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A stronger ergodi property is mixing. If � is mixing, we have onvergene to equilibrium:limn!1 Z ' Æ fn dLeb = Z 'd� ; (1.2)and more generally, for any pair of square integrable observables we have deay of theoperational orrelations:limn!1�Z ' Æ fn  dLeb� Z 'd� Z  dLeb� = 0 : (1.3)(Essentially equivalently, the lassial orrelations tend to zero, whih is the same aslimn!1 R ('Æfn) d� = R 'd� R  d�. The proofs below (see e.g. (7.1)) apply to bothnotions, and we onentrate on the operational orrelations, more aessible experimen-tally.) When (1.2{1.3) hold, a natural question is: \how fast does the onvergene takeplae?" Suh quanti�ed information on rates of mixing may sometimes be obtained forsmooth enough observables, and often yields a entral limit theorem for them. See e.g.[Yo1℄ and referenes therein for a disussion of this lass of problems and some spei�examples of uniformly and nonuniformly hyperboli dynamial systems where the rateof mixing is exponential. One of these examples is the quadrati family x 7! a� x2 onthe interval for \good" (so alled Collet{Ekmann or Benediks{Carleson) values of theparameter a, or more generally unimodal maps satisfying ertain axioms.Our present objet of study is small random perturbations of dynamial systems.Sine our results are for independent identially distributed perturbations of good uni-modal maps, we an be a little more spei� without being too tehnial: let f : I ! Ibe a smooth dynamial system with f(I) a subset of the interior of I. For small � > 0,let �� be a probability measure on [��; �℄. We may onsider two models for the randomompositions of f + !0 with !0 seleted in [��; �℄ following the law ��:Markov hain. In words, we are averaging over all possible random realisations.Beause of the i.i.d. setting, this an be done by averaging at eah time-step. Moreformally, this means onsidering the Markov hain fXng1n=1 with transition probabilities(here, x 2 I and E � I with harateristi funtion �E)Prob (Xn+1 2 E j Xn = x) = Z ��� �E(f(x) + !0) d��(!0) : (1.4)Under rather weak assumptions, it is possible to show that the Markov hain admits aunique invariant probability measure, i.e., a measure �� on I with��(E) = Z ��� Z �E(f(x) + !0) d��(!0) d��(x):Writing f!(x) = f(x) + !0, and by indution fn! (x) = fn�1�! Æ f!(x), one de�nes opera-tional orrelation funtionsZ ' Æ fn!  dLeb n�1Yi=0 d��(!i)� Z 'd�� Z  dLeb : (1.5)2



for the Markov hain. It is of obvious interest to study stohasti stability, i.e., whether�� ! � (at whih speed? in whih topology?) and whether the rate of deay oforrelations is stable as �! 0.Random skew produt. Alternatively, we may wish to state \almost sure" results.Formally, we onsider the skew produt T : I � 
! I � 
, with 
 = [��; �℄Z,T (x; !) = (f!(x); �(!)) ; where (�!)k = !k+1 : (1.6)The natural objets of study are the invariant probability measures for T of the form�!(dLeb)P (d!) with P = �Z� , in partiular those for whih almost eah �! is absolutelyontinuous with respet to Lebesgue measure. In the present i.i.d. setting suh a fam-ily of absolutely ontinuous quasi-invariant measures �! = h!dLeb (so alled beause(f!)��! = ��!) may be obtained by disintegrating a natural extension of �� � �Z+� . Itis natural in this ontext to onsider both the future (\aiming at a moving target"), andthe past rates of onvergene to equilibrium:R(f)! (n) = j(fn! )�(dLeb)� ��n!j and R(p)! (n) = j(fn��n!)�(dLeb)� �!j ; (1.7)where j � j denotes the total mass of a signed measure. We may also onsider the \future"and \past" random operational orrelations:C(f)!;'; (n) = ���� Z (' Æ fn! ) dLeb� Z 'd��n! Z  dLeb����C(p)!;'; (n) = ���� Z (' Æ fn��n!) dLeb� Z 'd�! Z  dLeb���� : (1.8)The aim here is to obtain for P -almost all !, upper bounds of the type C! � �(n) orC'; C! � �(n) on the expressions (1.7) respetively (1.8), where �(n) ! 0 at a ertainrate, independently of !. (In general it is not immediate to obtain bounds on the futurerandom orrelation funtions from estimates on the past random orrelation funtions,and vie versa.) Asymptoti bounds onP (f! j C! > ng) (1.9)are also desirable. The stohasti stability questions mentioned in the framework of theMarkov hain may also be asked here.Obviously, ontrolling (1.5) is not enough to estimate (1.8). In the other dire-tion, averaging estimates (1.8) yield orresponding bounds for (1.5) whenever the on-trol in (1.9) is enough to guarantee that C! 2 L1(P ). (In fat, some additionalinformation is needed { and often available { to estimate expressions of the typeR �1(�n!)�2(!) dP�(!)� R �1(!) dP�(!) R �2(!) dP�(!).) Also, it may be argued thata ontrol of \almost all random itineraries" with information of the type (1.9) is morerelevant to an atual physial experiment (e.g.) than bounds for the the averages (1.5).After all, only �nitely many experiments may be atually realised!3



Before we state our main new results, let us reall previously known fats. Forsmooth expanding (in any dimension) or pieewise smooth and pieewise expanding one-dimensional maps, the Markov hain was studied by Baladi{Young [BaY℄ who provedexponential deay of orrelations and strong stohasti stability. Baladi{Viana [BV℄then extended these results to a positive measure set of nonuniformly expanding uni-modal maps, for whih Benediks{Young [BeY℄ had previously obtained a weaker formof stohasti stability. (We also refer to results of Katok-Kifer [KaK℄ for more generalperturbations, but under a Misiurewiz assumption, as well as to work of Collet [Co1℄.)Let us now disuss random skew produts for whih a large body of literature isavailable (in partiular by Kifer, and the shool of L. Arnold in Bremen), we restrit toresults related to the physial measures of small random perturbations of strongly mixingdisrete-time dynamis. Bogensh�utz [Bo℄ and Baladi et al. [BKS℄ studied randomorrelations for smooth expanding dynamis, proving exponential deay of future andpast orrelations together with a strong form of stohasti stability (this was done byusing a very naive idea: all transfer operators in play map a given funtion one stritlyinside itself). We mention also the work of Khanin{Kifer [KhK℄ who were interested inmore general equilibrium states for random ompositions of maps expanding in average(they studied neither stability nor rates of mixing). More reently, Buzzi [Bu1, Bu2℄onsidered random ompositions of pieewise monotone interval maps (not neessarilylose to a �xed map) having some expansion in average property. He showed existeneof absolutely ontinuous quasi-invariant measures and exponential deay of both futureand past orrelations, using a probabilisti approah.Informal statement of resultsStarting from a \good" unimodal map f (our assumptions are stated in an axiomatiway, see (H1){(H4) in Setion 2, they apply to a positive measure set of parametersof the quadrati family) and an atomless probability measure �� on [��; �℄ (the preiseassumption is given in (2.1)), we onsider for small enough � the i.i.d. ompositions off + !0. We show that for almost every ! 2 
:(1) There is a unique family of quasi-invariant densities h�n! for n 2 Z.(2) We have strethed exponential deay for the rates of mixing. More preisely,there are 0 < u < 1, v > 1, C(�) > 1, and a random variable C! withP (f! j C! > ng) � C(�)nv suh that for all Lipshitz test funtions ',  , thereis C(';  ), depending only on their Lipshitz onstants so that with R(f)! (n)R(p)! (n), C(f)!;'; (n), C(p)!;'; (n) as in (1.7), (1.8) we havemax �R(f)! (n); R(p)! (n); C(f)!;'; (n); C(p)!;'; (n)� � C(�)C! C(';  ) e�nu ; 8n 2 Z+ :In fat, we an prove the bounds for the universal exponent u = 1=16 if we allow afator C(�) � 1 as follows:max �R(f)! (n); R(p)! (n); C(f)!;'; (n); C(p)!;'; (n)� � C(�)C! C(';  ) e�n1=16=C(�) :4



We believe that this is the �rst time that estimates have been obtained for the almostsure rates of mixing in a onrete nonuniformly hyperboli dynamial setting. We hopethat they may be used to prove a random entral limit theorem (see Kifer [Ki℄).Sine the bound on C(f;p)!;'; is integrable, averaging our results on the random orre-lations gives that the Markov hain orrelation deays faster than C(�)e�nu for some0 < u < 1 a result not as good as the exponential deay obtained in [BV℄. Note alsothat our upper bounds for the various onstants C!(�), C(�) blow up when � ! 0. (Inpartiular, we do not address in the present paper the question of stohasti stability.)In view also of the fat that the transition from exponential (Lemma 3.8) to strethedexponential bounds ours rather late in the proof (it is a onsequene of the waitingtimes interfering with the ombinatorial bounds e.g. in the proof of Proposition 4.3), itis not lear whether the subexponentiality is an artifat of our proof.One of the advantages of this work as ontrasted to the previous studies ([BV, BaY,BeY℄, et.) of the Markov hain approah is that it is naturally suited to extensions tothe non-autonomous ase. More preisely, instead of assuming full i.i.d., that is P = �Z� ,we ould suppose that (�; P ) is \strongly" mixing, and try to implement a variant ofthe geometri onstrution of Viana [V℄ to replae e.g. Lemma 3.4.The basi idea in our proof is to onstrut a random version of the towers of Young[Yo2℄, showing that the oupling method she introdued an be randomised. The �rstdiÆulty here is to modify the standard partition (see e.g. [Yo1℄) and obtain goodestimates on points with large return times. Here, a beautiful idea due to Alves [A℄was instrumental. He studied (maps lose to) a deterministi skew produt T (x; �) =(a�x2+��;D� mod 1) where D � 1 gives a \strongly mixing" deterministi dynamialsystem on the irle. In order to onstrut absolutely ontinuous invariant measure forT on the ylinder, Alves introdued good partitions into retangles, involving a ruialnotion of \hyperboli times" (an abstration of the esape times relevant for unimodalor H�enon maps, whih was later applied by Alves-Bonatti-Viana and Castro to analyzepartially hyperboli systems). He also exploited bounds on \exeptional sets" previouslyobtained by Viana [V℄, who was the �rst to study this skew produt model and provedthat it possesses two positive Lyapunov exponents. Although we onsider a slightlymore general framework than the Misiurewiz in [A℄ and [V℄, many properties beomeeasier to prove in our i.i.d. setting (see Lemma 3.4). The key observation then is thatthe bounds obtained on the set of ! suh that a given x behaves well by following[A℄, [V℄ are uniform in x, so that a areful appliation of Fubini's theorem allows us toexhange x and ! (up to a zero-measure residue of bad !:s whih may be exluded). Onthe other hand, we are fored to introdue \waiting times" (see Lemma 3.7) whih makethe oupling argument more intriate. Finally, one surprising fat was that an estimateof Young (see the \hoie of n0" in [Lemma 1, Yo2℄) whih was a trivial onsequeneof the mixing property of the measure, beomes more troublesome in the random ase.To deal with this, we bootstrap from the mixing property of the Markov hain on thetower (whih follows from mixing of the random skew produt in Setion 6) applied in(yet) another large deviation argument (Setions 7{8) within the oupling estimates.5



Sketh of ontentsThe artile is organised as follows. In Setion 2 we give preise statements of ourhypotheses and results, inluding an appliation to random ountable Markov hains.Setion 3 is devoted to onstruting random partitions of the interval, and estimat-ing random return times to a well-hosen subinterval (adapting the hyperboli timestehniques in [A℄, and the bounds in [V℄), after suitable \waiting times." Setion 4 isentered around Proposition 4.3 whih gives upper bounds on the random reurreneasymptotis. In Setion 5, we �rst exploit Setions 3{4 to onstrut towers satisfying arandom version of the axioms in [Yo2℄, and then use these towers to exhibit (saturatinga quasi-invariant measure for the return map) and study the quasi-invariant measuresfor our i.i.d. unimodals. Setion 6 is devoted to general remarks on random mixingand random exatness, followed by a proof that the skew produt on the tower is exat(and thus mixing) if the original dynamis is topologially mixing. These remarks areused in a large deviations argument in Setion 7, where the oupling method of [Yo2℄is implemented on the towers from Setion 5 to study the rate of deay of the \future"orrelation funtion. Finally, in Setion 8 we further adapt the oupling method tostudy the\past" orrelations.Our main theorem follows from ombining Lemma 5.3 with Corollaries 7.10 and 8.5.To keep the length of this artile within reasonable bounds, we put the emphasis onthose of our arguments whih are new or di�er nontrivially from previous ones, givingpreise referenes to published omputations (in partiular in [A, BeY, V, Yo2℄).2. Setting and statement of resultsLet I = [�1; 1℄ and f : I ! I be a C2 unimodal map (i.e., f is inreasing on [�1; 0℄,dereasing on [0; 1℄) satisfying f 00(0) 6= 0, and,(H1) There are 0 < � < 1, K > 1, and ~� � � � 4 with 200� < (log ~�)2, andsupI jf 0j � ~�K < 8 so that(i) j(fn)0(f(0))j � ~�n for all n 2 Z and � = limn!1 j(fn)0(f(0))j1=n.(ii) jfn(0)j � e��n, for all n � 1.(H2) For eah small enough Æ > 0, there is M =M(Æ) 2 Z+ for whih(i) If x; : : : ; fM�1(x) =2 (�Æ; Æ) then j(fM)0(x)j � ~�M ;(ii) For eah n, if x; : : : ; fn�1(x) =2 (�Æ; Æ) and fn(x) 2 (�Æ; Æ), then j(fn)0(x)j � ~�n.(H3) f(I) is a subset of the interior of I.(H4) f is topologially mixing on [f2(0); f(0)℄.Examples of unimodal maps satisfying (H1){(H4) are quadrati maps a � x2 for apositive measure set of parameters a. (See e.g. [BV℄ for notations similar to those of thepresent paper; the estimate 200� < (log ~�)2 used here in Lemmas 3.1{3.4 orrespondsin [BV℄ to e2� < ~�.) Condition (H2) is in fat implied by the existene of Æ > 0 andM 2 Z+ suh that (H2)(i){(ii) hold. See the remark in Setion 3.A.Fixing �0 > 0 small enough to guarantee f(x)� �0 2 I for all x 2 I, we assume thatwe are given a onstant C > 0 and for eah 0 < � < �0 a probability measure �� on6



[��; �℄ and suh that for any subinterval J � [��; �℄,��(J) � CjJ j� : (2.1)(This is used in Lemma 3.4.) Assumption (2.1) may be relaxed, but we do not pursuethis aim here. It annot be ompletely suppressed sine there are open intervals ofparameters orresponding to periodi attrators arbitrarily lose to a. Assumption(2.1) holds if �� has a density with respet to Lebesgue whih is bounded above by C=�.It does not imply that 0 belongs to the support of ��.For �xed � > 0, we write 
 = 
� = [��; �℄Z, � : 
 ! 
 for the shift to the left, andP = P� = �Z� . Our aim is to study the random ompositions of maps f!(x) = f(x)+!0with ! 2 
 following the law P . For n � 1 we write fn! (x) = f!n�1Æ� � �Æf!0(x). DenotingLebesgue measure on I by dLeb, and j�j for the total mass of a signed measure, our �rstmain result is strethed exponential bounds for the speed of approah to equilibrium(as usual, Lipshitz an be replaed by H�older):Main Theorem. (Strethed exponential mixing for i.i.d. unimodals). If �is small enough (depending on f) then for P�-almost eah ! 2 
� there is a quasi-invariant density h! 2 L1(dLeb). There exist C(�) � 1 and, for almost every ! 2 
�,C(1)! = C(1)! (�) > 0 suh that for eah Lipshitz funtion ' : I ! C , and all n � 1,��(fn��n!)�('dLeb)� (h! dLeb)�� � C(1)! Lip' e�(n1=16=C(�)) : (2.2)Additionally, for almost every ! 2 
, there are C(2)! > 0, C(3)! > 0 (depending on �)suh that for eah Lipshitz funtion  : I ! C and every bounded funtion ' : I ! C ,the \past" and \future" random orrelation funtion satisfy for all n � 1���� Z 'Æfn��n!  dLeb�Z 'h! dLeb Z  dLeb���� � C(2)! sup j'jLip e�(n1=16=C(�)) ; (2.3)and���� Z ' Æ fn!  dLeb � Z 'h�n! dLeb Z  dLeb���� � C(3)! sup j'jLip e�(n1=16=C(�)) : (2.4)There are C(�) and v > 1 so that the maximum C! = max(C(1)! ; C(2)! ; C(3)! ) satis�esP (f! 2 
� j C! > ng) � C(�)nv : (2.5)Finally, there is 0 < u < 1=16 so that the fator e�(n1=16=C(�)) in (2.2{2.4) may bereplaed by e�nu .Remarks.(1) Our proof gives the same upper estimates for the \lassial" orrelations.7



(2) See e.g. [BKS℄ for the operational signi�ane of, and experimental aess to,the rates in (2.2{2.4).(3) The almost everywhere existene of the quasi-invariant measure an be obtainedby disintegrating the skew-produt invariant measure whih an be onstrutedfrom the Markov hain invariant measure in [BV℄ or [BeY℄. Our proof givesadditional information, in partiular it produes the quasi-invariant measure onthe tower whih is used to ontrol rates of mixing.(4) By the work of Bahnm�uller [Ba℄ (who extended previous work of Ledrappier andYoung [LY℄ to noninvertible situations), the Pesin formula holds for the randomskew produt invariant measure h!(dLeb)P (d!).(5) If (H4) does not hold, a result of Blokh-Lyubih [BL℄ says that f is renormalis-able, i.e., that there is a yle of intervals fIigmi=0, f : Ii ! Ii+1, Im = I0, wherefIig have disjoint interiors. This is reeted in the greatest ommon denomina-tor G 6= 1 of return times, also for the random towers (see (A.VI), (4.10)). Ourproof yields strethed exponential deay of orrelation and speed of mixing forthe Gth iterate fG! of the random system.A simpli�ation of our proof produes a result on random ountable Markov hainswith estimates on the reurrene times (after waiting times) whih we were unable toloate in the literature. The setting is the following: Let � : 
 ! 
 with 
 = QZE,where (E; �) is a probability spae, be a two-sided Bernoulli shift preserving a probabilitymeasure P = QZ�. Let X(n)! be a random Markov hain for (�;
) on the ountablestate spae Z+ given by the random transition probabilitiesProb �X(n+1)! = j j X(n)! = i� = pij;�n! ; 8n 2 Z+ :(In partiular, for almost all ! and all i, �1j=1pij;! = 1.) The random Markov hainis alled irreduible if for all i, j and almost all ! there is n with Prob �X(n)! = j jX(1)! = i� > 0 and irreduible aperiodi if for almost all ! and all i, j the g..d. offn j Prob �X(n)! = j j X(1)! = i� > 0g is one.Main Corollary (Appliation to i.i.d. ountable Markov hains). Let X(n)! bea random irreduible aperiodi Markov hain for (�;
) on Z+. Assume that there are0 < u0; v0 � 1 and a random variable n1 : 
! Z+ withP (f! j n1(!) > ng) < e�nv0suh that for P -almost every ! 2 
Prob (X(0)! = 0;X(k)! 6= 0 ; 8k = 1; : : : ;m) < e�mu0 ; 8m � n1(!) : (2.6)Then, for almost all ! 2 
, there is a unique stationary probability measure �! on Z+,with density h! 2 `1(Z+). Also, writing, for n 2 Z+, ! 2 
, and ' in `1(Z+)E ['(X(n)! )℄ = X(j0;::: ;jn)2Zn+1+ '(jn)�n�1Yk=0 pjkjk+1;�k!�h!(j0) ;8



there are 0 < u < u0 and C(4)! � 1 suh that for eah ' and  in `1(Z+), the pastrandom orrelations satisfy���E�'(X(n)��n!) (X(0)��n!)�� E ['(X(0)! )℄E [ (X(0)��n!)℄��� � C(4)! sup j j sup j'je�nu : (2.7)Finally, there are v > 1, C > 1 so thatP (f! 2 
� j C(4)! > ng) � Cnv :Remarks.(1) Obviously one may formulate the main orollary for future orrelations, ap-proah to equilibrium, et., for i.i.d. ountable Markov hains. The main orol-lary an be also expressed as a result on speed of onvergene to the maximaleigenvetor of random produts of stohasti matries having a \tower struture"as in (2.6). The slightly umbersome exerise is left to the reader. We refer tothe papers of Hennion [He℄ and the book of Bougerol-Laroix [BoL, espeiallyChapter A.III℄ for referenes on the lassial work of Furstenberg, Kesten, Guiv-ar'h, Ledrappier, and others, on appliations of the Oselede theorem yieldingexponential bounds for the speed of onvergene to the maximal eigenvetor ofrandom produts of �nite stohasti matries, under assumptions guaranteeingthat the maximal Lyapunov exponent is simple.(2) Adapting Setions 7 and 8 similarly as the orresponding proofs of Theorem 2(II)of [Yo2℄, we may also obtain exponential (respetively polynomial) estimates in(2.7) if we hange the assumptions aordingly.Open questions.(1) As mentioned in the introdution, by adapting Kifer's methods in [Ki℄, we expetthat it is possible to prove a random entral limit theorem in the setting of thepresent paper.(2) We also pointed out already that it is of obvious interest to generalise our i.i.d.setting to weaker forms of mixing. One ould also attempt to study non-additiveperturbations.(3) We have restrited ourselves to perturbations of exponentially mixing maps. Itwould be interesting to see if our approah an be extended to unimodal mapswith slower rates of mixing. See the reent study by Bruin, Luzzatto, and vanStrien [BLS℄, based on Young's oupling argument [Yo2℄.3. Fubini and Partitions via random hyperboli times3.A Preliminary estimates.In Lemmas 3.1 and 3.3, we extend to our situation (using tehniques of Benediksand Young [BeY℄) basi estimates from Viana [V, Lemmas 2.4 and 2.5℄ and Alves [A,Lemma 2.1℄ proved there under a Misiurewiz assumption. Most of the ideas used gobak to [BC1, BC2℄. (We do not require the topologial mixing assumption (H4) at thisstage.) 9



Lemma 3.1 (Starting in (�p�;p�)). Assume (H1), (H2), and (H3). For2�log ~� < � < 14 ;there are a onstant C > 1 and for eah small enough � > 0 an integer N(�) with�C + log(1=�)(K + 1) log ~� � N(�) � C + 2 log(1=�)log ~�suh that for all ! 2 
 and eah x with jxj < 2p�8<: ����fN(�)! �0(x)��� � jxj��1+� ;��f j!(x)�� > p� ; 8j = 1; : : : ; N(�) :In the proof of Lemma 3.4 below, it will be useful to take � = log �=(4 log 32) for� > ~�1=5 from Lemma 3.3. This is the reason for the ondition on � in (H1). The lowerbound N(�) � log(1=�)= log 32 (sine ~�K+1 < 8 � 4) is also onvenient in the proof ofLemma 3.4.To prove Lemma 3.1, we shall use the following result adapted from Lemma 4.4 in[BeY℄, whih will also help to get the \large image" property in Lemma 3.10:Sublemma 3.2 (Random bound period). Assume (H1), (H2), (H3) and let 2�log ~� <� < 1=4. For k suh that e�k < Æ, let Jk;� be the intervalJk;� = h� �+min�f�e�k�; f�� e�k��; f(0) + �i ;and let p = p(k; �) be the largest integer p suh that���� [!2
 f j�!(Jk;�)���� < ~���j ; 8 j 2 [0; p℄ : (3.1)Then there is C > 1, independent of Æ, suh that for all small enough �:(1) For all ! 2 
, all y 2 Jk;� and eah 0 � j � p(k; �)1C � j(f j�!)0(y)jj(f j)0(f(0))j � C :(2) �C + min(2k;log(1=�))(K+1) log ~� � p(k; �) � C + min(2k;log(1=�))log ~� .(3) For all ! 2 
 and all y 2 Jk;����fp(k;�)�! �0(y)�� � 1C max(e(2�2�)k; ��1+�) :10



Proof of Sublemma 3.2. This is an adaptation of the usual \bound period estimates" of[BC1, BC2℄. The starting point is the laim that there is C > 1, independent of � andÆ, and suh that for every y; ~y 2 Jk;�, all !; ~! 2 
, and all 1 � j � p(k; �) + 1��f j�!(y)� f j�~!(~y)�� � C��(f j�1)0(f(0))�� �max(e�2k; �) : (3.2)To hek (3.2), we �rst verify indutively that��f j�!(y)� f j�~!(~y)�� � �dj(� � � (d2(d1+1) � � � )+1�C max(e�2k; �) =: [mj ℄C max(e�2k; �) ;where di = jf 0�i!(xi)j = jf 0(xi)j for some xi 2 [f i�1�! (y); f i�1�~! (~y)℄.Then, to estimate mj , we let d̂i = jf 0(f i(0))j, and we note that sine jf i(0)� xij <~��i� for 1 � i � p + 1, by de�nition of p, and jd̂ij � e��i=C by (H1)(ii), standardarguments involving (H2) and using e�j� log ~� < e�2�j (see [BeY, Lemma 1.3℄) give thatthere is C > 1 with C�1 � Qji=1 diQji=1 d̂i � C ; 8 1 � j � p(k; �) + 1 : (3.3)In fat, the proof of (3.3) also gives assertion (1) of the sublemma. (Note that theproof of [BeY, Lemma 1.3℄ may require taking a smaller value of Æ in (H2), in orderto guarantee that jf j(0)j > Æ for j � M0, where M0 is a large integer, making use of(H1)(ii).) Now, by de�nition and (H1)(i)mj = dj�1mj�1 + 1 � dj�1mj�1�1 + C~��j� ;so that mj � �j�1Yi=1 dj� j�1Yi=1(1 + C~��i) ; showing our laim (3.2).We may now prove assertions (2) and (3) of the sublemma. Assumption (H1)(i),together with (1), that we already proved, and the fat that jJk;�j � max(e�2k; �)=C,yield max(e�2k; �) ~�p�1C � 1 ;so that p(k; �) � 1 + log(Cmin(e2k; ��1)) 1log ~� ; (3.4)showing the upper bound in (2). For the lower bound, use (H1) jJk;�j � Cmax(e�2k; �),the de�nition of p(k; �) and ~�K~�� < ~�K+1.For (3), letting 1 � j � p(k; �) + 1 it follows from (3.2) that for y; ~y 2 Jk;� andarbitrary !; ~! 2 
,jf j�!(y)� f j�~!(~y)j � Cj(f j)0(f(0))j max(e�2k; �) � C2j(f j�!)0(y)jmax(e�2k; �) :11



Thus, the de�nition of p(k; �) givesC2j(fp(k;�)+1�! )0(y)j �max(e�2k; �) � ~���(p(k;�)+1) :Finally (3.4) implies~���(p(k;�)+1) � e�(� log ~�)�C+log �min �e2k;��1���= log ~� � max(e�2�k; ��)C ;and we onlude thatj(fp(k;�)�! )0(y)j � 1C max(e(1��)2k; ��1+�) : �Proof of Lemma 3.1. This will easily follow from Sublemma 3.2, taking k = k(�) 2 Z+maximal so that p� < e�k. Indeed, for any jxj < 2p�, writing y = f!(x) 2 Jk;�, andsetting N(�) = p(k(�); �) + 1 we get from (3), that for eah !j(fN(�)! )0(x)j = j(fp(k(�))�! )0(y)jjf 0!(x)j � Cjxj��1+� ; (3.5)for some onstant C, independent of �, Æ, !, and whih may be removed by workingwith a slightly smaller � in Sublemma 3.2 and taking small enough �.To hek the seond assertion, we deompose for eah 1 � j � N(�)jf j!(x)j � jf j(0)j � jf j(0)� f j!(x)j :Now, there are two ases. Either j � log(1=�)=(4K log ~�), and then by using (H1)(ii)and Sublemma 3.2(2) (reall (3.2))jf j(0)j � jf j(0)� f j!(x)j � e��N(�) � C�j(f j)0(f(0))j � �� � C�3=4 > p� ;sine � < 1=4, if � > 0 is small enough. The other possibility is j > log(1=�)=(4K log ~�),but then, using (H1)(ii) and the de�nition of p(k(�)), we get for small enough �jf j(0)j � jf j(0)� f j!(x)j � e��j � e�2�j � ��(1� ��=(4K log ~�)) > p� : �We now divert to verify the statement about varying Æ in (H2)(i),(ii).Remark. If there is Æ = Æ1 so that (H1) holds with ~�1 satisfying ~�1 > e20� and (H2)holds for a �xed Æ = Æ1 and ~� = ~�1 then for all Æ = Æ2 < Æ1 (H1) and (H2)(i),(ii) holdwith ~� = ~�2 = � 12�4�1 .Sketh of proof. Take a point x 62 (�Æ2; Æ2). If x; fx; : : : ; fM�1x 62 (�Æ1; Æ1) there isnothing to prove. Suppose that k < M � 1 is the �rst index so that fk(x) 2 (�Æ2; Æ2) n12



(�Æ1; Æ1). Then by (H2)(ii) for Æ = Æ2, j(f j)0(x)j � ~�k1 . With y = fk(x) and thebound period p = p(y) de�ned in the usual way it is easy to verify that j(fp+1)0(y)j �~�( 12�4�)(p+1)1 . We onlude that with ~�2 = ~� 12�4�1 , j(fk+p+1)0(x)j � ~�k+p+12 . Moreoverwith an argument similar to that in the proof of the seond assertion in Lemma 3.1,fk+j(x) will never hit (�Æ2; Æ2) for j � p. We onlude that (H2)(i) holds with M =M(Æ2) =M(Æ1) + p(Æ2).The proof of (H2)(ii) uses the same type of arguments. Eah bound period oflength pi following a return yi to (�Æ1; Æ1) n (�Æ2; Æ2) gives a derivative ontributionj(fpi+1)0(yi)j � ~�pi+12 . The derivative during the \free" period following eah boundperiod of this type lasting until the next return to (�Æ1; Æ1) (and eventually to (�Æ2; Æ2))is estimated using (H2)(ii) with Æ = Æ1. �Lemma 3.3 (\Outside" lemma). Let f satisfy (H1), (H2), and (H3) and assume2�= log ~� < � < 1=10. There are C > 1 and � > ~�1=5 > 1 suh that for all � > 0, all! 2 
, x 2 I, and k 2 Z+jf j!(x)j � p�=2 ; 8j = 0; : : : ; k � 1 =) j(fk!)0(x)j � p��kC : (3.6)There is 0 < Æ1 < Æ (independent of �, !) suh thatjf j!(x)j � p�=2 ; 8j = 0; : : : ; k � 1 and jfk!(x)j < Æ1 =) j(fk!)0(x)j � �kC : (3.7)Proof of Lemma 3.3. We laim that it suÆes to see that there are 0 < Æ1 << Æ and~� > ~�1=5 suh that if p�=2 < jxj < Æ1 then there is ~p(x) � C log(1=�) withjf j!(x)j > Æ1 ; 80 � j � ~p� 1 and ~p�1Yj=0 jf 0�j!(f j!(x))j � ~� ~p ; 8! 2 
 : (3.8)Indeed, (H2)(i) and (ii) imply by a ontinuity argument that for small enough � (andup to slightly reduing ~�) for eah ! and y if y, f!(y); : : : ; fn�1! (y) =2 (�Æ; Æ) thenj(fn! )0(y)j � ~�n=C :If, additionally, fn! (y) 2 (�Æ; Æ) then j(fn! )0(y)j � ~�n. Using this fat and (3.8) (whihplays the role of Lemma 2.4(b) in [V℄), Lemma 3.3 may be proved as Lemma 2.5 in [V℄using ideas going bak to [BC1, BC2℄.But now, (3.8) may be obtained for any � < ~�� if 2� < 1=2��, by the arguments usedto show Sublemma 3.2(3), taking k = k(�) maximal so that p� < e�k and onsideringy 2 Jk(�);� n Ĵ� with Ĵ� = [��+ f(p�=2); f(0) + �℄ (see [BeY, Lemma 4.4 (ii)℄). �13



3.B Estimating bad sets.We now prepare the onstrution of the random dynamial partitions of the interval,in view of obtaining in Setion 5 a tower suitable for the oupling argument [Yo2℄. Westart with the exponential partition Q of I (modulo zero measure sets) into intervalsde�ned for r 2 Z by Ir = (p�e�r;p�e�(r�1)), r � 1, Ir = �I�r, r � �1, I+0 =(p�;p�e), I�0 = �I+0 , I+ = (p�e; 1), I� = �I+. For jrj � 1 we write I+r = Ir [Ir+1 [ Ir�1. For m � 1, we also introdue the funtions rm : 
 � I ! R, by settingrm(!; x) = jrj if fm! (x) 2 Ir and 0 otherwise, and setsGm(!; x) = G�m(!; x) = (1 � j � m j rj(!; x) � max�1;�12 � 2�� log 1�!): (3.9)Reall that (2�= log ~�) < � < 1=10 appeared in Lemmas 3.1 and 3.3. In view of theproof of Lemma 3.4, we take � = log �=(4 log 32) for � > ~�1=5 from Lemma 3.3 (sine5 � 8 � log(32) < 200, assumption (H1) guarantees that we may do this).The reader is invited to hek (see [V, x 2.4℄, and also [A, x 2℄) that for suitably small > 0, large C > 1, small � > 0, Lemma 3.1 and the de�nition of Gn(!; x) imply thatfor eah large enough n� C log(1=�) and all (!; x) for whihXj2G�n(!;x) rj(!; x) � n ; (3.10)we have j(fn! )0(x)j > en=C . Hint: The key step is the �rst of the following bounds,reorded here for future use,8>><>>: j(fn! )0(x)j � exp�4n�Pj2Gn(!;x) rj(!; x)� 2 log 1�� ;jfn! (x)j < p� =) j(fn! )0(x)j � exp�4n�Pj2Gn(!;x) rj(!; x)� C� : (3.11)Our next aim is to show that for all x the set of ! suh that (3.10) is violated hassmall measure. The i.i.d. setting together with the assumption on �� give:Lemma 3.4 (Estimates on \bad !-sets"). There are C(�) > 1, (�) > 1C log(1=�) ,and for eah x 2 I and all n � 1 sets En(x) � 
 with P (En(x)) � C(�)e�(�)n, suhthat if ! =2 En(x) then ondition (3.10) holds for (!; x) and n.Proof of Lemma 3.4. The ruial point is the fat that there are C > 0 and 0 < � < 1so that for small enough �, there isM(�) � C log(1=�), so that for eah interval Ir withjrj � (1=2� 2�) log(1=�), and all x, !P (f! 2 
 j fM(�)! (x) 2 Irg) � Ce�4�r : (3.12)14



(Note that an obvious upper bound is (C=�)p�e�r if r > log(1=p�), with C the onstantfrom (2.1). We need the better estimate (3.12) to deal with (1=2� 2�) log(1=�) � r �(1=2) log(1=�).) See Lemmas 2.3 and 2.6, and espeially the bound on line 3 of p. 77 in[V℄ (note that this bound is in fat a onditional probability) for deterministi analoguesof (3.12), obtained using a notion of admissible urves whih we do not require.Let us sketh how to adapt the proof of Lemma 2.6 in [V℄ to obtain (3.12). Westart by observing that (2.1) implies that there are onstants C1 > 1 and C2 > 1so that for eah � > 0 there are subsets H1 = H1(�), H2 = H2(�) of [��; �℄, with��(Hi) > 1=C1 for i = 1; 2, and the distane d(H1; H2) > �=C2. This immediatelyimplies that jf!(x) � f~!(x)j > �=C2 if !0 2 H1 and ~!0 2 H2. (This is Lemma 2.7 in[V℄ with C1 = 16 and C2 = 100.) Then, taking M =M(�) to be the maximum integerso that 32M(�)� � 1, we observe that M(�) is smaller than the onstant N(�) fromLemma 3.1. Sine our hoie of � and M impliesr +M(�) log � � 12 log 1� � �r ;for all r � (1=2�2�) log(1=�), we may just follow the proof of Lemma 2.6 in [V℄, makinguse of (H1)(ii) in lieu of the �nite postritial assumption there (learly, � < (log 32)=4),and of our Lemma 3.3 in plae of his Lemma 2.5.Now, to dedue Lemma 3.4 from (3.12), we may simplify Viana's large deviationargument [V, Theorem A x 2.4℄. In partiular, our i.i.d. setting allows us to suppressthe time-shift \l = m �M(�)" (with l � m � pn) in [V℄. As a onsequene, we getexponential bounds (our rate depends on �) instead of the strethed exponential boundin [V℄.More preisely, we now sketh how (3.12) gives (�) � C= log(1=�) and C > 1 so thatfor eah �xed small enough �, all x 2 I, and all n� log(1=�)P�n! j Xi2Gn(!;x)ri(!; x) � no� � C log(1=�)p� e�(�) n :\Large deviations" here is just the remark that for any � > 0 and all 0 � q �M(�)� 1(see Lemma 7.1 for a similar omputation)P�n! j Xi2Gn;q(!;x) ri(!; x) � nM(�)o� � e� �nM(�) ZfGn;q(!;x)6=;g e�Pi2Gn;q(!;x) ri dP (!) ;where Gn;q(!; x) is the set of those i 2 Gn(!; x) for whih i � q modulo M(�). Thus,setting (�) = �=M(�), it suÆes to showZ
\fGn;q(!;x)6=;g e�Pi2Gn;q(!;x) ri dP (!) � 1 ;for some � > 0 and all � > 0, x, 0 � q < M(�), and n � log(1=�). In order toobtain the above bound, we introdue some notation. For �xed �, n, q, and x, !, let15



t(x; !) = t�;n;q(x; !) be the ardinality of Gn;q(!; x) = fi1 � i2 : : : � it(x;!)g, and setr̂` = r`M+q if r`M+q � (1=2� 2�) log(1=�) and r̂` = 0 otherwise.Next, it is easy to dedue from (3.12) and independene that there is C > 0 so thatfor all �, every n� log(1=�), eah 0 � q �M(�)�1, every 1 � t � n, and any sequene�i with either �i = 0 or �i � (1=2� 2�) log(1=�),P��! j t�;n;q(x; !) = t and r̂i` = �i` ; ` = 1; : : : ; t	�� Ce��i1p� t�1Ỳ=1P��! j fM(�)�Mi`+q(!)(x) 2 I�i`+1	�� Ctp�e�4�Pi �i :(We used the trivial fat (`+ 1)M+ q = `M+ q +M.) ThusZ
\fGn;q(!;x)6=;ge�Pi2Gn;q(!;x) ri dP (!)� ��1=2X�i Cte�3�Pi �i � ��1=2Xt;R �(t; R)Cte�3�R ;where �(t; R) is the number of integer solutions of the equation Pti=1 �i = R satisfying�i � (1=2� 2�) log(1=�) for all j. Sine R=t � (1=2 � 2�) log(1=�), taking � > 0 smallenough ensures that (reall 1 � t � R and R � (1=2� 2�) log(1=�)� 1)Xt;R �(t; R)Cte�3�R �Xt;R e��R �XR Re��R � 1 : �Corollary 3.5 (Bad (!; x) sets). Let C = C(�) and (�) be as in Lemma 3.4. Thereis  > 0 and for eah m � 1 there is Em � 
� I with (P �Leb)(Em) � Ce�(�)m suhthat for all (!; x) =2 Em we have Xj2Gm(!;x) rj(!; x) � m :Proof of Corollary 3.5. Just write Em = f(!; x) j ! 2 Em(x)g and use Fubini to applyLemma 3.4: (P � Leb)(Em) = RI P (Em(x)) dLeb. �Corollary 3.6 (Bad x sets and bad ! sets). Let C = C(�) and (�) be as inLemma 3.4. For ! 2 
, and m � 1, set Em(!) = fx 2 I j (x; !) 2 Emg. ThenP (f! 2 
 j Leb(Em(!)) > pCe�(�)mg) � pCe�(�)m.Proof of Corollary 3.6. This is Fubini again! Indeed, if P (f! 2 
 j Leb(Em(!)) >pCe�mg) > pCe�m then (P � Leb)(Em) = R
 P (Em(!)) dP (!) would imply (P �Leb)(Em) > pCe�mpCe�m, ontraditing Corollary 3.5. �16



Lemma 3.7 (Parameter exlusion { Waiting times). Let (�) be as in Lemma 3.4.There is C = C(�) > 1 and a full measure subset 
0 � 
 suh that for eah ! 2 
0there is n0(!) suh that for all m � n0(!)Leb(Em(!)) < Ce� (�)2 m :Additionally, there are C = C(�) > 1 and �(�) > (C log(1� ))�1 suh that the randomvariable n0(!) satis�es for all n 2 Z+P �f! 2 
 j n0(!) � ng� � Ce��(�)n : (3.13)The lower bound n0(!) is alled a waiting time. It will have to be modi�ed beforewe reah the �nal waiting time funtion n4(!) whih will play a role in the reurreneasymptotis of our random towers (see (A.V) in Subsetion 5.B).Proof of Lemma 3.7. Using C = C(�) from Corollary 3.6, de�ne for eah n a \bad set"Bn = n! 2 
 j 9m � n ;Leb(Em(!)) > pCe�mo :Corollary 3.6 says that P (Bn) �P1k=n C(�)e��(�)k . Therefore limn!1 Bn = 0. Setting
0 = Sn(
 nBn), and for eah ! 2 
0,n0(!) = inf �n 2 Z+ j ! =2 Bn� ;we easily get (3.13). �De�nition (Random hyperboli (return) times). Fix 0 > . We say that m is ahyperboli time for (!; x) if for eah 0 � k � m� 1 we haveXi2Gm(!;x) ;k�i�m�1 ri(!; x) � 0(m� k) :(This ondition depends on � through G�m.) We say thatm is a hyperboli return time for(!; x), or a hyperboli return if m is a hyperboli time and, additionally, rm(!; x) � 1.For ! 2 
, a �xed p0(�) (the hoie of p0 ours later in Lemma 3.9 and 5.3), and allm we de�neHm(!) = fx 2 I j m is the �rst hyperboli time � p0 for (!; x)gH�m(!) = fx 2 I j m is the �rst hyperboli return � p0 for (!; x)g :Finally, we set E�m(!) = I nSmk=p0 H�k (!). 17



Lemma 3.8 (Hyperboli return estimates). Let 0 < �(�) � (�)=2 be as inLemma 3.7. There is C(�) > 1, suh that for all ! 2 
0 and all m � n0(!) + C(�), wehave Leb(E�m(!)) � C(�)e��(�)m.Proof of Lemma 3.8. Applying Pliss' Lemma as in [A, Proposition 2.6℄, we �ndI nEm(!) � m[k=p0Hk(!) ; 8m � p0 :Next, we shall show that if jfm! (x)j > p� at the hyperboli time m, then there is a �rstiterate 1 � j � C log(1=�) for whih jfm+j! (x)j < p�. Of ourse, m+ j is then not onlya return but also a hyperboli return (use Lemma 3.3), so that we getm[k=p0H�k(!) � m�C log(1=�)[k=p0 Hk(!) :If y = jfm! (x)j > p� then the interval [�y � p�=2;�y + p�=2℄ does not interset(�p�=2;p�=2). The heart of the proof lies in the observation that there is C > 1(independent of !, m) suh that Hm(!) � Sm+C log(1=�)k=m H�k (!). For this, we applyLemma 3.3 whih gives � > 1, C > 1 so that if jf j�m!(z)j > p� for 0 � j � k � 1 thenj(fk�m!)(z)j > p��k=C. If k > log(2=C�)= log � � C log(1=�) then Cp�p��k > 2 = jIjso that our interval of length p� entered at y will have interseted (�p�;p�) for the�rst time by the time C log(1=�).To �nish, sine Smk=p0 H�k(!) � Sm�C log(1=�)k=p0 Hk(!) and I nE�m(!) = Smk=p0 H�k (!),we have E�m(!) � Em�C log(1=�)(!)giving the laim, with C(�) = log 1=�, by de�nition of the Bn, see Lemma 3.7. �3.C The random partitions.The �rst step is to obtain for �xed ! 2 
, and eah m � p0 a mod-0 partition of Iinto intervals I = m[k=p0 [J�Rk(!) J [ [L�Sm(!)L :The families of intervalsRk = Rk(!) and Sm(!) are onstruted indutively, simplifyingthe strategy in [A, x3℄ (in partiular the distintion between Rk and R�k does not existhere). We �rst list their key properties, valid for p0 � k � m (reall the de�nitionsgiven before Lemma 3.4):(P.I) H�k(!) � SJ2Rk(!) J and J \ H�k (!) 6= ; for eah J 2 Rk. (In partiular, if! 2 
0 then Lemma 3.8 implies that Leb Sm(!) � Ce��(�)m, if n � n0(!). Asa onsequene, S1k=p0 SJ�Rk(!) J is a partition of I modulo zero measure sets.)18



(P.II) For eah J 2 Rk(!) and 0 � j � k � 1, there is Irj 2 Q suh that f j!(J) � I+rj .(P.III) For eah J 2 Rm(!), there exist 0 � j � m� 1 and Irj with f j!J � Irj .(P.IV) For eah J 2 Sm(!), either J 2 Q or J is subordinate to some J� 2 R` forsome ` � m. (By de�nition, J is subordinate to J� 2 R` if J and J� have aommon endpoint and there are 0 � j � `� 1 and rj � 1 with f j!J � Irj+1 orf jJ � Irj�1 where Irj � f j!J�.)Constrution of the initial partition:First step: We �rst onstrut Rp0 and Sp0 , by using an auxiliary sequene of familiesof intervals J` for 1 � ` � p0. For this, start with the family of intervals J1 =fIr 2 Q j Ir \ H�p0(!) 6= ;g. For eah J1 2 J1, we onsider f!(J1). If it does notontain any interval of Q we put the interval J1 in J2. Otherwise, we subdivide J1into subintervals having as image either exatly one element of Q or one element of Qand part of either of the elements of Q whih interset the boundary of f!(J1), and weput into J2 those intervals in the deomposition whih ontain an element of H�p0(!).Then, for eah J2 2 J2 we onsider f2!(J2), putting it into J3 if it ontains no intervalof Q, and otherwise deomposing J2 as in the �rst step and putting into J3 thosesubintervals whih interset H�p0(!). We ontinue in this way until reahing the iteratefp0�1! , obtaining a family of intervals Jp0 . We de�ne Rp0 = Jp0 and setSp0 = (Q n J1) [ fonneted omponents of J1 n [J2Jp0 J j 8J1 2 J1g :Properties (P.I{IV) are satis�ed by onstrution for Rp0 and Sp0 (we set R` = J` for1 � ` � p0 � 1 in the formulation of (P.IV)).Indutive step: Assume that Rk, p0 � k � m, and Sm have been de�ned and satisfy(P.I{IV). We shall onstrut Rm+1 and Sm+1. For this, let Jm 2 Sm. By onstrution,Jm � Ir 2 Q. If Jm \H�m+1(!) = ; we put this interval into Sm+1 (no subdivision hasbeen made, so that (P.IV) still holds). Otherwise, we observe that (P.IV) implies thatthere are 0 � j � m and Irj 2 Q with f j!(Jm) � Irj (indeed, if Jm 2 Q we may just takej = 0 and otherwise we apply the de�nition of \subordinate"). We take the smallestsuh j and proeed as in the �rst step, deomposing Jm into subintervals having imageeither exatly one element of Q or one element of Q and part of one of the adjaentelements of Q, putting in Sm+1 the onneted omponents of the omplement of thoseintervals, J 0m;i, in the deomposition whih ontain a point in H�m+1(!), and ontinuingthe proedure until we exhaust all j0 � m with f j0! (Jm) � Irj , de�ning thus Rm+1 andSm+1. Properties (P.I{IV) hold by onstrution, and we are done.De�nition (Uniform ontration and bounded distortion). Let n, ! and aninterval J � I be suh that fn! is injetive on J . We say that fn! jJ enjoys uniformontration along inverse branhes for 0 < � < 1 and C > 1 if for every x 2 J and all0 � j � m� 1 m�1Yi=j ��f 0(f i!(x))�� � �j�mC : (3.14)19



We say that fn! jJ enjoys bounded distortion for K > 1 if for all y 2 fm! (J)���� ddy ( 1�0 Æ ��1)(y)���� � ���0 Æ ��1(y)�� � K : (3.15)We list for further use the key property of the partition, adapted from [A℄.Lemma 3.9 (Intermediate size { Bounded distortion { Uniform ontration).There are C > 1, 0 < � < 1 and for eah � there are p0(�) � 1 and C(�) suh that forall !, eah m � p0, and every J 2 Rm(!):(1) fm! jJ is injetive, jfm! (J)j � �1�2�=C, and fm! (J)j intersets (�p�;p�).(2) fn! jJ enjoys uniform ontration along inverse branhes for � and C.(3) fn! jJ enjoys bounded distortion for C(�).Proof of Lemma 3.9. Injetiveness is by onstrution. For the rest, we require inpartiular the following onsequene of (P.I{P.II): For eah x 2 J 2 Rm(!) there isz 2 J \H�m(!) withri(!; x) � ri(!; z)+2 ; 80 � i � m�1 ; and ri(!; xj) � ri(!; zj)+2 ; 80 � i � m�j�1 ;where we set xj = f j!(x), zj = f j!(z). Assertion (2) on the ontration of inversebranhes is then obtained from (3.11) (adapting the proof of Lemma 3.7 in [A℄): It isnot diÆult to get (see [A, Lemma 2.3℄, observing that m� j is a hyperboli return for(�j!; zj) beause m is a hyperboli return for (!; z))m�1Yi=j ��f 0(f i!(x))�� = m�j�1Yi=0 ��f 0(f i�j!(xj))��� exp�3(m� j)� Xi2Gm�j ri(�j!; zj)� C�� exp�3(m� j)� 0(m� j)� C� � exp�3(m� j)=2� C� :(3.16)The laim on the length of the image follows from enhaning the bounds of [A,Proposition 3.8℄ by making use of the hyperboli returns. Indeed, (P.III) implies thatthere is 0 � j � m � 1 and Irj with Irj � f j!(J). Then, by the mean value theorem,there is x 2 J with jfm! (J)j = ��(fm�j�j! )0(f j!(x))�� � jf j!(J)j :Next, applying (3.16), ��(fm�j�j! )0(f j!(x))�� � e2(m�j)=C :It remains to obtain a lower bound for jf j!(J)j. For this, it suÆes to ontrol jIrj j.By onstrution, there is x 2 J with rj(!; x) = rj and there is y 2 J \ H�m(!) with20



rj = rj(!; x) � rj(!; y) + 2. If j 2 Gm(!; y), sine m is a hyperboli time for (!; y) wehave rj(!; y) � 0(m� j), so that, using � < 1=4,jIrj j � p��e�rj(!;y)�2 � e�rj(!;y)�3�� p�(e�1 � e�2)e�0(m�j) � �1�2�(e�1 � e�2)e�0(m�j) :If j =2 Gm(!; y) then rj(!; y) � (12 � 2�) log(1=�) andjIrj j � e�22 �1�2� :Finally, the distortion ontrol (3) with C(�) � ��7=2 is obtained by a one-dimensionalversion of the proof of Proposition 4.2 in [A℄, adapting the estimates for the term A2there. (We leave the details to the reader.) �Let us de�ne the basi subintervals �� on whih our random towers will be on-struted. For this, we partition (�Æ; Æ) (Æ as in (H2) and small enough) into Sjkj�K0 Îkwith Îk = (e�k�1; e�k), Î�k = �Îk and then we subdivide Îk = Sk2`=1 Îk;` so that theÎk;` are disjoint and jÎk;`j = k�2 j Îkj. (Note that � does not intervene.) We set �� tobe the rightmost and leftmost intervals of this partition of (�Æ; Æ), i.e.,�+ = ÎK0;K20 ; �� = Î�K0;1 : (3.17)We also de�ne ~�+ to be the interval of length 3j�+j entered at �+, similarly for ~��.We lose this setion with a lemma that will be instrumental to prove Lemma 4.1(replaing ideas in the Appendix of a preprint version of [A℄ whih irulated in 1997;note that we do not use the topologial mixing assumption (H4)):Lemma 3.10 (Large size of image). Assume (H1)-(H3) and let � < 1 be as inLemma 3.9. Then there is C > 1 and for every small enough � and large enough jkjthere is a onstant C(k) > 1 (independent of �) so that for eah ! 2 
, and everyinterval Îk;` there are a time t(k) = t�Îk;`; !� � Cjkj ;and a subinterval ~U! � Îk;` suh that( jeU!j > 1=C(k) ;f t(k)! � ~U!� = ~�+ or ~�� : (3.18)Furthermore, � = f t!j ~U! is injetive and enjoys both uniform ontration on bakwardsbranhes (3.14) for C and �, and distortion bounds (3.15) for K = C(k).Proof of Lemma 3.10. We shall use again the random bound period ideas from [BeY℄.We �rst state an easy onsequene of Sublemma 3.2 (3). For every 1=4 > �0 > � > 021



(reall that � was �xed in the proof of Lemma 3.4) eah small enough �, all ! 2 
, andevery Îk;`, taking p(k; �) as in Sublemma 3.2:��fp(k;�)+1! (Îk;`)�� � e�2�0jkj : (3.19)Indeed, just observe that��fp(k;�)+1! (Îk;`)�� � inf ��(fp(k;�)�! )0�� e�jkj�1C e�jkj�1k2 � e(2�2�)jkjC e�2(jkj+1)Ck2 > e�2�0jkj :(3.20)Next, we laim that there is an integer i = i0 � Cjkj, so that for some k1 and `1fp(k;�)+1+i0! (Îk;`) � Îk1;`1�1 [ Îk1;`1 [ Îk1;`1+1 ; and jk1j � 2�0jkj (3.21)(with the obvious interpretation if `1 = 1 or `1 = k21).To hek (3.21) we �rst note that there is a �rst iterate j0 � Cjkj so thatfp(k;�)+1+j0! (Îk;`) \ (�Æ; Æ) 6= ; :Indeed, while fp(k;�)+1+i! (Îk;`) stays outside of (�Æ; Æ) we have, setting i = qM(Æ) + rwith 0 � r < M(Æ) and applying (H2)(i),��fp(k;�)+1+i! (Îk;`)�� � ~�qM(minjxj�Æ jf 0(x)j)M ��fp(k;�)+1! (Îk;`)�� � ~�qM(minjxj�Æ jf 0(x)j)M e�2�0jkj :Now, if fp(k;�)+j0! (Îk;`) � (�Æ; Æ)[�++[���, where �++ is the interval to the rightof �+ in an augmented partition, and ��� is the orresponding interval to the left of��, we set i0 = j0, and by (H2)(ii)��fp(k;�)+1+i0! (Îk;`)�� � ~�i0 ��fp(k;�)+1! (Îk;`)�� � ~�i0e�2�0jkj : (3.22)In the other ase, exept if fp(k;�)+1+j0! (Îk;`) overs ~�+ or ~�� (in whih ase we wouldstop, having proved Lemma 3.10), we replae fp(k;�)+1+j0! (Îk;`) byfp(k;�)+1+j0! (Îk;`) n (�Æ; Æ) (3.23)and ontinue iterating until we interset (�Æ; Æ) again. The loss in length aused by(3.23) is insigni�ant sine there is a minimal time between suessive returns to (�Æ; Æ).We may thus assume that we are in the situation (3.22) for some i0 � Cjkj and thatthere is (k0; `0) with jk0j � �0jkj andfp(k;�)+1+i0! (Îk;`) ( Îk0;`0�1 [ Îk0;`0 [ Îk0;`0+1 (3.24)22



(sine otherwise (3.21) would be proved). Applying Lemma 3.2 (3) to Îk0;`0 we get (reall(3.20)) ��fp(k;�)+1+i0+p(k0;�)+1! (Îk;`)�� � e�2�0jkj :Continuing the proedure, we eventually �nd subintervals U0 � eU0 � Îk;`, an iteratei = i0, and (k1; `1) with i0 � Cjkj and jk1j � 2�0jkj,fp(k;�)+1+i0! (U0) = Îk1;`1 ; fp(k;�)+1+i0! (eU0) = Îk1;`1�1 [ Îk1;`1 [ Îk1;`1+1 ; (3.25)ending the proof of (3.21). We take k1 so that jk1j is minimal with the property (3.25).We may now onlude the proof of Lemma 3.10: Repeating the proedure leading to(3.25), we obtain sequenes8><>: U1; U2; : : : eU1; eU2; : : : ;k0 = k ; k1 ; k2 ; : : : ; with jkm+1j < 2�0jkmj ;i0; i1; i2; : : : ; with im � Cjkmj : (3.26)The only way this an stop is that the seond line of (3.18) be satis�ed. The total timespent before this happens ist = sXm=0(p(km; �) + 1 + im)� C sXm=0 jkmj � C sXm=0(2�0)mjk0j � Cjk0j :Sine s � s(k) � Cjk0j, the lower bound on the length of U! follows from the remarkand hoie just after (3.23) and (3.25). The assertions on injetivity, distortion andontration are immediate by onstrution, see in partiular (3.24). �4. Esape and reurrene times asymptotisLet �� and ~�� be de�ned by (3.17). We take as our referene interval � = �+ � I,For small enough � and for all ! 2 
 we subdivide � into subintervals of points havingthe same return times to �, using the partitions Rm(!) and Sm(!) from the previoussetion. Our aim is to ontroll asymptotially the Lebesgue measure of points havinglarge return time. We �rst use Lemmas 3.9 and 3.10 to show:Lemma 4.1. (Covering e�� by iterating J 2 Rm(!)). There are C > 1, and foreah � > 0 a onstant C(�) > 1 suh that, for all !, all m � p0, eah interval J inRm(!), the following holds:There are a subinterval eJ � fm! (J) and an iterate t(J) � C log(1=�) suh that j eJ j �C(�)�1 and for whih f t�m! maps eJ injetively onto either ~�+ or ~��.23



Furthermore, the restrition of � = f t�m! on eJ enjoys both distortion bounds (3.15)for K = C(�) and uniform ontration on bakwards branhes (3.14) for the onstant� < 1 from Lemma 3.9.Proof of Lemma 4.1. By Lemma 3.9, the interval fm! (J) has length > �1�2�=C and in-tersets (�p�;p�). It thus ontains an interval J 0 � (�2p�; 2p�) of length > �1�2�=C,disjoint from (��1�2�=C; �1�2�=C). Now an easy modi�ation of the beginning of theproof of Lemma 3.10 may be applied to J 0, giving an iterate t0 � C log(1=�) and asubinterval J 00 � J 0 with jJ 00j > 1=C(�) and suh that f t0�m!(J 00) = Îk;` injetively, withjkj � C log(1=�) minimal for this property, and good distorsion and expansion for therestrition to J 00 of this t0th iterate. (In partiular, (3.20) is replaed by the observa-tion that jfp�m!(J 0)j > �1�3�=C.) We may then apply Lemma 3.10 to Îk;` and get asubinterval eU � Îk;` and a time t1 � C log(1=�) so that jf t1�m+t0!(eU)j is exatly one ofthe intervals ~��. Take t(J) = t0+ t1 and eJ = J 00 \ (f t0�m!)�1(eU). The assertions on thelength of eJ , distortion, and ontration follow from Lemmas 3.9 and 3.10. �De�nition (Esape time). For ! 2 
, m � p0 and J 2 Rm(!), let t(J) be as givenby Lemma 4.1. We say (J; !) has (equivalently, (x; !) for all points x 2 J have) esapedat time m + t(J). (By Lemma 4.1, fm+t! (J) ontains ~�+ or ~��, and we have gooddistortion and expansion ontrol along the way.)Lemmas 3.8 and 4.1 together with the remark in Property (P.I) immediately imply:Corollary 4.2. (Basi esape time asymptotis). For all ! 2 
0 and m � n0(!)+2C log(1=�)Leb��(x; !) 2 I j x esapes at time � m	� � C exp�� �(�)�m� 2C log�1��� :Proof of Corollary 4.2. If m � n0(!) + 2C log(1=�),Leb(f(x; !) 2 I j x esapes at time � mg)� Leb��I n m�2C log(1=�)[k=p0 Rk(!)��� Leb(fSm�2C log(1=�)(!)g) � C exp(��(m� 2C log(1=�)) : �For eah m � p0, we shall de�ne the return times of all x 2 J 2 Rm(!) abstratly(and independently of �).De�nition (Return time{Partition �i(!){ Abstrat return time R!). Fix ! 2
, m � p0(�). For x 2 J 2 Rm(!), onsider all those t � m suh that f t! maps Jinjetively onto an interval ontaining ~� and for whih there exists a nontrivial interval24



Ĵ = Ĵ(t) � J ontaining x with f t!(Ĵ) = � and f t!jĴ enjoys bounded distortion (3.15)and uniform ontration on inverse branhes (3.14), with the onstants from Lemma 4.1.The return time R!(x) is then the minimum of those t whih appear. It is in�nite ifthe set is empty.For eah !, de�ne a ountable partition of � into subintervals f�i = �i(!) j i 2 Z+g ,by onsidering the onneted omponents of the sets ffx 2 � j R!(x) = rg j r � p0g.Proposition 4.3 shows in partiular that for ! 2 
0, the �i(!) form a partition of �modulo zero Lebesgue measure sets, and that the return times are almost everywherede�ned:Proposition 4.3 (Return time asymptotis). There exists 
2 � 
0 of full measure,a random variable n2(!), and onstants C(�) � 1, C1(�) > C2(�) > 1 suh that for all! 2 
2, and all ` � n2(!),Leb(fx 2 � j R!(x) > `g) < C(�)e�(` 14 =C1(�)) ;and P (f! j n2(!) > `g) < C(�)e�(` 14 =C2(�)) :We may replae the right-hand-sides in both inequalities by C(�)e�`u for 0 < u < 1=4.The fat that C2(�) < C1(�) will be ruial to obtain the asymptotis (2.5) for C!(see Corollary 7.10).Proof of Proposition 4.3. We �rst estimate auxiliary onrete (�-dependent) return timesbR!(x), orresponding to the �rst time when one of the �� is guaranteed by Lemma 4.1to be \well" overed (with good expansion and distortion ontrol). After that we shallde�ne seond auxiliary onrete return times R�!(x) orresponding to the �rst time that� = �+ is well-overed and estimate them using the information on the bR!(x). Sine, byde�nition, the \abstrat" return times satisfy R! � R�!, this will prove Proposition 4.3.Good returns to �+ [ �� (estimating bR!):Fix ! 2 
. For eah m � p0, and J 2 Rm(!), we now de�ne the auxiliary returntime bR!(x) 2 Z+ [ f1g of all x 2 J indutively. Let t(J), and eJ be as in Lemma 4.1.Then, if fm! (x) 2 eJ , and fm+t! (x) 2 �+ or �� we setbR!(x) = m+ t(J) :If fm! (x) 2 eJ , but fm+t! (x) =2 �� (for all r) thenbR!(x) = m+ t(J) + bR�m+t!�fm+t! (x)� :Finally, if fm! (x) =2 eJ , we set bR!(x) = m+ bR�m!�fm! (x)� :25



We introdue a sequene of stopping times bTi = bT!;i : �+ [ �� ! f0; : : : ; ng [ f1gwith 0 � bT!;0 � bT!;1(x) < bT!;2(x) < � � � < bT!;kmax(x)(x) = bR!(x) ; (4.1)suh that for all `, k 2 Z+�x 2 �+ [ �� j bR!(x) > `	� �x 2 �+ [ �� j k � kmax(x) ; 9i � kmax(x) ; bT!;i(x) > `	[ �x 2 �+ [ �� j bR!(x) > bT!;k(x)	 : (4.2)Using standard ideas, it will be easy to bound the mass of the seond set in the abovedeomposition by showing that the probability that bT!;k < bR! (that is, k < kmax(x))deays exponentially fast in k. That is, we shall �nd � = �(�) < 1 so that for all k 2 Z+and all ! 2 
0 Leb��x 2 �+ [ �� j bR!(x) > bT!;k(x)	� � �k : (4.3)Then, using the basi bound on esape times from Corollary 4.2, we shall ontrol themass of the �rst set. More preisely, we shall exhibit a random variable n1(!) on afull measure set 
1 (with ontrolled distribution, see (4.8)), and C(�) � 1, so that for` > n1(!)Leb��x 2 �+ [ �� j p` � kmax(x)and 9i � kmax(x) with bT!;i(x) > `	� � C(�)e�p`=C(�) : (4.4)Putting together (4.4) and (4.3) for k = p` proves that there is C3(�) � 1, so that forall ` > n1(!) Leb��x 2 �+ [ �� j bR!(x) > `	� � C(�)e�p`=C3(�) : (4.5)Let us now de�ne the stopping times, using again the notation from Lemma 4.1. Wesay that bT!;1 is de�ned at x 2 �+ [ �� if there is m1 � p0 and J1 2 Rm1(!) withx 2 J1 (hene, the omponent of fm+t(J1) ontaining fm+t(x) overs e�+ or e��). Wethen set bT!;1(x) = � m if fm! x =2 eJ;m+ t(J1) otherwise.Clearly, bR!(x) � bT!;1(x), and equality is only possible in the seond ase: There,at time bT1(x), part of the omponent of f bT1(x)! (J1) ontaining f bT1(x)! (x) returns to�+ [ ��. We shall estimate the \overowing parts" using the distortion ontrol fromLemmas 3.9 and 4.1. For this, let �!;1 = fx 2 �+ [ �� j bT!;1(x) is de�ned g. Forx 2 �!;1 n fR(x) = bT1(x)g, we say that bT2 is de�ned at x if there are m2 > p0 and26



J2 2 Rm2(�bT1(x)!) with f bT1(x)! (x) 2 J2, setting bT2(x) to be either bT1(x) + m2, orbT1(x) + m2 + t(J2). For general k � 2, we let �!;k = fx j bT!;k(x) is de�nedg, andwe de�ne bT!;k+1 on �k+1;! � �k;! n f bR!(x) = bT!;k(x)g if there is mk � p0 andJk 2 Rmk(�bTk(x)!) with f bTk(x)! (x) 2 Jk. The relation (4.1) (and thus (4.2)) is animmediate onsequene of the de�nition.Estimate (4.3) for bR!:The estimate (4.3) an be restated as Leb(�!;k) � �k for some 0 < � < 1 and allk 2 Z+, n 2 Z+, ! 2 
0. This exponential bound will be an easy onsequene ofLemma 4.1. Indeed, for all ! 2 
0, n0, and p0 � m, if J is an interval of Rm(�n0!), theuniform distortion bounds from Lemma 4.1 imply (using the notation there) thatLeb�L0 := eJ \ (f t)�1�n0+m!(�+ [ ��)� > 1C(�) j�+ [ ��j2 Leb( eJ)� 1C(�)2 j�+ [ ��j2 ;Leb�J \ (fm)�1�n0!L0� > 1C(�) 1C(�)2 j�+ [ ��j4 Leb(J) :(In the above bounds, J may be replaed by a subinterval L � J with jLj � jJ j=C, upto adapting the onstants orrespondingly.)Therefore, setting n0(x) = bT!;k�1(x) for x 2 �!;k�1, we haveLeb�f bTk�1! (�!;k�1) \ �y 2 ��n0!;1 j bR�n0!(y) = bT�n0!;1(y)	�Leb�f bTk�1! (�!;k�1)� > j�+ [ ��j4C3(�) > 0 :Sine �!;k � �!;k�1 \ f bR�n0! Æ fn0! > bT�n0!;1 Æ fn0! g, setting� = 1� j�+ [ ��j4C(�)6 < 1 ;one more (indutive) appliation of the distortion bounds yields Leb(�!;k) � �k, aslaimed. (Note that � is uniform in ! but tends to 1 as j�+ [ ��j ! 0 or �! 0.)Estimate (4.4) for bR!:We now move to the estimate (4.4). For �xed `; i � 1, �xed 0 = �0 � p0 � �1 < �2 <� � � < �i � `, and � � `, de�ne k(�) = maxf0 � k � i j �k � �g andA� (�1; : : : ; �i) = fx 2 �+ [ �� j k(�) + 1 � kmax(x) ; bT!;k(�)+1(x) > � ;and bT!;j(x) = �j ; 8�j � �g :27



Applying the absolute bound in Corollary 4.2 we �nd that, whenever �1 � 1 > n0(!) +2C log(1=�),Leb(A�1�1(�1; : : : ; �i)) = Leb(fx 2 �+ [ �� j bT!;1(x) > �1 � 1g)� Ce��(�1�1)�2C log(1=�) :For j � 2, we let L be a omponent of A�j�1(�1; : : : ; �i) with bT!;j�1jL = �j�1, anddeompose L � f bR! = �j�1g into onneted omponents Sr Lr (with possible timesbTj�1 = m, and m + t). We apply again the absolute bounds from Corollary 4.2 to` = �j and f�j�1Lr and get, using one more the distortion ontrol in Lemma 4.1 whenpulling bak that whenever �j � �j�1 > n0(��j�1!) + 2C log(1=�)Leb(Lr \A�j�1(�1; : : : ; �i)) � C(�) Leb(Lr)Leb(f�j�1! (Lr))e��(�j�1��j�1)�2C log(1=�) :If �j � �j�1 � n0(��j�1!) + 2C log(1=�), we only have, by the distortion ontrol fromLemma 4.1, that Leb(Lr \ A�j�1(�1; : : : ; �i)) � C(�) Leb(Lr)Leb(f�j�1! (Lr)) :Thus, by de�nition of the Lr and A� , and using the \large image" properties inLemma 4.1, there is C(�) suh that for all j � 2,8<: Leb(A�j�1(�1;::: ;�i))Leb(A�j�1�1(�1; :::;�i)) � C(�)e��(�j��j�1�1) if �j � �j�1 � 1 � n0(��j�1!) ;Leb(A�j�1(�1;::: ;�i))Leb(A�j�1�1(�1; :::;�i)) � C(�) if �j � �j�1 � 1 < n0(��j�1!) :Therefore for any 0 < �1 < � � � < �i � `Leb(A`(�1; : : : ; �i)) � C(�)ie��` � exp ��(�) X�j��j�1�1�n0(��i�1!)(�j � �j�1)�;and (we shall soon hoose k = k(`))Leb�fk � kmax ;9i � kmax ; bT!;i > `g� � kXi=0 X0��1<���<�i�`Leb(A`(�1; : : : ; �i))� kXi=0 X0��1<���<�i�`C(�)ie��` � exp �� iXj=1 n0(��i�1!)� : (4.6)28



We now estimate the last fator in (4.6), i.e., the e�et of the random waiting times:This is where we shall lose the exponential deay. Fix 0 < � < 1. Sine P (fn0(!) >ng) � Ce��n, for eah �xed 1 � i � k and �1; � � � ; �i,P � iXj=1 n0(��j�1!) > � `�! � iXj=1 P�nn0(��j�1!) > � `i o�� C(�) k e��(�) �k̀ : (4.7)Consider the partition of � into maximal atoms �! = �!(k) on whih the bT!;j(x) areonstant for 0 � j � k. We will say that suh an atom � is (`; k)-good if for all x 2 �!and i � k, iXj=1 n0(�bT!;j�1!) � �` :The other atoms are alled (`; k)-bad. De�ning M`;k � 
�I to be the set of (!; x) suhthat x belongs to an (`; k)-bad �!, (4.7) implies that (P�Leb)(M`;k) � Cke� ��`k . Usinga Fubini argument as in Corollaries 3.5{3.6, we get that the set M 0̀;k of ! suh thatZ �M`;k(!; x) dLeb(x) > ke� ��3 k̀ has P -measure smaller than e� 2��3 k̀ . Therefore, thereis a set of full measure 
1 � 
0 suh that for eah ! 2 
1, there exists n1(!) � n0(!)with the property that ! =2M 0̀;k for all ` � n1(!). Now, for ! 2 
1 and ` � n1(!)Leb(fk � kmax ; 9i � kmax ; bT!;i > `g) � kXi=0 X0��1<���<�i�`(`;k)-good �! Leb(A`(�1; : : : ; �i) \ �!)+ X(`;k)-bad �! Leb(�!) :Therefore, taking k = p`, applying (4.6), and using the Stirling formula we get for1=2 < v < 1 and ` � n1(!)Leb��k = p` � kmax ;9i � kmax ; bT!;i > `	�� p`e`v [C(�)℄p`e�`(1��)�(�) +p`e� �(�)�3 p`� C(�)e�(p`=C3(�)) :Combining this with (4.3) ends the proof of the bound (4.5) for the return times bR!.Moreover, we may estimate P (fn1(!) > `g):P �f! j n1(!) > `g� � P ��9j > ` j ! 2M 0j;p`	�+ P��n0(!) > `	��Xj>` e� 2�(�)�3 pj + Ce��(�)` � C(�) e�(p`=C4(�)) : (4.8)29



Note that C4(�)�1 > C3(�)�1.Good returns to �+ (estimating R�!):For x 2 �+ [�� we now onsider the \onrete" return times R�!(x) to � = �+. Asobserved in the beginning of the proof, the abstrat times satisfy R!(x) � R�!(x). Toprove the desired asymptotis for R�!(x), following x 7.6 in [Yo1℄, we introdue seondstopping times S!;i on �+ [ �� by setting S!;0 � 0, andS!;k(x) = S!;k�1(x) + bR�S!;k�1(!)(fSk�1! (x)) :If � is the partition �+ [��, and if we de�ne �k(!) = �W f�S1! (�)W � � �W f�Sk�1! (�),then fSk maps eah element � of �k(!) onto �+ or ��, and fSk! restrited to eah suh� has bounded distortion and uniform ontration in the sense of Lemma 3.9. With thehelp of ideas already disussed, these two fats yield the following two laims:(i) The map f bR�j!�j! behaves like an irreduible two-state random Markov hain. Con-sider for a moment the unperturbed map f , writingR� and Sk for its return and stoppingtime. Sine the intervals �� are independent of � there are �-independent return timesT+ and T� withmin Leb��x 2 �+ j R�(x) = ST+(x)	� ;Leb��x 2 �� j R�(x) = ST�(x)	�! > 0 :Thus, if � is small enough,inf�;!2
2 Leb�x 2 �� j R�!(x) = S!;T�(x)	 � 1C > 0 :Hene, there is K0 � 1 so that for all ! and k,Leb��x 2 � j R�! > S!;kK0	� � �1� 1C �k : (4.9)Note also for further use that if (H4) holds, then there is N1(f;�) so that (q �1=C; q + 1=C) � fn(�) for all n = N1(f;�), and thus for n � N1(f;�), where q > 0 isthe repelling �xed point of f . (Indeed, take A to be the interior of � and, for B, take�rst B1 = (q � 2=C; q � 1=C), and then B2 = (q + 1=C; q + 2=C). For large enoughC � 1, topologial mixing gives L(�; C) so that f `(�) intersets both B1 and B2 forall ` � L(�; C). Sine f `(�) is onneted, it must ontain (q � 1=C; q + 1=C) for all` � L(�). Take N1 = L(�).) If � is small enough this onsequene of (H4) also holdsfor fn! . Clearly, there is N2(f;�) so that fN2 sends a subinterval of (q � 1=C; q + 1=C)injetively onto e� with bounded distorsion and uniform expansion. Thus, if � > 0 issmall enough, for all n � N3 = max(p0(�); N1 +N2)inf! Leb�fx 2 � j R�!(x) = S!;1(x) = ng� � Leb��� \ f�1! (�)	� � 1C : (4.10)30



(ii) The tail estimate already obtained for bR! gives C(�) > 1 suh that for all ! 2 
1,x 2 �, ` � n1(�S!;k(!)), k 2 Z+, writing �k(x) for the atom of �k(!) ontaining x,Leb(fy 2 �k(x) j S!;k+1 � S!;k > `g)Leb(�k(x)) < C(�) e�(p`=C1(�)) :Therefore, similarly as in the proof of (4.4), we �nd a set 
2 of full measure andn2 : 
2 ! Z+ with n2(!) � n1(!) suh that for all ` � n2(!) and 0 < w < 1=2,Leb�fx 2 � j S!;[`w℄ > `g� < (C(�))`w`we�(p`=C03(�;w)) + C(�; w)e�(`1=2�w�=(3C4(�)) :(4.11)Combining (4.9) for k = [`w=K0℄ with (4.11), the optimal hoie being for w =1=2�w = 1=4, gives the �rst inequality of Proposition 4.3. The laim on P (fn2(!) > `g)is proved just like the estimate on P (fn1(!) > `g). �5. Random towers with waiting times { the quasi-invariant measure5.A NotationFrom the ountable partition � = �j(!) and the funtion R! : � ! Z+ [ f1g, wede�ne tower extensions F! : �! ! ��! over f!. Set�! = �(x; `) 2 �� Z+ j x 2[j �j(��`!) ; 0 � ` 2 Z+ ; ` � R��`!(x)� 1� :(I.e., layer R!(x)�1 disjoint opies of �j(!) in Pisa tower fashion.) Denote by �!;` the`th level of the tower f(x; `) 2 �!g. We sometimes slightly abuse notation and identify�!;` with fx 2 � j R��`!(x) > `g = fx j (x; `) 2 �!g; in partiular �!;0 = � for all !.� will denote the family f�!g!2
.The dynamis F! : �! ! ��! onsists in hopping from one tower to the next above(x; 0), stopping at level R!(x) � 1 if R!(x) < 1, and falling down to the zeroth levelof ��R!(x)! using the return map fR! : �! � de�ned byfR! (x) = fR!(x)! (x) :In other words, we setF!(x; `) = � (x; `+ 1); if `+ 1 < R��`!(x) ;(fR��`!(x); 0); if `+ 1 = R��`!(x) :(In partiular, FR!! j�!;0 = fR! j�.)Clearly, the projetion �! : �! ! [�1; 1℄ de�ned by �!(x; `) = f�̀�`!(x) satis�esf! Æ �! = ��! Æ F! and �!(�!) = S`�0 f�̀�`!(Sj �j(��`!)) = S`�0 f�̀�`!(�).31



For eah ` we onsider the ountable partition Z!;` of �!;` indued by Sj �j(��`!)�!;` = [j s.t. R!j�j(��`!)�`+1�j(��`!) ;we also let Z!, Z be the orresponding partitions of �!, respetively �.Without risk of onfusion, denote by Leb the lift of Lebesgue measure on �! (sup-pressing the dependene on ! from the notation) and by d the lift to �! of the distaned(x; y) = jx � yj on I. Observe that sup! Leb(�!) is not �nite (this plays a role e.g.in the proof of Proposition 7.6, (7.5{7.6)). Sine ountable sets have zero Lebesguemeasure, we sometimes impliitly replae open intervals by losed intervals.In view of �rst bounding Leb(�!) and then extending the asymptotis of Proposi-tion 4.3 to the a return-time funtion de�ned on all levels of �!, reall that there existfor small enough � onstants C(�) > 1, C1(�) > C2(�) > 1 and a random variable n2(!)suh that for all ! 2 
2, ` � n2(!):Lebfx 2 � j R!(x) � `g � C(�)e�(` 14 =C1(�)) : (5.1)Now, the estimate P (fn2(!) > ng) � C(�)e�(n 14 =C2(�)) from Proposition 4.3 impliesthat for eah �xed N3 2 Z+ (N3 = N3(�) from (4.10), see (A.VI) and the proof ofProposition 6.3 below), there are 
3 � 
2, of full measure, and a random variablen3 � n2 on 
3, so that( n2(��`!) � ` and n2(�N3+`!) � ` ; 8` � n3(!) ;P �fn3(!) > ng� � Ce�(n 14 =C2(�)) ; 8n : (5.2)Indeed, just setn3(!) = inff` � n2(!) j 8n � ` ; n2(��n!) � n and n2(�N3+n!) � ng ;and use thatP �fn3(!) > `g� �Xn�`P �fn2(��n!) > ng�+Xn�`P �fn2(�N3+n!) > ng��Xn�`P �fn2(!) > ng�+Xn�`P �fn2(!) > ng� :Now, if ! 2 
3 Leb(�!) = X`2Z+Leb(fR��`! > `g)� n3(!) + C(�) X`>n3(!) e�(` 14 =C1(�)) <1 : (5.3)32



Next, we extend R! to �! (keeping the same notation without risk of onfusion) bysetting R!(x; `) = R��`!(x; 0)� `. (I.e., R!(x; `) is the �rst positive integer for whihFn! (x; `) 2 ��n!;0.) We laim that there is a random variable n4 � n3 on a full measuresubset 
4 � 
3 so that( Leb(fx 2 �! j R!(x) > ng) � Ce�(n 14 =C1(�))Leb(�!); 8n � n4(!) ;P (fn4(!) > ng) � Ce�(n 14 =C2(�)) ; 8n (5.4)up to taking slightly larger onstants 1 � C2(�) < C1(�). Indeed, just setn4(!) = minfm � n3(!) j 8n � m and 8` � 0 ; n3(��`!) � n+ `g :For eah !, we introdue a separation time s! : �! ��! ! Z+ [ f1g bys!(x; y) = min�n � 0 j Fn! (x) and Fn! (y) lie in distint elements of Z	 :5.B AxiomsWe list the ruial properties of the tower:(A.I) [Return and separation times℄ R! : �! ! Z+ is onstant on eah intervalof the partition Z!; with R! � p0(�). If (x; `) and (y; `) are both in the sameinterval of the partition Z!, then s!((x; 0); (y; 0)) � `. For any (x; 0); (y; 0) inthe same interval of Z!,s!(x; y) = R!(x) + s�R! (!)�fR!(x)(x); fR!(y)(y)� :(A.II) [Markov property℄ For eah element �j(!) of Z!, the map FR!! j�j(!) :�j(!)! � is a bijetion.(A.III) [Weak forward expansion℄ The partition Z! is generating for F! in the sensethat the diameters of the partitions Wnj=0 F�j��j!Z! tend to zero as n!1.(A.IV) [Bounded distortion℄ By Lemma 3.9 and Proposition 4.3, there are C(�) > 1and 0 < � < 1 (� is independent of �) suh that for all ! and eah element�j(!) of Z!, the map FR! j�j(!) and its inverse are nonsingular with respetto Lebesgue measure, and, writing JFR > 0 for its jaobian, we have for eahx; y 2 �j(!), writing s for s�R!(x)(!),����JFR!! (x)JFR!! (y) � 1���� � C(�) �s(FR!! (x);FR!! (y)) : (5.4)(A.V) [Return times asymptotis℄ For small enough �, onsequenes (5.1{5.2) ofProposition 4.3 give 
4 of full measure and a random variable n4 � n3 on 
4 sothat for eah ! 2 
4:8>><>>: n2(��`!) � ` and n2(�N3+`!) � ` ; 8` � n3(!) ;Leb(fx 2 �! j R!(x) > ng) � Ce�(n 14 =C1(�))Leb(�!); 8n � n4(!) ;P (fn4(!) > ng) � Ce�(n 14 =C2(�)) ; 8n : (5.5)33



Reall also (5.3) whih implies (\summability") that for almost all !Leb(�!) � n3(!) + C(�) <1 : (5.6)(A.VI) [Gd(Return times)=1 (mixing)℄ There are N0 � 1 and fti 2 Z+ ; i =1; : : :N0g with gd ftig = 1 suh that for all ! 2 
3, all n 2 Z all 1 � i � N0 wehave Leb(fx 2 � j R!(x) = tig) > 0. In fat, we have by (4.10), the followingstronger property: there is N3(�) � 1 so that for almost all ! and eah r � N3the set of x 2 � with R!(x) = r has positive Lebesgue measure.5.C Dynamial Lipshitz and bounded random funtion spaesConsider the following \dynamial Lipshitz" spae of densities on � (with � < 1 asin (A.IV), writing x, y instead of (x; `), (y; `) for simpliity):F+� = f'! : �! ! C j 9C' > 0 ; 8J! 2 Z! ; either '!jJ! � 0 ;or '!jJ! > 0 and ���� log '!(x)'!(y) ���� � C'�s!(x;y) ; 8x; y 2 J!g ;For a random variable K! : 
! R+ with inf
K! > 0 andP �f! j K! > ng� � P �f! j n3(!) > n=3g� � C(�)e�(n 14 =C(�)) ; (5.7)we introdue on the one hand a spae of random Lipshitz funtions:FK!� = f'! : �! ! C j 9C' > 0 ;j'!(x)� '!(y)j � C'K!�s!(x;y) ; j '!(x) j� C'K! ; 8x; y 2 �!g ;and on the other, a spae of random bounded funtions:LK!1 = f'! : �! ! C j 9C 0' > 0 ; supx2�! j'!(x)j � C 0'K!g :Note for further use (in Setion 7) that (5.7) together with (A.V) give that LK!1 , andthus FK!� , is a subset of L2(�;Leb).Slightly abusing language (see Lemma 5.3) we refer to the smallest possible C' or C 0'as the Lipshitz onstant, or supremum, of ' in F+� or FK!� , respetively LK!1 . Clearly,FK!� and LK!1 with the norms k'kF = C' respetively k'kL1 = C 0' are Banah spaes.5.D Construting the absolutely ontinuous quasi-invariant measureTheorem 5.1. (Quasi-invariant measure). Let fF! : �! ! ��!g satisfy axioms(A.I){(A.IV) together with the summability ondition (5.6) in (A.V). Then there is foralmost eah ! 2 
 an absolutely ontinuous probability measure �! = h! dLeb on �!whih is quasi-invariant, i.e., (F!)�(�!) = ��! .Additionally, fh!g 2 F+� , and there is a random variable K! satisfying (5.7) so thatboth h! and 1=h! belong to FK!� � LK!1 .From now on, K! will refer to the random variable from Theorem 5.1.34



Corollary 5.2. The measure (�!)��! on [f!(0); f2!(0)℄ is an absolutely ontinuousquasi-invariant measure for f! : I ! I.Proof of Corollary 5.2. Quasi-invariane is lear, and absolute ontinuity follows from((�!)��!)(E) =P1̀=0 �!(f�`��`!j�!;`(E)) and absolute ontinuity of �!. �Proof of Theorem 5.1. Let FR! : �!;0 ! Sn�p0��n!;0 denote the return map FR! (x; 0).If the meaning is lear, we just write FR.For any E � � (reall ���n!;0 = � for all ! and n)�(FR)�1�!(E) = �(x; n) 2 ���n!;0 � Z+ j R��n!(x) = n and FR��n!(x; 0) 2 E	 :We de�ne [(FR)�j ℄!(E) by indution, and for probability measures f���n! j n 2 Z+gon Fn2Z+���n!;0, we set ([(FR)j℄!)��(E) =Pn ���n!([(FR)�j ℄!(E) \���n!;0).Let Leb0 be the probability measure Lebj�!;0=Leb(�!;0) on �!;0 = �. For eah !,set �̂! to be an aumulation point of1n n�1Xj=0 �h�FR�ji!��(Leb0)for the weak-* topology. (Probability measures on the ompat set �!;0 form a ompatspae.) Using the distortion bound (5.4), we next show that the density of �̂! is boundedfrom above and from below on �, and also that this density belongs to F+� (�). Forthis, let A � Fn2Z+���n!;0 with A 2 _j�1`=0 [(FR)�`℄!Z! and set�j;A = ddLeb0�h�FR�ji!��(Leb0 j A) :For x; y 2 �!;0, letting x0; y0 2 A be suh that x0 2 [(FR)�j ℄!(x), y0 2 [(FR)�j ℄!(y),and setting n to be so that x0; y0 2 ���n!;0, we �nd for a suitable sequene 0 � n` � n,log �j;A(y)�j;A(x) = log (J(FR��n!)j)(x0)(J(FR��n!)j)(y0) = j�1X̀=0 log JFR��n`!�(FR��n`�1!)`(x0)�JFR��n`!�(FR��n`�1!)`(y0)�� j�1X̀=0 C(�)�s!(x;y)+(j�`)�1 � C(�)�s!(x;y) ; (5.8)
whih is uniform in j, A, and !. Then, we saturate (see e.g. the proof of Theorem 1 in[Yo1℄ or [Yo2℄) to onstrut a measure on S`2Z��`!:�̂! = 1X̀=0(F�̀�`!)�(�̂��`! j R��`! > `) :35



Property (5.6) in (A.V) implies�̂!(�!) � C 1X̀=0 Leb(fR��`! > `g) <1 ;In partiular, �̂! an be normalised to get an absolutely ontinuous probability measure�!. Its density satis�es the onditions needed to be in F+� (whih only involve ratios).The upper and lower bounds for the density of �̂! and its Lipshitz onstant translateinto bounds for that of �̂��n!, depending on ! through n3(��n!), and we get the �nallaim in the theorem by setting K! to be the maximum of the upper bounds for h! andits Lipshitz onstant, and the orresponding bounds for 1=h!. �5.E Lifting Lipshitz and bounded funtions to the tower.In ombination with Corollary 7.10 and Corollary 8.5, the following lemma gives ourmain theorem:Lemma 5.3 (Lifting bounded and Lipshitz funtions). There is p0(�) so thatif inf! inf R! � p0(�) then for eah Lipshitz � : I ! C , the family of lifted funtions~�! = � Æ �! : �! ! C belongs to FK!� , for K! from Theorem 5.1. Furthermore, C~� isbounded by an expression depending only on � and (linearly) on the Lipshitz onstantof �. If � is bounded on I then ~� 2 LK!1 and sup� j~�j � sup j�j.Proof of Lemma 5.3. The laim on bounded funtions is trivial and we onentrate onLipshitz funtions. The statement is an immediate orollary of the following assertion:There is C(�) > 0 so that for all x; y in �, and ` for whihR��`!(x) ; R��`!(y) � ` ; and s��`!�(x; 0); (y; 0)�� ` ;we have,d�f�̀�`!(x); f�̀�`!(y)� � C(�)�s��`!((x;0);(y;0))�` = C(�)�s!((x;`);(y;`)) :To hek the assertion, �rst assume that s��`!((x; 0); (y; 0)) = p = R��`!(x) � `. ByProposition 4.3, we have uniform bakwards ontration: for all 0 � j � p and z suhthat (z; 0) belongs to the same element of Z as (x; 0) and (y; 0),����fp�j��`+j!�0(f j��`!(z))��� � �j�pC(�) :Let x` = f�̀�`!(x), y` = f�̀�`!(y), we haved�fp�`! (x`); fp�`! (y`)� � �`�pC(�) d(x`; y`);36



whih gives the result.In general, deompose s��`!((x; 0); (y; 0)) = p into the sum of suessive return timesof (x; 0) and (y; 0) to �!;0, invoking uniform bakwards ontration suessively andassuming that the minimal return time p0(�) has been hosen large enough to guaranteethat C(�)�p0(�) < 1 (where 0 < � < 1 and C(�) are the ontration and distortiononstants from (A.IV): there is no loophole here, as inreasing p0 when de�ning thepartition for a �xed � does not make C(�) or � larger). �6. Mixing for the skew produt: random exatnessIn the previous setion, we built a random tower (�!)!2
 and maps F! : �! �!��!. The random skew produt is the �bered map F = (F!)!2
 on �. Let B! bethe Borel �-algebra of �!, and let B be the family of �-algebras B!. In Theorem 5.1we onstruted absolutely ontinuous �bered invariant measures (�!)!2
. Let � bethe orresponding invariant measure for the random skew produt: �(A) = Z
 �!(A!),for A 2 B. Let L2(�) be the Hilbert spae of � = (�! : �! �! C )!2
 suh that�! 2 L2(B!; �!) for almost all !, and R
 R�! j�!j2d�!dP (!) <1.For n 2 Z+ we denote by F�n(B) the family ([F�n�1! Æ � � � Æ F!℄�1(B�n!))!2
 andby Fn! the ompositions F�n�1! Æ � � � Æ F!.We reall de�nitions whih are standard for deterministi dynamis:De�nitions (Random exatness, mixing).(1) The random skew produt (F; �) = (F!; �!)!2
 is exat if eah B 2 B whihbelongs to all F�nB, n 2 Z+ is trivial. (I.e., for almost all !, either �!(B!) = 0 or�!(B!) = 1.)(2) The random skew produt (F; �) is mixing if for all ' and  in L2(�),limn!1 ���� Z
 Z�! '�n! Æ Fn! �  ! d�!dP (!)� Z
 Z�! '! d�!dP (!) Z
 Z�!  ! d�!dP (!)���� = 0 :Remark. In our partiular ase of random towers, instead of a random dynamial sys-tem, we may onsider a skew-produt map F ating on �� Z+� 
, endowed with theinvariant measure � = �! � P , where �! has support on �! � � � Z+ � f!g. Thenthe de�nition redues to the usual de�nitions of exatness and mixing.The following proposition may be proved as in the deterministi ase (see e.g. [PY℄):Proposition 6.1. If F is exat then it is mixing.The following result is less standard. We shall not need it (our main theorem saysmuh more), but we inlude it for ompleteness:37



Lemma 6.2 (Forward �bered mixing). Assume that the random skew produt (F; �)is exat. Then for all ' suh thatsup! Z j'!j2d�! <1 ;and all  in L2(�), we have for almost all ! 2 
:limn!1 ���� Z�! '�n! Æ Fn! �  ! d�! � Z��n! '�n! d��n! Z�!  ! d�!���� = 0 :Proof of Lemma 6.2. This goes along the lines of the lassial proof of Proposition 6.1(see [PY℄). Indeed, exatness implies that for almost all !,L2(B!; �!) � L2(F�1! B�!) � � � � � L2(F�n! B�n!) � � � � � C :Choose fk�! ; � 2 Z+g an orthonormal basis of L2(B!)	L2(F�1! B�!), then fk��!ÆF! ; � 2Z+g is an orthonormal basis of L2(F�1! B�!)	L2(F�2! B�2!), and fk��j!ÆF j! ; � 2 Z+ ; j 2Z+g is an orthonormal basis of L2(B!) 	 C . Writing '�n! and  ! in these bases, weget: ������Z�! '�n! Æ Fn!  ! d�! � Z��n! '�n! d��n! Z�!  ! d�!������� Z��n! j'�n!j2 d��n! Xj; � ���� Z k��n+j! Æ Fn+j! �  ! d�!����2 n!1���! 0: �Proposition 6.3 (Exatness of random map). Let (F; �) satisfy (A.I){(A.IV) andthe summability ondition (5.6) from (A.V), with � from Theorem 5.1. If (A.VI) holdsthen (F; �) is exat and thus mixing.Proof of Proposition 6.3. First we prove: if, for every � > 0 and almost all !, thereexists an integer t(�; !) suh that Leb(F t!(�!;0)) > 1� �, then F is exat.We adapt Young's proof ([Yo2, Theorem 1 (iii)℄) to our random setting. Let A 2Tn F�nB. Fixing ! suh that �!(A!) > 0, we are going to prove that for any � > 0,�!(A!) > 1 � �. Let t(!; �=2) be given by hypothesis. For eah n 2 Z+ we haveA! = (Fn+t! )�1(B�n+t!) and�!(A!) = ��n+t!(B�n+t!) = ��n+t!(F t�n! Æ Fn! (A!)) :Now, the non singularity of F t�n!, the absolute ontinuity of ��n+t! with respet to Lebon ��n+t!, and the de�nition of t imply the existene of �(�; !; t; n) > 0 suh thatLeb(��n!;0 nD�n!) < � ) ��n+t!(F t�n!D�n!) > 1� 2� :38



Thus, if we an �nd n 2 Z+ suh that Leb(��n!;0nFn! (A!)) < �, then we shall onludethat �!(A!) > 1� �. Let us prove the existene of suh an integer n.Sine we assumed that �!(A!) > 0, we may hoose �! 2 �n(�n!) with Fn! (�!) =��n!;0 and Leb(A! \ �!) =Leb(�!) > 1��=2. If n is large enough we may assume thats!j�! is large enough so that C(�)�s! < �. Then, the bounded distortion estimate (5.8)gives Leb�Fn! (A! \ �!)�Leb(��n!;0) > (1� �)Leb(A! \ Z!)Leb(Z!) > 1� 2�:Finally, we prove that for any � > 0 and all ! 2 
3, there exists an integer t(�; !)suh that Leb(F t!(�!;0)) > 1� �, following ideas from Markov hains. By onstrution(see (4.10)), Leb(�!;0 \ F�t! (��t!;0)) > 0 for all t � N3. Let `0 � max[N3; n3(!)℄, thetower struture gives FN3+`0! (�!;0) � [`�`0��N3+`0!;`Beause `0 � n3(!) and by de�nition of 
3 we have n2(�N3+`0!) � `0 Therefore,P`�`0 Leb(��N3+`0!;`) � Ce�`w0 . (This is where we used the presene of N3 in thede�nition of n3 in Subsetion 5.A.)If we replae the assumption that all return times � N3 our with positive proba-bility by the weaker \g..d.=1" assumption, we may use the following argument: De�neU = nt 2 Z+ j 8! 2 
3 ;Leb��!;0 \ (F t!)�1(��t!;0)� > 0o :The Markov property (A.II) of the tower gives that U is stable under addition, and itfollows from the assumption in (A.VI) that g..d. U = 1. Then, Lemma A.3 in Seneta[S℄ gives that U ontains all but a �nite number of positive integers, so that there existst0 suh that for all t � t0 and all !Leb(�!;0 \ F�t! (��t!;0)) > 0 :Replaing N3 by t0 in the previous paragraph ompletes the argument. (The de�nitionof n3 should be modi�ed aordingly.) �7. Random oupling argument, \future" orrelations7.A Large deviations and joint returns to the basis.Adapting Young's de�nitions ([Yo2, x3.3℄) to our random setting, we introdue stop-ping times �!i and a joint return time T! on �! ��! for eah ! and x; x0 2 ���, asfollows. Set �!1 (x; x0) = inffn � `0 j Fn! (x) 2 ��n!;0g ;�!2 (x; x0) = inffn � `0 + �!1 (x; x0) j Fn! (x0) 2 ��n!;0g ;�!3 (x; x0) = inffn � `0 + �!2 (x; x0) j Fn! (x) 2 ��n!;0g ;39



and so on, with the ation alternating between x and x0. De�ne then T!(x; x0) to bethe smallest integer n � `0 suh that (Fn! (x); Fn! (x0)) belongs to ��n!;0 ���n!;0.For �xed ! and m 2 Z+, onsider also the partition e�!m of �! � �! into maximalsubsets on whih the �!i (x; x0) are onstant for 0 � i � m.In order to make use of the random mixing properties, for ` 2 Z+, onsider therandom variable:V!̀ = Leb(�!;0 \ F�`! (�!;0)) = Z (���`�1!;0 Æ F!̀) � ��!;0 dLeb:Reall that �� is the invariant measure for the Markov hain and �!;0 = � for all !.For small  > 0, to be hosen later, sine F is mixing by Propositions 6.1 and 6.3, thereexists `0 suh that for all ` � `0, the expetation of V!̀ satis�es���� Z
 V!̀ dP (!)� Leb(�) � ��(�)���� < : (7.1)(In order to dedue (7.1) from mixing of F , we also used that h�1! � ��!;0 belongs toL2(�). This follows from Theorem 5.1.)For any m 2 Z+ and eah �xed sequene of integers �0 = 0 < �1 < � � � < �m suhthat �i+1 � �i � `0, de�ne: Sf�igm (!) = mXi=1 V �i��i�1��i�1! :Lemma 7.1 (Large deviations for Sf�igm ). There exist � > 0 and 0 < � < 1 suhthat for eah m and all �0 = 0 < �1 < � � � < �m suh that �i+1 � �i � `0,P (fSf�igm (!) < m�g) � �m : (7.2)Proof of Lemma 7.1. The random variable V!̀ depends only on !0; : : : ; !`�1, so V!̀and V k�j! are independent provided j � `. In partiular, Sf�igm is a sum of independentrandom variables.For any � > 0 and t > 0,P (fSf�igm (!) < tg) � Z exp[�(t� Sf�igm (!))℄ dP (!)� e��t Z exp[��Sf�igm (!)℄ dP (!)� e��t m�1Yi=0 Z exp[��V �i��i�1��i�1! ℄ dP (!) (by independene):40



We have 0 � V!̀ � Leb(�) and, by (7.1), Z V!̀ dP (!) � Leb(�) � ��(�) � , provided` � `0. Now, sine 0 � �V �i��i�1��i�1! � 1,Z exp[��V �i��i�1��i�1! ℄ dP (!) � 1� �hLeb(�)��(�)�  � Leb(�)2 �2 i =: a(�; ) :Choose � < 2��(�) and then  > 0 small enough so that 0 < a(�; ) < 1. Weget P (fSf�igm (!) < m�g) � (e�� � a(�; ))m � �m; for some 0 < � < 1 by hoosing0 < � < 1� log(1=a(�; )). �We shall now use Lemma 7.1 to perform yet another parameter exlusion whihwill be useful later on to estimate the joint return time on � � �. First observe thatthe lemma may be reformulated as follows: For eah m, and every �xed sequene ofintegers �0 = 0 < �1 < � � � < �m suh that �i+1 � �i � `0, there is a set Mf�igm � 
 withP (Mf�igm ) � �m and suh that if ! 62Mf�igm then Sf�igm (!) � m � �. Next de�neM 0m = f(!; x; x0) 2 [!2
(f!g ��! ��!) j ! 2Mf�!i (x;x0)gm g :Corollary 7.2. Let K! be given by Theorem 5.1. There is 0 < � < 1 suh that foreah large enough m the set fMm � 
 de�ned byfMm = f! 2 
 j Z�!��! �M 0m(!; x; x0)K2! dLeb2(x; x0) > �m=2g (7.3)has P -measure smaller than �m=4. Furthermore, there is a random variable n5 de�nedon a full measure set 
5 � 
 and suh that( n � n5(!) =) ! 62 fMn ;P (fn5(!) > ng) � C�n=2 : (7.4)Proof of Corollary 7.2. The �rst laim is one more a Fubini argument. Indeed, if fMmhad P -measure greater than �m=4, thenZ eMm Z�!��! �M 0m(!; x; x0)K2! dLeb2(x; x0) dP (!) > �m=2 � �m=4:However, denoting by P the �nite measure on [!2
(f!g ��! ��!) de�ned by:P(A) = Z
 Z�!��! �A(!; x; x0)K2! dLeb2(x; x0) dP (!) ;41



using (5.6) and (5.7), we �nd for large enough mP(M 0m) = Z �M 0m(!; x; x0)K2! dLeb2(x; x0) dP (!)= X�1<���<�m P(M 0m \ f�!i (x; x0) = �i ; i = 1; : : : ;mg)� �m � sup!2
3(K2!�Leb(�!))���m=8 X�1<���<�mK2! � Leb2((�! ��!) \ f�!i (x; x0) = �i ; ig)+ P (fK2!Leb2(�!) > ��m=8g)� �3m=4 ;a ontradition. Setting 
5 = f! j 9n5(!) so that 8n � n5(!); ! 62 fMng, a largedeviations argument as in Lemma 7.1 together with the �rst laim of the orollary givesthe seond laim. �7.B Estimates on stopping times and joint return times.From now on, the notations �, �0, ~� will be used to denote probability measures,absolutely ontinuous with respet to Leb on � or Leb� Leb on ���. There shouldbe no onfusion with the onstants from (H1){(H2) whih will not appear anymore.Before proving the main estimate of this setion (Proposition 7.6), we state two lemmaswhih are randomised versions of Lemmas 1 and 2 in [Yo2℄.Lemma 7.3 (Lower bound for P (fT! = �ig)). Let �, �0 be absolutely ontinuousprobability measures on f�!g, with densities ', '0 in F+� . If � 2 e�!i is suh that(T!)j� > �i�1, then, letting V �i��i�1��i�1! be assoiated to the �j(�),(�� �0)(fT! > �igj�) � 1� V �i��i�1��i�1! =C�;�0(�) ;where C�;�0(�) > 1 depends on the Lipshitz onstants of ' and '0. This dependenemay be removed if we onsider i � i0(�; �0).Lemma 7.4 (Relating stopping times and return times). Let �, �0 be absolutelyontinuous probability measures on f�!g, with densities ', '0 in F+� . For eah � 2 e�!i ,we have (�� �0)!(f�i+1 � �i > `0 + ng j �)� C�;�0(�)Leb(fR��i+`0! > ng) � Leb(���i+`0!);where C�;�0(�) depends on the Lipshitz onstants of ', '0. This dependene may beremoved if we onsider i � i0(�; �0).The proofs of Lemmas 7.3 and 7.4 are based on the following sublemma, whih is arandomised version of Sublemmas 1 and 2 in [Yo2℄ (reall that the bounded distortioninequality (A.IV) is uniform in !). 42



Sublemma 7.5 (Consequenes of bounded distorsion).(1) There is M0 suh that for all n 2 Z+, and ! 2 
,d(Fn! )�(Leb)dLeb �M0 Leb(�!):(2) Let � be a family of absolutely ontinuous probability measures on f�!g, with den-sities ' in F+� . There is C�(�) > 1 so that for eah ! 2 
, every k 2 Z+, letting� 2 Zk�1! be suh that F k!� = ��k!;0, and setting ��k! = (F k! )�(�!j�), then for all x,y 2 ��k!;0 ���� d��k!dLeb(x)� d��k!dLeb(y) � 1���� � C�(�):The dependene of C�(�) on � may be removed if the number of i � k suh that F i!� ���i!;0 is greater than some j0 = j0(�).Proof of Sublemma 7.5. The proof of (1) follows verbatim the proof of Sublemma 1 in[Yo2℄ (making use of (5.6)), we omit it.We sketh how to prove (2). Let x0 and y0 2 � be suh that F k! (x0) = x andF k! (y0) = y. It is not diÆult to hek that���� '!(x0)JF k! (x0)� '!(y0)JF k! (y0) � 1���� � (1 + C'�k)C(�) + C'�k;where C(�) only depends on the onstants from (A.IV). �Proof of Lemma 7.3. Assume for de�niteness that i is even. For � 2 e�i, let ~�! = �!��0!,so �!�(~�!j�) = Ct(�!j�!(�)). Let ���i�1! = F �i�1! �(�!j�!(�)), we have:(�� �0)!(fT! = �igj�) = 1���i�1!(���i�1!;0) � ���i�1!(���i�1!;0 \ F�(�i��i�1)��i�1! ���i!;0);Sublemma 7.5 (2) applies to � and the result follows from the de�nition of V �i��i�1��i�1! . �We omit the proof of Lemma 7.4 whih is based on Sublemma 7.5 (1) and (2).The main estimate of this subsetion follows (see Proposition 7.7 for its relevane):Proposition 7.6 (Joint return time asymptotis). There exist bC2(�) < bC1(�), asubset 
6 � 
4 \
5 of full measure, and a random variable n6 � max(n4; n5) on 
6 sothat P (fn6(!) > ng) � Ce�(n 18 =bC2(�))and suh that for every pair �, �0 of absolutely ontinuous probability measures on f�!ghaving densities ', '0 in F+� \ LK!1 , there is C�;�0(�), so that for eah ! 2 
6 and alln > n6(!) (�� �0)!(fT! > ng) � C�;�0(�)e�(n 18 =bC1(�)) :43



Moreover, C�;�0 depends on � and �0 only through the Lipshitz onstants of ' and '0.Proof of Proposition 7.6. We use the notation ~� = �� �0. For 0 < v < 1=4 to be �xedlater, we have, just like (4.2):~�(fT! > ng) = Xi�nv ~�(fT! > ng \ f�!i�1 � n < �!i g) + ~�(fT! > ng \ f�![nv℄ � ng)=: (I) + (II):The key remark to estimate (I) and (II) is that for a �xed ! 2 
, the points (x; x0) ofeah element of e�(!)m are either all good or all bad for the ondition Sf�!i (x;x0)gm (!) > m�.Moreover, V �i��i�1��i�1! depends only on �j for 1 � j � i. For ! and i � m, we say that anelement � 2 e�(!)i is m-bad if it only ontains points suh that Sf�!i (x;x0)gm � m�. Theother � 2 e�(!)i are alled m-good.Fixing ! 2 
5 \
4, we omit the dependene of ~�, T , and �i on ! from the notation.Let us fous �rst on the term (II). Sine the densities of � and �0 are in LK!1 , for nsuh that nv � n5(!), Corollary 7.2 gives(II) = ~�(fT! > ng \ f�[nv℄ � ng) � C';'0 �[nv=2℄ + X�2e�![nv ℄� [nv ℄-good ~�(fT! > �[nv℄g \ �):
Now, denoting by �i the element of e�!i ontaining � 2 e�![nv ℄ for i � [nv℄, we maydeompose~�(fT > �[nv℄g \ �) = ~�(fT > �2g \ �2) [nv ℄Yi=3 ~�(fT > �ig \ �i)~�(fT > �i�1g \ �i�1) :Therefore for eah [nv℄-good �, using V �i��i�1��i�1! assoiated to the orresponding stoppingtimes, we obtain from Lemma 7.3,~�(fT > �[nv ℄g \ �)= ~�(�2) ~�(fT > �2gj�2) [nv℄Yi=3 ~�(fT > �igjfT > �i�1g \ �i) [nv ℄Yi=3 ~�(fT > �i�1g \ �i)~�(fT > �i�1g \ �i�1)� ~�(�2) [nv℄Yi=2(1� V �i��i�1��i�1! =C�;�0) [nv℄Yi=3 ~�(fT > �i�1g \ �i)~�(fT > �i�1g \ �i�1) :44



Hene (making use of the onsequenes of i � i0(�; �0) in Lemma 7.3),X�2e�![nv ℄� [nv ℄-good~�(fT > �![nv℄g \ �)� X�2��good ~�(�2) X�3��2good ~�(fT > �2g \ �3)~�(fT > �2g \ �2) � : : :� X���[nv ℄�1good ~�(fT > �[nv℄�1g \ �)~�(fT > �[nv℄�1g \ �[nv ℄�1) � [nv℄Yi=2(1� V �i��i�1��i�1! =C�;�0)� e�[nv ℄�=C ;where we used ! 62 fM[nv℄ and also the fat thatX�2��good ~�(�2) X�3��2good ~�(fT > �2g \ �3)~�(fT > �2g \ �2) : : : X���[nv ℄�1good ~�(fT > �[nv℄�1g \ �)~�(fT > �[(nv℄�1g \ �[nv ℄�1) � 1 :Finally, we get (II) � C�;�0�[nv=2℄ + e�[nv ℄�=C .Let us turn our attention to the term (I). Fix 0 � i � nv and deompose~�(fT > n; �i�1 � n < �ig)= X(k1 ::: ki�1)P kj�n ~��f�i � �i�1 > n� i�1Xj=1 kj ; �j � �j�1 = kj ; j = 1; : : : ; i� 1g�Fixing k1; : : : ; ki�1, onditioning, using Lemma 7.4 and the asymptotis (A.V) on thereturn times, we get if n >P kj + n4(��i�1+`0!) + `0:~�(f�i � �i�1 > n� i�1Xj=1 kj ; �j � �j�1 = kj ; j = 1; : : : ; i� 1g)� i�1Yj=1CLeb(���j+`0!) Yj=1;:::i�1kj>n4(��j�1+`0!)+`0 e�[kj�`0℄1=4=C1� Ce���n�P kj�`0�1=4=C1(�)�� 0�i�1Yj=0n3(��j+`0!)1A e�n1=4=C1(�) �C(�)e`1=40 =C1(�)�i� e�Pj �kj jkj�`0+n4(��j�1+`0!)�1=4=C1(�)� :
(7.5)
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Now, sine P (fn4(!) > ng) � Ce�(n1=4=C2(�)), onditioning with respet to elements ofthe partition e�[nv ℄ and proeeding as in the proof of Proposition 4.3, we get for 0 < �̂ < 1a subset 
6 � 
5 \ 
4 of full measure with the following property: For ! 2 
6, thereexists n6(!) � max(n5(!); n4(!)) (with the bounds stated in Proposition 7.6) suh that8n � n6(!), the ~�-measure of the ylinders in (I) whih violate the onditioniXj=0(n4(��j+`0!))1=4 � �̂n1=4 and i�1Yj=0n3(��j+`0!) � env log(�̂n) ; 8i � nv (7.6)is less than e�(n1=4�v=C(�)).Next, summing (7.5) over the kj suh that n > P kj + n4(��i�1+`0!) + `0, theontribution of those ylinders whih satisfy (7.6) is not larger thanCenwenv log(n)�̂ e�(n 14 =C1) �C e`1=40 �nv env`1=40 e�̂n1=4 � C(�)e�(n1=4=bC1(�)) ;where the fator enw with v < w < 1=4 omes from the di�erent hoies for (k1; � � � ; ki).It only remains to onsider the sum over terms with n �P kj + n4(��i�1+`0!) + `0whih may be estimated by i�1Yj=0n3(��j+`0!)! �Ce`1=40 �i e�(P k 14j =C1)e�P k 14j jkj�`0+n4(��j�1+`0!)�=C� 0�i�1Yj=0n3(��j+`0!)1A �Ce`1=40 �i e�(n1=4=C1)e�Pij=0 n 144 (��j+`0!)�=C :So, if n � n6(!) the ontribution to the sum over those terms of the ylinders sat-isfying (7.6) is not larger than Ce�(n1=4=bC1(�)). Finally, we get that (I) is less thanC�e�(n1=4=bC1(�)) + e�(n1=4�v=bC1(�))�. Combining this with the estimate on (II) ends theproof of Proposition 7.6 with upper bound max �e�(nv=bC1(�); e�(n1=4�v=bC1(�))�. The op-timal hoie is v = 1=4� v, i.e., v = 1=8. �7.C Random oupling: mathing (Fn! )�(�!) with (Fn! )�(�0!).Let �, �0 be absolutely ontinuous probability measures on f�!g with densities ','0 in F+� \ LK!1 . In this subsetion, we shall math (Fn! )�(�!) with (Fn! )�(�0!). Wejust summarise the strategy, sine the omputations follow straightforwardly along thelines of [Yo2, x 3.4℄). The relevant dynamial system is F! = (F! � F!)T! whih maps�! ��! into �T! ��T! . The \mathing" is done using a sequene of (joint) stoppingtimes whih are the suessive entrane times into ��;0 ���;0:T1;! = T!; Tn;! = Tn�1;! + T�Tn�1! Æ bFn�1:Denote by �̂!i the largest partition of �! ��! on whih T1;!; � � � ; Ti;! are onstant.46



Proposition 7.7 (Mathing, joint return times, joint stopping times). Let �, �0be absolutely ontinuous probability measures on f�!g with densities ', '0 in F+� \LK!1 ,and let i1('; '0) be suh that max(C'; C'0)�i1 < C. There exists 0 < � < 1 suh thatfor almost all !, all i � i1 and all nj(Fn! )�(�!) � (Fn! )�(�0!)j � 2(�! � �0!)(fTi;! > ng)+ 2 1Xj=i(1� �)j�i+1(�! � �0!)(fTj;! � n < Tj+1;!g):(7.7)Proof of Proposition 7.7. Just rewrite the proofs of Lemmas 3 (3') and 4 in [Yo2℄,remarking that the onstants appearing there do not depend on ! in our ontext. �The following lemma is proved in the same way as Lemma 7.4 (see [Yo2, Sub-lemma 4℄).Lemma 7.8 (Relating joint stopping times and joint return times). Let �, �0 beabsolutely ontinuous probability measures on f�!g with densities ', '0 in F+� \ LK!1 .Then there is C';'0 , depending only on the Lipshitz onstants of ', '0, so that foralmost all !, all i, eah � 2 �̂i, and all n(�� �0)!(fTi+1;! � Ti;! > nj�g) � C';'0(Leb� Leb)(fT�Ti! > ng)Proposition 7.9 (Mathing). There exist eC2(�) < eC1(�), 
7 of full measure, and arandom variable n7 : 
7 ! Z+ with P (fn7(!) > ng) � Ce�(n 116 =eC2(�)), suh that, foreah pair �, �0 of absolutely ontinuous probability measures on f�!g with densities 'and '0 in F+� \ LK!1 there is C�;�0(�), depending only on the Lipshitz onstants of ','0, so that for eah ! 2 
7 and n � n7(!),j(Fn! )�(�!)� (Fn! )�(�0!)j � C�;�0(�)e�(n 116 =eC1(�)) :Sketh of proof of Proposition 7.9. The proof follows that of Proposition 7.6, usingProposition 7.7 and Lemma 7.8. We just sketh how the random variable n7(!) isonstruted.Let 0 < s < 1=8 and let n6(!), �̂ be as in the proof of Proposition 7.6. The randomvariable n7(!) is haraterized by the following property: For n � n7(!) and for i � nsi�1Xj=0(n6(�Tj;!!)) 18 � �̂n 18 ;for the \good" atoms of the partition �̂!i ; additionally the mass of the \bad" atomsof the partition �̂!i is less than e�(n1=8�s=C). As in the proof of Proposition 7.6, theoptimal hoie is for s = 1=8� s, i.e., s = 1=16. �47



7.D Future random orrelations.Our key lemma is now a orollary of Proposition 7.9:Corollary 7.10 (\Future" orrelations). Let K! be as in Theorem 5.1. There areC(�), v > 1, and 
8 � 
7 of full measure, and for eah ! 2 
8 there is C(!) withP (fC(!) > `g) � C(�)`v ;so that for eah ' 2 LK!1 ,  2 FK!� , and all n��� Z '�n! Æ Fn! �  ! dLeb � Z '�n!d��n! Z  ! dLeb���� C(!)C(�) k'kL1 k kF e�(n 116 =C(�)):Proof of Corollary 7.10. We start by showing that for all ' 2 LK!1 ,  2 FK!� , and alln, there are C(!) (as in the statement) and C'; (�) > 0 suh that����Z '�n! Æ Fn! �  ! dLeb � Z '�n! d��n! Z  ! dLeb���� � C(!)C'; (�) e�(n 116 =C(�)):(7.8)Assume �rst that  2 F+� \LK!1 . Proposition 7.9 applied to �! = � R  ! dLeb��1 !Leband �! gives that for n � n7(!),��� Z '�n! Æ Fn! �  ! dLeb� Z '�n! d��n! Z  ! dLeb���= Z  ! dLeb �� Z '�n!d�(Fn! )�(�!)� (Fn! )�(�!)���� C�;�(�) � Z  ! dLeb � sup j'�n!je�(n 116 =eC1)� C�;�(�)C Leb(�!)K! C 0'K�n!e�(n 116 =eC1) :Now, de�ne n8(!) = inffk � n7(!) j K�k! � kg. By (5.7) and the bounds on n7 fromProposition 7.9, we get P (fn8(!) > kg) � e�(k 116 =eC2). We �nd for n > n8(!),����Z '�n! Æ Fn! �  ! dLeb � Z '�n!d��n! Z  ! dLeb���� � C'; (�)K!n e�(n 116 =eC1):If n � n8(!),��� Z '�n! Æ Fn! �  ! dLeb � Z '�n!d��n! Z  !dLeb���� C'; (�) � C(!)e�(n 116 =eC1);48



setting C(!) := e(n7(!) 116 =eC1) � K! � maxn�n8(!)K�n! :This gives (7.8) if  belongs to F+� \ LK!1 . For non negative real-valued  2 FK!� ,remark that ~ ! =  ! +(C +1)K! belongs to F+� \LK!1 and apply the above estimateto ~ . General real-valued funtions are deomposed into positive and negative parts.Complex-valued funtions are deomposed into real and imaginary parts.Next, we prove that C(!) has the announed behaviour. Fix 0 < u < 1 suh thateC1(�)(1�u)eC2(�) > 1, and use (5.7) and Proposition 7.9 againP (fC(!) > mg)� P (f supn�n8(!)K�n! > mu2 g) + P (fen7(!) 116 =eC1 > m1�ug) + P (fK! > mu2 g)� P (fn8(!) > mg) + mXn=1P (fK�n! > mu2 g)+ P (fn7(!) > [(1� u) eC1 logm℄16g) + P (fK! > mu2 g)� e�(m 116 =eC2) +me�(m u8 =C(�)) + e�[logmeC1(1�u)=eC2℄ + e�mu8 =C(�):This proves the laim on the random variable C(!), taking v = eC1(1� u)= eC2 > 1.To onlude, it remains to show that C' (�) � C(�)k'kL1k kF . We adapt to ourrandom setting an argument of Collet [Co2℄ based on the uniform boundedness priniple.Fix  2 FK!� and de�nep n;!(') = e(n 116 =eC1)C(!) ���� Z '�n! Æ Fn! �  ! dLeb � Z '�n! d��n! Z  ! dLeb���� :It follows from (7.8) that supn;!2
8 p n;!(') <1 for all ' 2 LK!1 . The uniform bound-edness priniple gives a onstant D (�) suh thatsupn;!2
8;k'kL1�1 p n;!(') � D : (7.9)For n 2 Z+, ! 2 
8 and ' 2 LK!1 with k'kL1 � 1, setqn;!;'( ) = e(n 116 =eC1)C(!) ���� Z '�n! Æ Fn! �  ! dLeb � Z '�n! d��n! Z  ! dLeb���� :It follows from (7.9) that for any  2 FK!� ,supn;!2
8;k'kL1�1 qn;!;'( ) � D (�) :49



Using one more the uniform boundedness priniple, we onlude that there exists C(�)so that supn;!2
8;k'kL1�1;k kF�1 qn;!;'( ) � C(�):This ends the proof of Corollary 7.10. �8. Random oupling argument, \past" orrelationsThe estimates for the \past" orrelations are obtained by reyling the arguments ofSetion 7:Lemma 8.1 (Lower bound for P (fT! = �ig)). Let �, �0 be absolutely ontinuousprobability measures on f�!g, with densities ', '0 in F+� . For eah i, if � 2 e���n!i issuh that (T��n!)j� > �i�1, then, assoiating V �i��i�1��i�1�n! to � as usual,(�� �0)(fT��n! > �igj�g) � 1� V �i��i�1��i�1�n!=C�;�0(�) ;where C�;�0(�) > 1 depends only on the Lipshitz onstant of ', '0. This dependenemay be removed if we onsider i � i0(�; �0).Lemma 8.2 (Relating stopping times and return times). Let �, �0 be absolutelyontinuous probability measures on f�!g, with densities ', '0 in F+� . For eah � 2e���n!i , we have for all `(�� �0)��n!(f�i+1��i > `0 + `g j �)� C�;�0(�)Leb(fR��i+`0�n! > `g) � Leb(���i+`0�n!):where C�;�0(�) depends on the Lipshitz onstants of ', '0. This dependene may beremoved if we onsider i � i0(�; �0).Proposition 8.3 (Joint return time asymptotis). For every pair �, �0 of abso-lutely ontinuous probability measures on f�!g having densities ', '0 in F+� \LK!1 thereis C�;�0(�) so that for eah ! 2 
6 and all n > n6(!)(�� �0)��n!(fT��n! > `g) � C�;�0(�) e�(` 18 =C(�)) :Moreover, C�;�0(�) depends on � and �0 only through the Lipshitz onstants of ', '0.Proof of Proposition 8.3. This is just Proposition 7.6 written for ��n!. �Proposition 8.4 (Mathing). There exist eC2(�) < C1(�), a subset 
9 � 
6 of fullmeasure and a random variable n9 : 
9 ! Z+ with P (fn9(!) > ng) � Ce�(n 116 =eC2(�))suh that for eah pair �, �0 of absolutely ontinuous probability measures on f�!g with50



densities ', '0 in F+� \ LK!1 , there exists C�;�0(�), depending on � and �0 only throughthe Lipshitz onstants of ', '0, suh that, for eah ! 2 
9 and all n � n9(!),��(Fn��n!)�(�)� (Fn��n!)�(�0)�� � C�;�0(�)e�(n 116 =C1(�)):Proof of Proposition 8.4. The proof is along the lines of that of Proposition 7.9, wejust disuss the random variable n9. Let the sequene of suessive joint entrane timesT1;!, � � � , Tk;!, � � � , in �!;0 � �!;0 be as in Setion 7. For �xed i � n, let �̂��n!i bethe largest partition of �!;0��!;0 on whih the T1;��n , � � � , Ti;��n! are onstant. Letn6(!) be as de�ned by Proposition 7.6. The random variable n9(!), de�ned on 
9, issuh that, on the one hand, for i � nt (where 0 < t < 1=8 will be �xed later on) and alln � n9(!) i�1Xj=0(n6(��n+Tj;��n!!))1=8 � �̂n1=8for the \good" atoms of the partition �̂��n!i , and, on the other hand, the mass of the\bad" atoms of the partition �̂��n!i is less than e�n1=8�t=C . Choose t = 1=8� t = 1=16to get the optimal rate. �Corollary 8.5 (\Past" orrelations). Let K! be given by Theorem 5.1. There areC(�), v > 1, 
10 � 
9 of full measure and a random variable C(!) on 
10 satisfyingP (fC(!) > `g) � C̀v , and suh that for eah ' 2 LK!1 ,  2 FK!� and all n��� Z '! Æ Fn��n! �  ��n! dLeb� Z '!d�! Z  ��n! dLeb���� C(!)C(�)k'kL1k kF e�(n 116 =C(�)) :Proof of Corollary 8.5. As in the proof of Corollary 7.10, we show that����Z '! Æ Fn��n! �  ��n! dLeb� Z '!d�! Z  ��n! dLeb���� � C(!)C'; (�) e�(n 116 =C(�))(8.1)and dedue the result from the uniform boundedness priniple.Let  2 F+� \ LK!1 . Proposition 8.4 applied to �! and �! = (R  ! dLeb)�1 !Lebimplies that for n � n9(!) ,���� Z '! Æ Fn��n! �  ��n! dLeb � Z '!d�! Z  ��n! dLeb����� C�;�(�) � Z  ��n! dLeb � sup j'!j e�(n 116 =eC1)� C�;�(�)C Leb(���n!)K��n! C 0'K! e�(n 116 =C1(�)) :51
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