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General problematic

(X1, . . . ,Xd ) random vector of risks. Write

S =
d∑

i=1

Xi , the aggregated risk.

Regulatory rules, Risk management purposes, Environmental risks
... =⇒ need to estimate / approximate high level quantiles of S :

F−1
S (α) = VaRα(S), for α near 1,

where FS is the distribution function of S .
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Why we consider quantiles?

If X is a random variable, its distribution function is

FX (t) = P(X ≤ t).

F−1
X is the generalized inverse of FX or the quantile function: for
α ∈]0, 1[,

F−1
X (α) = inf{t ∈ R, FX (t) ≥ α}.

If X is a continuous random variable, then P(X ≤ u) = α if
u = F−1

X (α).
So, quantiles give a thresholds which X may exceed with probability
1− α.
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Examples

Insurance: X describes the distribution of the claim amonts,
regulatory rules impose to insurance companies to estimate
FX (α) for α near to 1. The quantiles F−1

X (α) are called Value
at Risk and denoted VaRα(X ).
Hydrology: X may describe a flood level. Computing F−1

X (α)
is required to calibrate a barage e.g. (or a dam).
Many other field: finance, wind electricity...
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Our purpose

(X1, . . . ,Xd ) random vector of risks.
The Xi may be different lines of business in insurance contexts.

S =
d∑

i=1

Xi .

=⇒ Estimation of VaRα(S).
The law of S (and thus VaRα(S)) depends on the law of
(X1, . . . ,Xd ) (marginal laws and dependence structure).
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Toy example

X1 and X2 are normally distributed (N (0, 1)) with different
dependence structures:

X1 and X2 are independent, S1 = X1 + X2  N (0, 2).
X1 = X2 (perfect dependence), S2 = X1 + X2  N (0, 4).
X = (X1,X2) is a gaussian vecteur with correlation 0.5
(moderate dependence), S2 = X1 + X2  N (0, 3).
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Toy example

Quantiles at different levels for the three models.

α 0.7 0.9 0.95 0.99 0.995
Quantiles for S1 0.74 1.81 2.33 3.29 3.64
Quantiles for S2 1.05 2.56 3.29 4.65 5.15
Quantiles for S3 0.91 2.22 2.85 4.03 4.46
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High quantiles of aggregated risks

High dimensional problem (d may be large),
Marginal laws (laws of the Xi ’s) are usually known (or well
estimated), some information on the dependence is available,
Even if the law of (X1, . . . ,Xd ) is known, the effective
computation of

VaRα(S), for α near 1,

may be difficult to do,
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High quantiles of aggregated risks

High dimensional problem (d may be large),
Marginal laws (laws of the Xi ’s) are usually known (or well
estimated), some information on the dependence is available,

Even if the law of (X1, . . . ,Xd ) is known, the effective
computation of

VaRα(S), for α near 1,

may be difficult to do,
the distribution function of S is given by:

FS(t) =

∫
Rd

1{x1+···+xd≤t}fX (x1, . . . , xd )dx1 . . . dxd .

=⇒ Efficient methods are still welcome.
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One proposition

Assume that the Xi ’s laws are known.
Information on the dependence is available through

a (quite small) (X1, . . . ,Xd ) sample and
some expert opinion (e.g the dependence structure between X1
and X2 is completely known) and / or
some knowledge of the join tail (P(X1 ≥ u1, . . . ,Xd ≥ ud ) is
known for some (u1, . . . , ud )).

We use checkerboard copulas to estimate VaRα(S).
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Copulas

Recall that if F is the distribution function of X = (X1, . . . ,Xd ),
Sklar’s Theorem implies that there exists a distribution function C
in [0, 1]d whose marginal laws are uniformely distributed on [0, 1],
such that

F (x1, . . . , xd ) = C (F1(x1), . . . ,Fd (xd )),

where Fi is the distribution function of Xi and F is the distribution
function of the vector X .
If the marginals of X are absolutely continuous then C is unique. It
is the copula associated to X .
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Modeling dependence with copulas

Below are some simple examples of copulas.
Independent copula: C (u1, . . . , ud ) = u1 × · · · × ud ,
ui ∈ [0, 1]. If X1, . . . ,Xd are independent then
F (x1, . . . , xd ) = F1(x1)× · · · × Fd (xd ).

Clayton copula: for θ > 0,

Cθ(u1, . . . , ud ) =

(
u
− 1

θ
1 + · · ·+ u

− 1
θ

d − (d − 1)

)−θ
. Useful for

strong dependence for ui ∼ 0.
Survival Clayton copula (dual of the Clayton copula): for
θ > 0, C ∗θ (u1, . . . , ud ) = P(U1 > 1− u1, . . . ,Ud > 1− ud )
with (U1, . . . ,Ud ) having Cθ as distribution function. Useful
for strong dependence for ui ∼ 1.
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Useful property on copulas

Lemma

If C is a distribution function on [0, 1]d , then C is a copula if and
only if C (x) = xk for all x ∈ [0, 1]d with xi = 1, i 6= k.

The condition above is necessary and sufficient to have uniform
marginal laws.
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The checkerboard copula: definition

The cherckerboard copula, introduced by Mikusinski (2010) is an
approximation of a copula C .
µ is the probability measure associated to C on [0, 1]d :

µ([0, x ]) = C (x), x = (x1, . . . , xd ) ∈ [0, 1]d , [0, x ] =
d∏

i=1

[0, xi ].

Consider (Ii ,m)i∈{1,...m}d the partition (modulo a 0 measure set) of
[0, 1]d given by the md squares:

Ii ,m =
d∏

j=1

[
ij − 1

m
,

ij
m

]
, i = (i1, . . . , id ).
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The checkerboard copula: definition

The cherckerboard copula of order m is defined on [0, 1]d by: (λ is
the Lebesgue measure)

C ∗m(x) =
∑

i

mdµ(Ii ,m)λ([0, x ] ∩ Ii ,m).

Im,i , for i = (4, 4).
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The checkerboard copula: definition

The cherckerboard copula of order m is defined on [0, 1]d by: (λ is
the Lebesgue measure)

C ∗m(x) =
∑

i

mdµ(Ii ,m)λ([0, x ] ∩ Ii ,m).

From a probabilistic point of view,

C ∗m(x) =
∑

i

µ(Ii ,m)P(U ≤ x |U ∈ Ii ,m).

with U a random vector of Rd of i.i.d. uniform laws on [0, 1].
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Approximation by the checkerboard copula

Proposition
C ∗m is a copula which approximate C:

sup
x∈[0,1]d

|C ∗m(x)− C (x)| ≤ d
2m

.

Proof:
To prove that C ∗m is a copula, it suffices to notice that C ∗m(x) = xk
if xj = 1 for j 6= k , this is an simple computation.
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Approximation by the checkerboard copula

Proposition
C ∗m is a copula which approximate C:

sup
x∈[0,1]d

|C ∗m(x)− C (x)| ≤ d
2m

.

Proof:
For any x ∈ [0, 1]d with x = i

m , i ∈ {1, . . . ,m}d , C ∗m(x) = C (x).
For a ∈ {1, . . . ,m} and k ∈ {1, . . . , d},

Bk+
a =

{
x ∈ [0, 1]d ,

a
m
− 1

2m
< xk ≤

a
m

}
and

Bk−
a =

{
x ∈ [0, 1]d ,

a − 1
m

< xk ≤
a
m
− 1

2m

}
.
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Approximation by the checkerboard copula

Proposition
C ∗m is a copula which approximate C:

sup
x∈[0,1]d

|C ∗m(x)− C (x)| ≤ d
2m

.

Proof:
Denote by µ∗m the probability measure on [0, 1]d , associated to C ∗m.
If x ∈ Ii ,m, i = (11, . . . , id ) then,

|C∗
m(x)− C (x)| ≤

d∑
k=1

|µ∗
m(Bk−

ik
)− λ(Bk−

ik
)|1Bk−

ik

(x) +

d∑
k=1

|µ∗
m(Bk+

ik
)− λ(Bk+

ik
)|1Bk+

ik

(x)
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Approximation by the checkerboard copula

Proposition
C ∗m is a copula which approximate C:

sup
x∈[0,1]d

|C ∗m(x)− C (x)| ≤ d
2m

.

Proof:

µ∗m(Bk−
ik

) = λ(Bk−
ik

) = µ∗m(Bk+
ik

) = λ(Bk+
ik

) =
1
2m

.
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Approximation by the checkerboard copula

Proposition
C ∗m is a copula which approximate C:

sup
x∈[0,1]d

|C ∗m(x)− C (x)| ≤ d
2m

.

Proof:

|C∗
m(x)− C (x)| ≤

d∑
k=1

min(µ∗
m(Bk−

ik
), λ(Bk−

ik
))1Bk−

ik

(x) +

d∑
k=1

min(µ∗
m(Bk+

ik
), λ(Bk+

ik
))1Bk+

ik

(x) =
d

2m
.
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The checkerboard copula with additional information

We may include some kind of information in the checkerboard
copula, mainly:

The copula of a subvector XJ , J ⊂ {1, . . . , d}, C J is known,
|J| = k < d .
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The checkerboard copula with additional information

We may include some kind of information in the checkerboard
copula, mainly:

The copula of a subvector XJ , J ⊂ {1, . . . , d}, C J is known,
|J| = k < d .

Let µJ be the probability measure on [0, 1]k associated to C J .
For i = (i1, . . . , id ), let x = (x1, . . . , xd ) ∈ [0, 1]d , xJ = (xj)j∈J ,
x−J = (xj)j 6∈J and

I J
i ,m =

{
x ∈ [0, 1]k / xj ∈

[
ij − 1

m
,

ij
m

]
, j ∈ J

}
,

I−J
i ,m =

{
x ∈ [0, 1]d−k / xj ∈

[
ij − 1

m
,

ij
m

]
, j 6∈ J

}
.
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Checkerboard with information on a sub-vector

Define

µJ
m([0, x ]) =

∑
i⊂{1,...,m}d

md−k

µJ(I J
i ,m)

µ(Ii ,m)λ([0, x−J ]∩I−J
i ,m )µJ([0, xJ ] ∩ I J

i ,m).

Let C J
m(x) = µJ

m([0, x ]).
From a probabilistic point of view,

C J
m(x) =

∑
i

µ(Ii ,m)P(U−J ≤ x−J , UJ ≤ xJ |U ∈ Ii ,m).

with U a random vector of Rd , with U−J and UJ independent,
U−J a random vector of Rd−k of i.i.d. uniform laws on [0, 1] and
UJ distributed as C J .
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Checkerboard with information on a sub-vector

Define

µJ
m([0, x ]) =

∑
i⊂{1,...,m}d

md−k

µJ(I J
i ,m)

µ(Ii ,m)λ([0, x−J ]∩I−J
i ,m )µJ([0, xJ ] ∩ I J

i ,m).

Let C J
m(x) = µJ

m([0, x ]).

Proposition

C J
m is a copula, it approximates C : sup

x∈[0,1]d
|C J

m(x)− C (x)| ≤ d
2m

.

If X J and X−J are independent then,

sup
x∈[0,1]d

|C J
m(x)− C (x)| ≤ d − k

2m
.
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Information on the tail

We may also add information on the tail.

Definition

Let t ∈]0, 1[ and E =
(∏d

i=1[0, t]d
)c

, assume that µC (E ) is
known (information on the tail).
The checkerboard copula with extra information on the tail is
defined by:

CEm (x) = µC (E c)C ∗m(x/t)1E c (x) +
µC (E )

λ(E )
λ([0, x ] ∩ E ),

where C ∗m is the checkerboard copula with partition: Ji ,m = t · Ii ,m.

CEm is a copula, it approximates C .
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An estimation procedure

Assume the marginal laws are known, a (quite small sample) of X is
available.

1 Estimate µ by µ̂ using the empirical copula. Empirical copula.

2 Construct the empirical checkerboard copula:

Ĉ ∗m(x) =
∑

i

md µ̂(Ii ,m)λ([0, x ] ∩ Ii ,m)

or if subvector information is available:

Ĉ J
m(x) =

∑
i⊂{1,...,d}

md−k

µJ(I J
i ,m)

µ̂(Ii ,m)λ([0, x−J ]∩I−J
i ,m )µJ([0, xJ ] ∩ I J

i ,m).

3

4

5
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An estimation procedure

Assume the marginal laws are known, a (quite small sample) of X is
available.

1

2

3 Simulate a sample of size N from the copula Ĉm, (or Ĉ J
m) for

N large:
(u(1)

1 , . . . , u(1)
d ), . . . , (u(N)

1 , . . . , u(N)
d )

4 Get a sample of S using the marginals transform:

d∑
i=1

F−1
i (u(1)

i ), . . . ,
d∑

i=1

F−1
i (u(N)

i ).

5 Estimate the distribution function FS of S empirically using
the sample above ⇒ F̂S .
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An estimation procedure
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An estimation procedure

Let X ∗n be a random vector with the same marginal laws as X and
whose dependence structure is given by the empirical checkerboard
copula. Let F ∗S be the distribution function of S .

Proposition

Let A
√

n ≤ m ≤ n, assume that S is absolutely continuous and C
has continuous partial derivatives (Fermanian et al (2004)),

‖FS − F ∗S‖∞ = OP

(
1√
n

)
.

Proposition

If m divides n, then Ĉ ∗m is a copula.
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An estimation procedure

Proposition

If m divides n, then Ĉ ∗m is a copula.

Sketch of proof: prove that Ĉ ∗m(x) = x1 for any x ∈ [0, 1]d with
xj = 1 for j 6= 1.
For ` ∈ {1, . . . ,m}, consider:

B1
` =

{
x ∈ [0, 1]d ,

`− 1
m

< x1 ≤
`

m

}
=

]
`− 1

m
,
`

m

]
× [0, 1]d−1.

Cn is concentrated on n points of [0, 1]d whose coordinates are of
the form j

n , j = 1, . . . , n.If k = n/m, the number of masses of Cn

on each strip B1
` , ` = 1, . . . ,m is exactly k , =⇒ µ̂(B1

` ) = k
n = 1

m .
The result follows by a simple computation.
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The Pareto - Clayon model

A model for which ∆ may be calculated will serve as a benchmark.

P(X1 > x1, . . . ,Xd > xd |Λ = λ) =
d∏

i=1

e−λxi ,

that is, conditionally on the value of Λ the marginals of X are
independent and exponentially distributed.
Λ Gamma distributed ⇒ Xi are Pareto distributed with dependence
given by a survival Clayton copula.
These models have been initially studied by Oakes (1989) and Yeh
(2007) .
Exact formula for VaRα(S) using the so-called Beta prime
distribution (see Dubey (1970)).
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The Pareto - Clayton model: exact formula

Λ Γ(α, β), so that the Xi are Pareto (α, β) distributed with the
dependence structure is described by a survival Clayton copula with
parameter 1/α.
⇒ S is the so-called Beta prime distribution (see Dubey (1970)):

FS(x) = Fβ

(
x

1 + x

)
.

where Fβ is the c.d.f. of the Beta(dβ, α) distribution.
The inverse of FS (or VaR function of S) can also be expressed in
function of the inverse of the Beta distribution

F−1
S (p) =

F−1
β (p)

1− F−1
β (p)

.
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Simulations

Pareto-Clayton model:
in dimension 2, with parameter α = 1. The size of the
multivariate sample is 30,
in dimension 3, with information on the sub-vector (X1,X2),
the size of the multivariate sample is 30,
in dimension 10, with parameter α = 2. The size of the
multivariate sample is 75 and 150.

Comparaison with the direct estimation.
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Dimension 2

Mean and relative mean squared error for different quantile levels,
N = 1000, several value of m|n tested.

Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact value 2.5 4.1 6.4 16.0 23.2 53.4
Empirical 2.5 4.0 6.1 12.2 13.2 14.0

(26%) (31%) (39%) (72%) (70%) (78%)
ECBC (m=6) 2.6 4.4 6.6 14.8 20.8 45.7

(9%) (8%) (6%) (8%) (11%) (15%)
ECBC (m=15) 2.5 4.2 6.8 15.5 21.5 46.4

(12%) (13%) (11%) (9%) (10%) (14%)
ECBC (m=30) 2.5 4.2 6.6 15.8 22.0 47.0

(13%) (15%) (17%) (13%) (12%) (14%)
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Estimation
A test model
Simulations

Dimension 3

X = (X1, . . . ,X3) with
X1 = X2 = Y /2,
X3 distributed as Y , a Pareto r.v. with parameter α = 2.
The copula of (Y ,X3) is assumed to be a survival Clayton of
parameter 1/2.

So that S = X1 + X2 + X3
L
= Y1 + Y2 with Y = (Y1,Y2) a

Pareto-Clayton vector defined above.
Simulations without and with the additional information on
(X1,X2) (comonotonic copula).
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Estimation
A test model
Simulations

Dimension 3

Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact 2.5 4.1 6.4 16.0 23.2 53.4
ECBC (m=6)

No information 2.7 4.6 6.6 14.0 19.1 40.7
(13%) (13%) (7%) (13%) (18%) (24%)

Information on 2.6 4.4 6.6 14.8 20.8 45.7
(X1,X2) (9%) (8%) (6%) (8%) (11%) (15%)

ECBC (m=10)
No information 2.5 4.6 7.0 14.5 19.8 41.3

(12%) (13%) (12%) (11%) (15%) (23%)
Information on 2.5 4.3 6.7 15.2 21.2 46.1

(X1,X2) (11%) (9%) (9%) (8%) (10%) (15%)
ECBC (m=30)
No information 2.5 4.2 6.8 15.9 21.4 43.3

(14%) (16%) (19%) (14%) (14%) (21%)
Information on 2.5 4.2 6.6 15.8 21.9 47.1

(X1,X2) (13%) (16%) (17%) (13%) (13%) (14%)44 / 50
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Estimation
A test model
Simulations

Dimension 10

Mean and relative standard deviation for different quantile levels,
N = 1000.

VaR VaR VaR VaR VaR VaR
80% 90% 95% 99% 99.5% 99.9%

Exact value 12.2 19.2 29 70.1 100.8 230.5
Empirical, n = 75 12.6 20 29.9 62.2 75.8 86.7

(12%) (15%) (19%) (39%) (58%) (71%)
Checkerboard, n = 75 12.5 20.1 31.2 74.8 92.4 152.6

(10%) (13%) (14%) (20%) (20%) (16%)
Empirical, n = 150 12.4 19.6 30.3 67.3 89.9 121

(8%) (11%) (14%) (27%) (38%) (59%)
Checkerboard, n = 150 12.4 19.6 29.8 75.4 107.6 173.9

(7%) (9%) (12%) (16%) (21%) (19%)
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Estimation
A test model
Simulations

Using information on the tail (dimension 2)

Same dimension 2 model as above. m = 6, information on the tail
added.

Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact value 2.5 4.1 6.4 16.0 23.2 53.4
Empirical 2.5 4.0 6.1 12.2 13.2 14.0

(26%) (31%) (39%) (72%) (70%) (78%)
ECBC (m=6)

t=1 2.6 4.4 6.6 14.8 20.8 45.7
(9%) (8%) (6%) (8%) (11%) (15%)

t=0.99 2.6 4.4 6.4 14.2 22.7 49.5
(9%) (8%) (5%) (11%) (3%) (8%)

t=0.95 2.7 4.1 6.1 15.6 21.8 46.8
(10%) (5%) (4%) (3%) (6%) (13%)
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Conclusion

Efficient methods to estimate the aggregated VaR.
Efficient even in (relatively) high dimension with (relatively)
small samples.
Additional information / expert opinion may be taken into
account: dependence structure on a sub-vector or on the tail.

ToDo Determine optimally m.
ToDo Quantify the information gain.
ToDo Develop efficient procedures to simulate a sample from the

checkerboard copula with partial information (tailor copula of
a sub-vector).
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Thank you for your attention
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Empirical Copula

Deheuvels (1979) defined the empirical copula.

Definition

Let X (1), . . .X (n) be n independent copies of X and R(1)
i , . . . ,R(n)

i ,
i = 1, . . . , d their marginals ranks, i.e.,

R(j)
i =

n∑
k=1

1{X (j)
i ≥ X (k)

i }, i = 1, . . . , d , j = 1, . . . , n.

The empirical copula Cn of X (1), . . .X (n) is defined as

Cn(u) =
1
n

n∑
k=1

1
{
1
n
R(k)

1 ≤ u1, . . . ,
1
n
R(k)

d ≤ ud

}
.

Back.
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