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Context

General problematic

(X1, -, X4) random vector of risks. Write

d
S= ZX;,the aggregated risk.
i=1

Regulatory rules, Risk management purposes, Environmental risks
. = need to estimate / approximate (relatively) high level
quantiles of S:
Fs'(a) = VaR,(S),

where Fs is the distribution function of S.
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Context

Examples

@ Insurance: X describes the distribution of the claim amonts,
regulatory rules impose to insurance companies to estimate
Fx(«) for a = 0.995.

@ Hydrology: X may describe a flood level. Computing F;l(a)
is required to calibrate a barrage e.g. (or a dam).

e Many other field: finance, wind electricity...
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Context

Our purpose

= Estimation of VaR,(S).
The law of S (and thus VaR,(S)) depends on the law of
(Xi,...,Xq) (marginal laws and dependence structure).

5/43



Context

Quantiles of aggregated risks

e High dimensional problem (d may be large),

e Marginal laws (laws of the X;'s) are usually known (or well
estimated), some information on the dependence is available,

o Even if the law of (... .. Xy) is known, the effective

computation of
VaR,(S),

may be difficult to do,
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Context

Quantiles of aggregated risks

o Even if the law of (X, .. .. Xy) is known, the effective

computation of
VaR,(S),

may be difficult to do,
the distribution function of S is given by:

Fs(t) = /1{x1+--~+xd<t} fX(X17 e 7Xd)dX;[ coodxy.
Rd

— Efficient methods are still welcome.
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Context

One proposition

Assume that the X;'s laws are known.
Information on the dependence is available through

@ a (quite small) (Xi,..., Xy) sample and

@ some expert opinion (e.g the dependence structure between X;
and X is completely known) and / or

@ some knowledge of the join tail (P(X1 > u1,...,Xg > ug) is
known for some (us, ..., uq)).

We use check-erboard-min copulas to estimate VaR,(S).
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Context

One proposition

Assume that the X;'s laws are known.
Information on the dependence is available through

@ a (quite small) (Xi,..., Xy) sample and

@ some expert opinion (e.g the dependence structure between X;
and X is completely known) and / or

@ some knowledge of the join tail (P(X1 > u1,...,Xg > ug) is
known for some (us, ..., uq)).

We use check-erboard-min copulas to estimate VaR,(S).

We assume that X has continuous marginals and we shall denote
by C the copula associated to X.
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Copulas approximations

@ Copulas approximations
@ The check-erboard-min coupla
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Copulas approximations
©00

The check-erboard-min coupla

The checkerboard copula: definition

The cherckerboard copula, introduced in dimension 2 by Li et al.
(1998) and Mikusinski and Taylor (2010) is an approximation of a
copula C. Durante et al. (2015) also consider related
approximations known as patchwork copulas.

1 is the probability measure associated to C on [0, 1]

d

p([0,x]) = C(x),x = (xa,...,x4) € [0,1]%, [0,x] = [ ][0, xi]-
i=1

Consider (/jm)icq1,..m}¢ the partition (modulo a 0 measure set) of
[0,1]¢ given by the m9 squares:

d

ii—1 i . . .
/i,m:H|:Jrn7r;:|a ’:(’17"'7Id)'

j=1
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Copulas approximations
©00

The check-erboard-min coupla

The checkerboard copula: definition

A denotes the Lebesgue measure.
The checkerboard copula of order m is defined on [0, 1]¢ by:

Cx(x) = Zm 1l N[0, X] NV Ji ).

—_
./ Iy, for i = (4,4).
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Copulas approximations
©00

The check-erboard-min coupla

The checkerboard copula: definition

A denotes the Lebesgue measure.
The checkerboard copula of order m is defined on [0, 1]¢ by:

Zmu i m)A([0, x] N [im).

From a probabilistic point of view,

Cr(x) = Z,u im)P(U < x|U € li m).

with U a random vector of R? of i.i.d. uniform laws on [0, 1].
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Copulas approximations
oeo

The check-erboard-min coupla

The checkmin copula

In the previous construction, replace the independent copula by the
comonotonic copula.
In other words, replace U on /; ,, by U'm with

s -1 Fy o (yr Y.
(U= U2 ) and (U7); = (U~ 24
Ch(x)= E mp(l; m) min(x; — =1 l)

m i ’ J m 'm
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Copulas approximations
ooe

The check-erboard-min coupla

Approximation by the check-erboard-min copula

In what follows, C2 is either C} or ch.

Proposition

C2 is a copula which approximates C:

sup |G (x) — C(x)[ < >—.

x€[0,1]¢ 2m

Gives a more precise bound on the approximation of C by C2 by a
factor 2, than the one presented in dimension 2 in Li et al. (1998).
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Estimation procedure

© Estimation procedure
@ Algorithm
@ Two test models
@ Simulations
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Estimation procedure
®00

Algorithm

An estimation procedure

Assume the marginal laws are known, a (quite small sample) of X is
available.

© Estimate p by 71 using the empirical copula.
@ Simulate a sample of size N from the copula 5,;*,

Ch(x Zm (1m0, X] O i ).

1 1 N N
(uﬁ),...,u‘(j)),...,(ug ),...,ug, ))
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An estimation procedure
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Estimation procedure
®00

Algorithm

An estimation procedure

Assume the marginal laws are known, a (quite small sample) of X is
available.

@ Estimate p by i using the empirical copula.
@ Simulate a sample of size N from the copula C},

Zm (li,m)A([0, X] N i ).

( (1) (1)) -

up s, Uy (N))

.,(u1 ),...,ud

© Get a sample of S using the marginals transform:

d d
S Y
i=1 i=1

@ Estimate the distribution function Fs of S empirically using
the sample above = Fg.
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Estimation procedure
®00

Algorithm

An estimation procedure

Similar construction for the checkmin copula = Cg.
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-
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Estimation procedure
o] Yo}

Algorithm

Convergence results for C°.

Proposition

Let m divide n, we have:

sup |C5(t) — C(¢)| < Op (}) 4

te[0,1]
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Estimation procedure
ooe

Algorithm

Convergence results to Fs.

Estimate Fs(t) by

i=1

where U9 ~ C& and T~ (u1,...,uq) = (F; Y1), .., F7t(uq))-
With a regularity condition due to Mainik, we obtain the
convergence of F2 to Fs.

Proposition

Under the regularity assumption, if m divides n,

sup |Fs(t) — Fr(t)] = Op(

teR n

)0,

-
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Estimation procedure
®0

Two test models

The Pareto - Clayon model

e Pareto marginal distributions (parameters a, b).

o Survival Clayton copula (parameter 1).

Exact formula for VaR,(S) using the so-called Beta prime
distribution (see Dubey (1970)).
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Estimation procedure
oce

Two test models

Gaussian example

e Lognormal marginal distributions.

@ Gaussian copula.
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Estimation procedure
0

Simulations

Pareto-Clayton model

RMSE in % of the exact value for the Pareto-Clayton model of parameters 3
and 1, in dimension 25, for a sample size n = 80, 100 runs.

90% | 95% | 99% | 99.5% | 99.9%

Exact value 23.08 | 31.28 | 59.10 76.41 | 135.89
ECBC, m=5 14% 40% 48% 63%
ECBC, m =20 9% 21% 31% 52%
ECBC, m =40 9% 11% 26% 48%
ECBC, m =380 9% 12% 23%

ECBC, median 5% 8% 31% 41% 59%
ECMC, m=5

ECMC, m =20 5% 6% 14% 17% 23%
ECMC, m =40 6% 7% 15% 19% 27%
ECMC, m =80 7% 10% 16% 21% 32%
ECMC, median 3% 4% 9% 11% 15%

Gaussian cop. 3% | 10% | 27% 34% 48%
Surv. Clayt. 2% 3% 5% 6% 12%
Clayton copula 10% | 23% | 46% 54% 66%
Empirical cop. 9% | 12% | 23% 31% 56%
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Estimation procedure
oe

Simulations

Gaussian lognormal example

RMSE in % of the exact value for the Gaussian lognormal model with p = 0.1,
dimension 25, for a sample size n = 80, 100 runs.

90% 95% 99% | 99.5% | 99.9%
Near exact value | 111.65 | 129.81 | 176.99 | 200.82 | 270.14
ECBC, m=5 4% 6% 10% 11% 13%

ECBC, m=20

ECBC, m =40 4% 9%

ECBC, m =80 4% 5% 10% 11% 12%

ECBC, median 3% 5% 9% 10% 11%

ECMC, m=5 11% 33% 44% 2%
ECMC, m =20 10% 22%
ECMC, m =40 4% 15%
ECMC, m =80 4% 5% 8% 10%

ECMC, median 2% 4% 17% 24% 41%
Gaussian copula 2% 2% 3% 4% 6%
Survival Clayton 2% 3% 9% 12% 20%

Clayton copula 7% 9% 13% 14% 14%

Empirical cop. 6% 9% 16% 22% 35% 26 /43




Estimation procedure
oe

Simulations

Gaussian lognormal example

RMSE in % of the exact value for the Gaussian lognormal
model with p = 0.1, dimension 25, for a sample size n = 80, 100 runs.

90% 95% 99% | 99.5% | 99.9%
Near exact value | 111.65 | 129.81 | 176.99 | 200.82 | 270.14
ECBC, m=5 4% 6% 10% 11% 13%

ECBC, m=20

ECBC, m =40 4% 9%

ECBC, m =80 4% 5% 10% 11% 12%

ECBC, median 3% 5% 9% 10% 11%

ECMC, m=5 11% 33% 44% 2%
ECMC, m =20 10% 22%
ECMC, m =40 4% 15%
ECMC, m =80 4% 5% 8% 10%

ECMC, median 2% 4% 17% 24% 41%
Gaussian copula 2% 2% 3% 4% 6%
Survival Clayton 2% 3% 9% 12% 20%

Clayton copula 7% 9% 13% 14% 14%

Empirical cop. 6% 9% 16% 22% 35% 27743




Concluding remarks

@ Concluding remarks
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Concluding remarks

Conclusion

ToDo
ToDo
ToDo

ToDo

Efficient methods to estimate the aggregated VaR.

Efficient even in (relatively) high dimension with (relatively)
small samples.

Additional information / expert opinion may be taken into
account: dependence structure on a sub-vector or on the tail.

Determine optimally m.
Quantify the information gain.

Develop efficient procedures to simulate a sample from the
checkerboard copula with partial information (tail or copula of
a sub-vector).

Estimation of the Kendall distribution and application to
multivariate return time.
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Thank you for your attention
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Miscellaneous

© Miscellaneous
@ Empirical Copula
@ Additional information
@ Simulations
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Miscellaneous
]

Empirical Copula

Empirical Copula

Deheuvels (1979) defined the empirical copula.

Let X, ... X be n independent copies of X and R(l) ,R,.("),
i=1,..., d their marginals ranks, i.e.,

RO =N"1{xV >xM},i=1,....d,j=1,....n.
k=1

The empirical copula C, of X, ... X(" is defined as

n

Colu) = 121{,17R£k) < ul,...,%Rc(,k) < ud}.

n
k=1
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Miscellaneous
©00

Additional information

The checkerboard copula with additional information

We may include some kind of information in the checkerboard
copula, mainly:

The copula of a subvector X/ Jc {1,..., d}, C” is known,
|J| =k < d.
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Miscellaneous
©00

Additional information

The checkerboard copula with additional information

We may include some kind of information in the checkerboard
copula, mainly:

The copula of a subvector X/ Jc {1
|J| =k < d.

Let 1/ be the probability measure on [0, 1] associated to C7.
Fori=(h,...,iq), let x = (x1,...,xq) € [0, 1] xJ —()(J)Je_],
xI = (Xj)ng and

_—
I,{m:{xe[o,l]k/@e[lj 'J] jEJ}

m

/iTI#:{XG[O,l]d_k/XjG [Ij;l IJ} J§ZJ}
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Miscellaneous
oeo
Additional information

Check-erboard-min with information on a sub-vector

Define

J 1) = 1 ) Mo([O>X7J]mIi,_) J
(0 ])—ic{gm}d 7 ) oy (0

Let CA(x) = ([0, x]).
Where 1 is either the Lebesgue or the comonotonic measure on
Ifnj,. From a probabilistic point of view,

Z“'m (U™ <x, U7 < XU € I ).

with U a random vector of RY, with U~ and U’ independent,
U~7 is a random vector of Rk either of i.i.d. uniform laws on

[0, 1] or of comonotonic margins conditionnally to /; ,, and U’

distributed as C-.
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Miscellaneous
oeo

Additional information

Check-erboard-min with information on a sub-vector

Define

°([0,x ] n1=?
il _]J) im) 0,5} A 1

1
i) = 37 7y ) e

Let G (x) = pm([0, X]).

Proposition

d
CJ is a copula, it approximates C: sup |Cl(x) — C(x)| < —.
x€[0,1]d 2m
If X7 and X=7 are independent then,

— k
sup |CAx) — €l < 2=,

x€[0,1]¢ 2m
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Miscellaneous
ooe

Additional information

Information on the tail

We may also add information on the tail.

Definition

Let t €]0,1[ and E = (Hf’zl[o, t]d)c, assume that puc(E) is
known (information on the tail).

The checkerboard copula with extra information on the tail is
defined by:

pc(E)

Cr () = e () Chlx/D1ee(x) + 5

A([0,x] N E),

where C? is the check-erboard-min copula with partition:
Ji,m =t- /i,m-

Cg is a copula, it approximates C.
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Miscellaneous
°

Simulations

More simulations

Pareto-Clayton model with parameters 2 and 1, in dimension 100, n = 400.

Boxplots for the 0.995 quantile
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Simulations

More simulations

Miscellaneous
°

Gaussian-lognormal model, correlations 0.25,0.5,0.75, dimension 100, n = 400.
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Miscellaneous
°

Simulations

More simulations

Pareto-Clayton model in dimension 2, with 5 =1 and a = 2,

n =30
The information on the tail is introduced on &,, for p = 0.95,0.99.

90% | 95% | 99% | 99.5% | 99.9%
Empirical | 31% | 39% | 72% 70% 78%

ECBC (m=6)

No tail information | 8% | 6% | 8% 11% 15%
Information on £, p=0.99 | 8% | 5% | 11% 3% 8%
Information on £, p=0.95 | 5% | 4% | 3% 6% 13%
ECBC (m=15)

No tail information | 13% | 11% | 9% 10% 14%
Information on £,p=0.99 | 12% | 12% | 11% 3% 8%
Information on £, p=0.95 | 10% | 4% | 3% 6% 13%
ECBC (m=30)

No tail information | 15% | 17% | 13% 12% 14%
Information on £, p=0.99 | 16% | 16% | 11% 3% 8%
Information on £, p=0.95 | 11% | 4% | 3% 6% 13%
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Miscellaneous
°

Simulations

More simulations

X = (Xl,XQ,X3) whith X1 = X5 = Y/2, X3 ~ Y where Y is
Pareto distributed with o = 2, and (Y, X3) is a Pareto-Clayton
model = Xj and X; are comonotonic (or fully dependent) and
the dependence between X and X3 is given by a survival Clayton
of parameter 1/2.

90% | 95% | 99% | 99.5% | 99.9%

ECBC (m=6)

No information | 13% 7% | 13% 18% 24%
Information on (X1,X2) | 8% | 6% | 8% 11% 15%
ECBC (m=10)

No information | 13% | 12% | 11% 15% 23%
Information on (X1, X2) 9% 9% 8% 10% 15%
ECBC (m=30)

No information | 16% | 19% | 14% 14% 21%
Information on (X1, X2) | 16% | 17% | 13% 13% 14%
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