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General problematic

random vector of risks. Write

d
S= ZX,-,the aggregated risk.
i=1

Regulatory rules, Risk management purposes, Environmental risks
. = need to estimate / approximate high level quantiles of S:

Fo'(a) = VaR,(S), for a near 1,

where Fs is the distribution function of S.
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Why we consider quantiles?

If , its distribution function is
Fx(t) =P(X <t).

F;l is the generalized inverse of Fx or the quantile function: for
a €]0,1],
Fil(a) =inf{t € R, Fx(t) > a}.

If X is a continuous random variable, then P(X < u) = « if

_ 1
u=Fy ().
So, quantiles give a thresholds which X may exceed with probability
1—a.
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Examples

@ Insurance: X describes the distribution of the claim amonts,
regulatory rules impose to insurance companies to estimate
Fx(a) for o near to 1. The quantiles F*(«) are called Value
at Risk and denoted VaR,(X).

e Hydrology: X may describe a flood level. Computing F);l(a)
is required to calibrate a barage e.g. (or a dam).

@ Many other field: finance, wind electricity...
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Our purpose

random vector of risks.
The X; may be different lines of business in insurance contexts.

— Estimation of VaR,(S).
The law of S (and thus VaR,(S)) depends on the law of
(X1,...,Xy) (marginal laws and dependence structure).

6/50



Context
Introduction
Copulas

Toy example

X1 and Xz are normally distributed (N(0, 1)) with different
dependence structures:

@ Xi and X, are independent, S; = X; + X ~ N/(0,2).
e X; = Xy (perfect dependence), S, = Xi + Xo ~ N(0, 4).

e X = (Xi,X2) is a gaussian vecteur with correlation 0.5
(moderate dependence), S, = X; + Xo ~» N(0, 3).
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Quantiles at different levels for the three models.

o 0.7 0.9 | 0.95 | 0.99 | 0.995
Quantiles for Sy | 0.74 | 1.81 | 2.33 | 3.29 | 3.64
Quantiles for S, | 1.05 | 2.56 | 3.29 | 4.65 | 5.15
Quantiles for S3 | 0.91 | 2.22 | 2.85 | 4.03 | 4.46
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High quantiles of aggregated risks

e High dimensional problem (d may be large),

° are usually known (or well
estimated), :

o Even if the law of is known, the effective
computation of

VaR,(S), for a near 1,

may be difficult to do,
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High quantiles of aggregated risks

o Even if the law of is known, the effective
computation of

VaR,(S), for a near 1,

may be difficult to do,
the distribution function of S is given by:

Fs(t) = / 1{x1+---+xd§t}fX(X1) e ,Xd)dxl ..odxg.
Rd

— Efficient methods are still welcome.
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One proposition

Assume that are known.
Information on the dependence is available through
°a and
@ some (e.g the dependence structure between X
and X is completely known) and / or
@ some knowledge of the (P(Xy > u1y..., Xg > uyg) is
known for some (u1, ..., uy)).

We use checkerboard copulas to estimate VaR,(S).
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Copulas

Recall that if F is the distribution function of X = (Xi,..., Xy),
Sklar's Theorem implies that there exists a distribution function C
in [0, 1]¢ whose marginal laws are uniformely distributed on [0, 1],
such that

F(xi,...,xq4) = C(F1(x1), .., Fa(xq)),

where F; is the distribution function of X; and F is the distribution
function of the vector X.

If the marginals of X are absolutely continuous then C is unique. It
is the copula associated to X.
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Modeling dependence with copulas

Below are some simple examples of copulas.

@ Independent copula: C(u1,...,uq) = u1 X -+ X ug,
ui € [0,1]. If Xq,..., Xy are independent then
F(Xl, e ,Xd) = Fl(Xl) X X Fd(Xd).
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Modeling dependence with copulas

Below are some simple examples of copulas.

o Independent copula: C(u1,...,uq) = u1 X -+ X ug,
ui € [0,1]. If Xq,..., Xy are independent then
F(Xl, - ,Xd) = F1(X1) X e X Fd(Xd).

e Comonotonic copula: C(uy,...,ug) = min(uy,. .., uy),
ui € [0,1]. The X; are comonotonic if there exists increasing
functions f; such that X; = £;(U) with U ~» [0, 1], in that case,
F(x1,...,xq) = min(£(x)).
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Modeling dependence with copulas

Below are some simple examples of copulas.

o Independent copula: C(u1,...,uq) = u1 X -+ X ug,
ui € [0,1]. If Xq,..., Xy are independent then
F(Xl, - ,Xd) = F1(X1) X e X Fd(Xd).

e Comonotonic copula: C(uy,...,ug) = min(uy,. .., uy),
ui € [0,1]. The X; are comonotonic if there exists increasing
functions f; such that X; = £;(U) with U ~» [0, 1], in that case,
F(x1,...,xq) = min(£(x)).

e Clayton copula: for 6 > 0,

1 1 —0
Co(ut, ..., ug) = u1_9+~-+u;9—(d—1)> . Useful for

strong dependence for u; ~ 0.
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Modeling dependence with copulas

Below are some simple examples of copulas.
o
o
@ Clayton copula: for 6 > 0,

_1
Colur, .. ug) = ug O+ +uy

=

-0
—(d — 1)) . Useful for

strong dependence for u; ~ 0.
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Modeling dependence with copulas

Below are some simple examples of copulas.
o
o

e Clayton copula: for § > 0,
-0
_1 _1
Go(ut, ..., uq) = (“1 C ety —(d—1)> . Useful for

strong dependence for u; ~ 0.

e Survival Clayton copula (dual of the Clayton copula): for
6 >0, Ce*(ul,...,ud):]P’(Ul >1—uw,...,Uqy > 1—ud)
with (Ui, ..., Uy) having Gy as distribution function. Useful
for strong dependence for u; ~ 1.
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Useful property on copulas

If C is a distribution function on [0,1]?, then C is a copula if and
only if C(x) = xx for all x € [0,1]7 with x; = 1, i # k.

The condition above is necessary and sufficient to have uniform
marginal laws.
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The checkerboard copula: definition

The cherckerboard copula, introduced by Mikusinski (2010) is an
approximation of a copula C.

d
M([O’X]) = C(X)’X = (X1, e de) € [0’ 1]d’ [O’X] = H[O,X,'].
i=1

Consider (/i,m)icq1,..mys the partition (modulo a 0 measure set) of
[0,1]¢ given by the m9 squares:

d

ii—1 i . . .
Ii,m:H[Jrn7ri’:|7 i= (i, iq)-

Jj=1
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The checkerboard copula: definition

The cherckerboard copula of order m is defined on [0,1]9 by: (X is
the Lebesgue measure)

Zm 11l m) N[0, X] O fy ).

—_

./ I, for i = (4,4).
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The checkerboard copula: definition

The cherckerboard copula of order m is defined on [0,1]9 by: (X is
the Lebesgue measure)

Zm 11l m)N([0, X] O fy ).

From a probabilistic point of view,

Zﬂ im)P(U < x|U € ;).

with U a random vector of R? of i.i.d. uniform laws on [0, 1].
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Approximation by the checkerboard copula

Proposition

C} is a copula which approximate C:

d
sup |Cr(x) — C(x)| < 5—.
x€[0,1]9 2m

Proof:
To prove that C}, is a copula, it suffices to notice that C;,(x) = xk
if x; =1 for j # k, this is an simple computation.
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Approximation by the checkerboard copula

Proposition

C, is a copula which approximate C:

sup |Co(x) = C() < =
x€[0,1]d 2m

Proof: '
For any x € [0,1]¢ with x = L, i € {1,...,m}?, Cp,(x) = C(x).
Forae{l,...,m}and k € {1,...,d},

1
B;H_:{XE[O,].]d, a—<xk§a} and
m 2m m

-1 1
B;(_:{XE[O,].](I, arn<Xk<a—}.
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Approximation by the checkerboard copula

Proposition

C, is a copula which approximate C:

sup |Co(x) — C(x)| < .
x€[0,1]d 2m

Proof:
Denote by u%, the probability measure on [0,1]9, associated to C,.
If x € /,'Vm, i = (]_17 ceey ’d) then,

d
[Cn(x) =€) < ZIML(B,-’,‘,_)—A(BZ_)IIB;Z—(XH

Z n(BL) = MBL ) Lgse ()
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Approximation by the checkerboard copula

Proposition

Cy is a copula which approximate C:

d
sup |G (x) — C(x)| < 7.
x€[0,1]9 2m
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Approximation by the checkerboard copula

Proposition

C, is a copula which approximate C:

e 160~ €Ll < —
Proof:
o) - me(um ) AEE Mg () +
me(um (B ) MBE gy () =
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The checkerboard copula with additional information

We may include some kind of information in the checkerboard
copula, mainly:
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The checkerboard copula with additional information

We may include some kind of information in the checkerboard
copula, mainly:

Let 17 be the probability measure on [0, 1]% associated to C”.
For i = (i1,...,iq), let x = (x1,...,xq) € [0,1], x? = (x})je,

X J = (Xj)jg_j and

i1
17 = 105/ x e | ¥ o
im {XG[O,] /xje[m ,m},JGJ},

—J_ d—k ;o o |G G
Ii7m—{x€[0,1] /XJ€|: - ,m:|,j¢J}.
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Checkerboard with information on a sub-vector

Define
m — —
o0 = D im0 IR (0] 1 )
ic{1,..,m}d © ( i,m)

Let CA(x) = ([0, x)).
From a probabilistic point of view,

Cl(x Z,u m)P(U™ <x77 U < XU € I ).

with U a random vector of R?, with U~ and U’ independent,
U~/ a random vector of RY=k of i.i.d. uniform laws on [0, 1] and
U7 distributed as C”.
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Checkerboard with information on a sub-vector

Define
d—k

T Y /jZ,J)u(hﬂnquo,x-Jhwn:x)uJuo,xJ]m/ﬁm)
ic{1,..,m}d " *1Lm

Let C(x) = pim([0, X]).

Proposition

d
C is a copula, it approximates C:  sup |Ch(x) — C(x)| < ~—.
x€[0,1]9 2m

If X! and X~ are independent then,

sup |CA(x) — C)l < T=K.

x€[0,1]4 2m
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Information on the tail

We may also add information on the tail.

Definition

Let t €]0,1[ and E = (Hf’zl[o, t]d)c, assume that pc(E) is
known (information on the tail).
The checkerboard copula with extra information on the tail is

defined by:

CE(x) = nc(E%) G/ t)1ee(x) + “C(( ))A([o,x] nE),

where Cy, is the checkerboard copula with partition: J; ;, =t - [ m.

V.

C;‘;’ is a copula, it approximates C.
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An estimation procedure

Assume

© Estimate u by i using the empirical copula.
@ Construct the empirical checkerboard copula:

Ch(x) = Zmu,m ([0,x] N fi.m)

or if subvector information is available:
d—k

Gl = Y w0, XN (0.7 0 1),

J(1J
ic{1,..dy 1 G )"

000
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An estimation procedure

o
(2]
© Simulate a sample of size N from the copula Cpn, (or C7) for
N large:
Wl WY uY)y

© Get a sample of S using the marginals transform:

iFi_l(ufl ): ZF (N)
i=1

© Estimate the distribution function Fs of S empirically using
the sample above = Fs.
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estimation procedure
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Estimation procedure and simulation results

An estimation procedure

Let X be a random vector with the same marginal laws as X and
whose dependence structure is given by the empirical checkerboard
copula. Let F¢ be the distribution function of S.

Proposition

Let A\/n < m < n, assume that S is absolutely continuous and C
has continuous partial derivatives (Fermanian et al (2004)),

1
Fs — F&lloo = — .
s = 3l = 0p =
Proposition

If m divides n, then E’,ﬁ, is a copula.

N
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An estimation procedure

Proposition

If m divides n, then E;; is a copula.

Sketch of proof: prove that Cf,(x) = x for any x € [0, 1]¢ with
xj =1 for j # 1.
For ¢ € {1,..., m}, consider:

Bl = {xe o1, =1 o sg} :]“,e] < 0,241,
m m

m m

C, is concentrated on n points of [0,1] whose coordinates are of

the form JE Jj=1,....nlf k= n/m, the number of masses of C,
on each strip B}, £ =1,...,mis exactly k, = [i(B})=%=1.

The result follows by a simple computation.
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The Pareto - Clayon model

A model for which A may be calculated will serve as a benchmark.

d
P(Xy > x1,...,Xq > xq|A=X) =[] e ™,
i=1

that is, conditionally on the value of A the marginals of X are
independent and exponentially distributed.

A Gamma distributed = X; are Pareto distributed with dependence
given by a survival Clayton copula.

These models have been initially studied by Oakes (1989) and Yeh
(2007) .

Exact formula for VaR,(S) using the so-called Beta prime
distribution (see Dubey (1970)).
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The Pareto - Clayton model: exact formula

A~ T(a, B), so that the X; are Pareto («, ) distributed with the
dependence structure is described by a survival Clayton copula with
parameter 1/a.

= S is the so-called Beta prime distribution (see Dubey (1970)):

Fs(x) = Fs (1 ix> :

where Fj3 is the c.d.f. of the Beta(dj, «v) distribution.
The inverse of Fs (or VaR function of S) can also be expressed in
function of the inverse of the Beta distribution

F5t(p)

Fsi(p) =
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Simulations

Pareto-Clayton model:

@ in dimension 2, with parameter & = 1. The size of the
multivariate sample is 30,

@ in dimension 3, with information on the sub-vector (X1, X2),
the size of the multivariate sample is 30,

@ in dimension 10, with parameter o = 2. The size of the
multivariate sample is 75 and 150.

Comparaison with the direct estimation.
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Dimension 2

Mean and relative mean squared error for different quantile levels,
N = 1000, several value of m|n tested.

Quantile | Quantile | Quantile | Quantile | Quantile | Quantile

80% 90% 95% 99% 99.5% 99.9%

Exact value 2.5 4.1 6.4 16.0 23.2 53.4
Empirical 2.5 4.0 6.1 12.2 13.2 14.0
(26%) (31%) (39%) (72%) (70%) (78%)

ECBC (m=6) 2.6 4.4 6.6 14.8 20.8 45.7
(9%) (8%) (6%) (8%) (11%) (15%)

ECBC (m=15) 25 42 6.8 155 215 46.4
(12%) (13%) (11%) (9%) (10%) (14%)

ECBC (m=30) 2.5 4.2 6.6 15.8 22.0 47.0
(13%) (15%) (17%) (13%) (12%) (14%)
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Dimension 3

X = (Xl, - ,X3) with
e X1 =Xp=Y/2,
@ X3 distributed as Y, a Pareto r.v. with parameter oo = 2.

@ The copula of (Y, X3) is assumed to be a survival Clayton of
parameter 1/2.

So that S = Xi + Xo + X3 £ Y1 + Ya with Y = (1, 2) a
Pareto-Clayton vector defined above.

Simulations without and with the additional information on
(X1, X2) (comonotonic copula).
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Quantile | Quantile | Quantile | Quantile | Quantile | Quantile
80% 90% 95% 99% 99.5% 99.9%
Exact 2.5 4.1 6.4 16.0 23.2 53.4
ECBC (m=6)
No information 2.7 4.6 6.6 14.0 19.1 40.7
(13%) (13%) (7%) (13%) (18%) (24%)
Information on 2.6 4.4 6.6 14.8 20.8 45.7
(X1, X2) (9%) (8%) (6%) (8%) (11%) (15%)
ECBC (m=10)
No information 25 4.6 7.0 145 19.8 41.3
(12%) (13%) (12%) (11%) (15%) (23%)
Information on 2.5 43 6.7 15.2 21.2 46.1
(X1, X2) (11%) (9%) (9%) (8%) (10%) (15%)
ECBC (m=30)
No information 25 4.2 6.8 15.9 21.4 43.3
(14%) (16%) (19%) (14%) (14%) (21%)
Information on 25 4.2 6.6 15.8 21.9 471
(X1, X2) (13%) (16%) (17%) (13%) (13%) (149%)
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Dimension 10

Mean and relative standard deviation for different quantile levels,

N = 1000.
VaR VaR VaR VaR VaR VaR
80% 90% 95% 99% | 99.5% | 99.9%
Exact value 12.2 19.2 29 70.1 | 100.8 | 230.5
Empirical, n =75 12.6 20 29.9 62.2 75.8 86.7

(12%) | (15%) | (19%) | (39%) | (58%) | (71%)
Checkerboard, n = 75 12.5 20.1 31.2 74.8 92.4 152.6
(10%) | (13%) | (14%) | (20%) | (20%) | (16%)
Empirical, n = 150 12.4 19.6 30.3 67.3 89.9 121
(8%) | (11%) | (14%) | (27%) | (38%) | (59%)
Checkerboard, n = 150 12.4 19.6 29.8 75.4 | 107.6 173.9
(7%) (9%) | (12%) | (16%) | (21%) | (19%)
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Using information on the tail (dimension 2)

Same dimension 2 model as above. m = 6, information on the tail

added.

Quantile | Quantile | Quantile | Quantile | Quantile | Quantile
80% 90% 95% 99% 99.5% 99.9%
Exact value 2.5 4.1 6.4 16.0 23.2 53.4
Empirical 2.5 4.0 6.1 12.2 13.2 14.0
(26%) (31%) (39%) (72%) (70%) (78%)

ECBC (m=6)
t=1 2.6 4.4 6.6 14.8 20.8 45.7
(9%) (8%) (6%) (8%) (11%) (15%)
t=0.99 2.6 4.4 6.4 14.2 22.7 49.5
(9%) (8%) (5%) (11%) (3%) (8%)
t=0.95 2.7 4.1 6.1 15.6 21.8 46.8
(10%) (5%) (4%) (3%) (6%) (13%)
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Concluding remarks

Conclusion

ToDo
ToDo
ToDo

Efficient methods to estimate the aggregated VaR.

Efficient even in (relatively) high dimension with (relatively)
small samples.

Additional information / expert opinion may be taken into
account: dependence structure on a sub-vector or on the tail.

Determine optimally m.
Quantify the information gain.

Develop efficient procedures to simulate a sample from the
checkerboard copula with partial information (tailor copula of
a sub-vector).
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Concluding remarks

Empirical Copula

Deheuvels (1979) defined the empirical copula.

Let XM, ... X(" be n independent copies of X and Rl.(l), e R,.("),
i=1,...,d their marginals ranks, i.e.,

RO =5S"1{xY >xWy i=1,....d,j=1,...,n.
k=1

The empirical copula C, of XV, ... X(" is defined as

1
Co(u) = 121{1/?{” < ul.,...,;R((lk) < ud}.
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