22] Möller, N. On Schönhage’s algorithm and sub-
quadratic integer gcd computation, submitted.

[23] Ruelle, D. Thermodynamic formalism, Addison
Wesley (1978).

[24] Schönhage, A. Schnelle Berechnung von Ketten-
bruchentwicklungen, Acta Informatica pp 139–144
(1971)

[25] Stehlé, D. and Zimmermann, P. A Binary Recur-
sive Gcd Algorithm, Proceedings of ANTS’04, LNCS
3076 (2004), pp 411-425.

[26] Vallée, B. Dynamical Analysis of a Class of
Euclidean Algorithms, Theoretical Computer Science,
vol 297/1-3 (2003) pp 447–486.

[27] Vallée, B. Euclidean Dynamics, [55 pages], Discrete
and Continuous Dynamical Systems, 15 (1) May 2006,
pp 281-352.

[28] Vallée, B. Digits and Continuants in Euclidean Al-
gorithms. Ergodic Versus Tauberian Theorems, Jour-
nal de Théorie des Nombres de Bordeaux 12 (2000) pp
531-570.

[29] Yap, C.K. Fundamental Problems in Algorithmic Al-

gebra, Princeton University Press (1996).

