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Abstract

We study the mixing properties of equilibrium states µ of non-Markov
piecewise invertible maps T : X → X, especially in the multidimensional
case. Assuming mainly Hölder continuity and that the topological pres-
sure of the boundary is smaller than the total topological pressure, we
establish exponential decay of correlations, i.e.:
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for all Hölder functions ϕ,ψ : X → R, all n ≥ 0 and some C <∞, α > 0.
We also obtain a Central Limit Theorem. Weakening the smoothness
assumption, we get subexponential rates of decay.

Résumé

Nous étudions les propriétés de mélange des états d’équilibre µ d’applications
T : X → X inversibles par morceaux et non-markoviennes, plus parti-
culièrement dans le cas multi-dimensionnel. En supposant (essentielle-
ment) la continuité Hölder et que la pression topologique du bord est
strictement majorée par la pression totale, nous montrons la décroissance
exponentielle des corrélations:
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pour toutes les fonctions Hölder ϕ,ψ : X → R, tout n ≥ 0 et des con-
stantes C < ∞, α > 0. Nous obtenons également un Théorème Central
Limite. Une diminution de la régularité fait apparâıtre des vitesses sous-
exponentielles.
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Introduction

Our goal is to generalize ergodic and statistical properties of equilibrium
states, which are well-known in dimension one [LY, HK, R, Ke1, Sc, Go], to a
natural multidimensional setting. Several questions in this regard have already
been considered (existence and characterization of equilibrium states [Bu2], con-
struction of conformal measures [BPS], absolutely continuous invariant measures
[Bu0, Bu1, Bu3, Co, GB, Sau] or zeta functions [BuKe]), sometimes with sur-
prising results [Bu4, T3].

In this paper we study the speed of mixing of equilibrium states and prove
that it is exponential. This implies, e.g., the Central Limit Theorem.

We first consider Hölder continuous weights for simplicity and then move on
to the more general case of summable moduli of continuity [Sc] (which was the
setting for the previous works [Bu3, BPS]) relying on an abstract result to be
proved in a companion paper [BuMa].

Our setting will be the following. (X,Z, T, g) will be a weighted piecewise
invertible map, i.e.:

• X =
⋃

Z∈Z Z is a locally connected compact metric space.

• Z is a finite collection of pairwise disjoint, bounded and open subsets of
X. Let Y =

⋃
Z∈Z Z.

• T : Y → X is a map such that each restriction T |Z, Z ∈ Z, coincides
with the restriction of a homeomorphism TZ : U → V with U, V open sets
such that U ⊃ Z̄, V ⊃ T (Z).

• g : X → R.

T will be assumed to be non-contracting, i.e., such that for all x, y in the
same element Z ∈ Z, d(Tx, Ty) ≥ d(x, y).

Also Z will be assumed to be generating, i.e., limn→∞ diam(Zn) = 0 where
Zn denotes the set of n-cylinders, i.e., the non-empty sets of the form:

[A0 . . . An−1] := A0 ∩ · · · ∩ T−n+1An−1

for A0, . . . , An−1 ∈ Z.

Finally the boundary of the partition, ∂Z =
⋃

Z∈Z ∂Z, will play an important
role in our analysis. In particular, we shall assume “small boundary pressure”
(see below), a fundamental condition which already appeared in [Bu2, Bu3,
BPS].

A basic example is given by the multidimensional β-transformations [Bu0],
i.e., maps T : [0, 1]d → [0, 1]d, T (x) = B.x mod Zd with B an expanding affine
map on R

d. An interesting choice of weight is the constant g(x) = | detB|−1.

These systems usually have plenty of invariant probability measures, some
of them rather irrelevant such as those supported on periodic orbits. A classical
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way to select “interesting” measures is through the following variational princi-
ple [DGS]. One considers equilibrium states, i.e., invariant probability measures
which maximize the measure-theoretic pressure:

h(µ, T )−

∫

Y

log g dµ

(h(µ, T ) is the entropy of µ — see [DGS]).
In our piecewise, multidimensional and expanding setting, existence and

uniqueness of these measures have been studied in [Bu2] and [BPS]. Further-
more in [Bu2] such measures have been given the alternative and more “geomet-
ric” characterization of being exactly the measures absolutely continuous w.r.t.
a “conformal measure”, i.e., a not necessarily invariant, probability measure on
X, such that the Jacobian of T w.r.t. this measure is equal to e−P (X,T )g−1.
This conformal measure can be given (like Lebesgue measure if g = | detT ′|−1)
or constructed from the weight g [BPS].

In the example given above (multidimensional β-maps), the conformal mea-
sure is just Lebesgue measure and thus the equilibrium states are the absolutely
continuous invariant probability measures, which can indeed be considered in-
teresting.

Statement of Results

To formulate the crucial “small boundary pressure” condition, we need first
some definitions.

The topological pressure [DGS] of a subset S of X is:

P (S, T ) = lim sup
n→∞

1

n
log

∑

A∈Zn

Ā∩S 6=∅

g(n)(A)

where g(n)(A) = supx∈A g(x)g(Tx) . . . g(T
n−1x).

The small boundary pressure condition is:

P (∂Z, T ) < P (X,T ).

This inequality is satisfied in many cases. In particular, if T is expanding
and X is a Riemannian manifold and the weight is | detT ′(x)|−1 or close to it,
then it is satisfied: (i) in dimension 1, in all cases; (ii) in dimension 2, if T is
piecewise real analytic [Bu3, T1]; (iii) in arbitrary dimension, for all piecewise
affine T [T2] or for generic T [Bu1, Co]. See however [Bu4] for an expanding
counter-example in dimension 2.

In our favorite example (multidimensional β-transformations, see above), the
inequality is satisfied as soon as:

sup g

inf g
<

(
Λ−
Λ+

)d

Λ+
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with Λ+, resp. Λ−, the largest, resp. the smallest, modulus of the eigenvalues of
the linear map corresponding to the β-transformation. Clearly, this is satisfied
for g = |detB|−1.

0.1 The Expanding and Hölder continuous case

Recall that a conformal measure for (X,T, g) is a probability measure ν such
that dν◦T

dν = e−P (X,T )g.

Main Theorem. Let (X,Z, T, g) be a weighted piecewise invertible dynamical
system. Assume that:

H1. T is expanding, i.e., there is some λ > 1 such that for all x, y in the same
element of Z, d(Tx, Ty) ≥ λ · d(x, y);

H2. g is Hölder continuous with exponent γ and is positively lower bounded.

Let K(f) = maxZ∈Z supx 6=y∈Z
|f(x)−f(y)|

d(x,y)γ where γ is some Hölder expo-

nent of g.

H3. the boundary pressure is small: P (∂Z, T ) < P (X,T ).

H4. there is a conformal measure ν such that TnX ⊂ supp(ν) (mod 0) for
large enough n.

Then, T admits a finite number of ergodic and invariant measures, µ1, . . . , µr,
absolutely continuous w.r.t. ν. Each µi is exponentially mixing up to a period
pi, i.e., µi can be written 1

n

∑pi−1
j=0 T j

∗µ0
i with T pi∗ µ0

i = µ0
i and, for all n ≥ 1,

∣∣∣∣
∫

X

ϕ ◦ Tnpi · ψ dµ0
i −

∫

X

ϕdµ0
i

∫

X

ψ dµ0
i

∣∣∣∣ ≤ C · (sup |ϕ|+K(ϕ)) · ‖ψ‖L1(µ0
i )
κn.

with constants C < ∞ and κ < 1 depending only on (X,Z, T, g), for any mea-
surable functions ϕ,ψ : X → R such that ψ is bounded and ϕ is γ-Hölder
continuous.

We also obtain:

Central Limit Theorem Under the same conditions, if ϕ is γ-Hölder con-
tinuous and satisfies

∫
X
ϕdµ0

i = 0, then setting:

σ2 = lim
n→∞

1

n

∫

X

(
n−1∑

k=0

ϕ ◦ T k

)2

dµ0
i

we have 1√
n

∑n−1
k=0 ϕ ◦ T k =⇒ N (0, σ), where =⇒ is the convergence in law

and N (0, σ) is the normal distribution with mean zero and variance σ (the Dirac
measure at 0 if σ = 0). Moreover, σ = 0 iff ϕ = ψ−ψ ◦T for some ψ ∈ L2(µ0

i ).
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0.2 The general case

We shall control the modulus of continuity of g by the following, dynamically
defined, sequence:

ωn(g) = sup
Z∈Zn

sup
x,y∈Z

log
g(x)

g(y)
.

In fact, it is convenient just to assume that ωn(g) is not less than the right hand
side of the above equation.

Such a sequence define the following functional space. It is the set of func-
tions ϕ on X such that:

sup
Z∈Zp

sup
x,y∈Z

|ϕ(x)− ϕ(y)| ≤ K ·
∑

q>p

ωq(p)

We then set K(ϕ) to be the infimum of all numbers K such that the above
equation holds for all p ≥ 1.

This condition together with this functional space were considered by B.
Schmitt [Sc, KMS].

We may now state:

Main Theorem (general version) Let (X,Z, T, g) be a weighted piecewise
invertible dynamical system. Assume that:

H1. T is non-contracting;

H2. g satisfies
∑

n≥1 ωn(g) <∞ and that it is positively lower bounded.

H3. P (∂Z, T ) < P (X,T ).

H4. there is a conformal measure ν such that TnX ⊂ supp(ν) (mod 0) for
large enough n.

Then, T admits a finite number of ergodic and invariant measures, µ1, . . . , µr,
absolutely continuous w.r.t. ν. Each µi is mixing up to a period pi, i.e., µi can
be written 1

n

∑pi−1
j=0 T j

∗µ0
i with T pi∗ µ0

i = µ0
i and, for all n ≥ 1,

∣∣∣∣
∫

X

ϕ ◦ Tnpi · ψ dµ0
i −

∫

X

ϕdµ0
i

∫

X

ψ dµ0
i

∣∣∣∣ ≤ (sup |ϕ|+K(ϕ)) · ‖ψ‖L1(µ0
i )
un.

for any measurable functions ϕ,ψ : X → R such that ψ is bounded and K(ϕ) <
∞

The sequence (un)n≥1 depends on (T, g) and goes to zero with a speed which
can be explicited:

1. if ωn(g) = O(ρn) for some ρ < 1, then un = O(κn) for some κ < 1;

2. if ωn(g) = O(n−α) for some α > 1, then un = O(n−(α−1)).

We also obtain:
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Central Limit Theorem (general version) Assuming additionnaly that∑
n≥1 un <∞, if K(ϕ) <∞ and

∫
X
ϕdµ0

i = 0, then setting:

σ2 = lim
n→∞

1

n

∫

X

(
n−1∑

k=0

ϕ ◦ T k

)2

dµ0
i

we have 1√
n

∑n−1
k=0 ϕ ◦ T k =⇒ N (0, σ), where =⇒ is the convergence in law

and N (0, σ) is the normal distribution with mean zero and variance σ (the Dirac
measure at 0 if σ = 0). Moreover, σ = 0 iff ϕ = ψ−ψ ◦T for some ψ ∈ L2(µ0

i ).

Outline of the paper

The rest of the paper is devoted to the proof of the above Theorems.
First we define a Markov extension –or tower– (X̂, T̂ ) à la Hofbauer-Keller.

Then we check that the return time R̂ with respect to a slightly enlarged basis
X̂∗ of this tower satisfies an exponential estimate with rate exp−(P (X,T ) −
P (∂Z, T )). Finally we build from this Markov extension an abstract tower in
the spirit of L.-S. Young [Y0]. We show that the a.c.i.m.’s on X lifts to a.c.i.m.’s
on this tower. From this, the Theorems above follow from an abstract result
which is proved in a companion paper [BuMa] dealing with the non-Markov
case. In the expanding and Hölder continuous case, they also follow from a
slight adaptation of [Y0].

Comments

• Our Main Theorem generalizes results well-known in the globally expand-
ing case (see, e.g., [Bo]) or in the piecewise expanding one-dimensional
setting (see [Ke1, LSV] and the references therein). The non-Hölder
(piecewise invertible) case is new, even in the one-dimensional setting with
g = | detT ′| —we remark that the claim in [Go] that (in dimension 1 and
with g = | detT ′|−1) the decay of correlations is always exponential rests
on a faulty lemma.

The special case g = | detT ′|−1 Hölder continuous has been considered
in a multidimensional setting (under a slightly more restrictive condition
than the small boundary pressure condition) in [Bu3, Sau].

• The assumption of small boundary pressure (H3) is natural. Indeed it
reduces, for instance, in dimension 1, to a standard “spectral gap” condi-
tion. It also implies the conditions appearing in [Bu3, Sau] by a remark
of M. Tsujii.

• The existence of a conformal measure (H4) is automatic in the case with
g = | detT ′|−1 (Lebesgue measure is enough). In the general case, it was
proved in a similar setting by J. Buzzi, F. Paccaut, B. Schmitt [BPS].
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• L.S. Young [Y2] has asked how one could control the upper floors of the
tower for equilibrium states. We prove here that they are controlled in
thermodynamical terms: their conformal measure decreases like
e−(P (X,T )−P (∂Z,T ))n —see Proposition 1.1.

• By going to a Markov extension, we avoid spaces of discontinuous func-
tions, i.e., spaces of functions with bounded multi-dimensional variation.
This is already a significant technical gain in the case of Lebesgue mea-
sure (g = | detT ′|−1) and seems necessary for more general weights as the
classical functional spaces are no longer adapted and tailored ones (see
[Ke1, Sau]) become too difficult to control ([P] studies however a promis-
ing functional space).

• Our result are deduced from similar statements about a tower extension
the spirit of L.-S. Young (see [Y0, Y1]). These statements, quoted at the
end of our proof, are proved in [BuMa].

Acknowledgements: The authors are grateful to program ESF/PRODYN
which has partially supported the International Conference on Dynamical Sys-
tems, Abbey of “La Bussière” where most of this work was carried out. We
thank the referees of a first version of this paper for their remarks.

1 The Markov Extension

We define a Markov tower extension (X̂, T̂ ) in the vein of F. Hofbauer [Ho] and
G. Keller [Ke2] and then prove that the pressure of the boundary provides an
exponential estimate on the tail statistics of the return times to the basis.

1.1 Construction

Let (X,Z, T, g, ν) be as in the Main Theorem. Let X̂0 = {(x, Z) : x ∈ Z and
Z ∈ Z}. Recall that Y =

⋃
Z∈Z Z is the domain of T . For x ∈ Y ∩ T−1Y and

A ⊂ X, set:
T̂ (x,A) = (Tx, T (A) ∩ Z[Tx])

where Z[x] is that element of Z which contains x.
Set X̂ =

⋃
n≥0 T̂

n(X̂0). Remark that

X̂ =
⋃

D∈D
D̂ with D × {D} and D = {TnZ : n ≥ 0 and Z ∈ Zn+1}.

Thus, X̂ is a countable, disjoint union of (sets naturally isomorphic to) subsets
of X.

D has a natural graph structure: D → D′ iff D′ = T (D)∩Z for some Z ∈ Z.
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1.2 The statistics of returns

We shall consider returns to an enlarged basis of the Markov extensions: X̂∗ =
TN∗X̂0 for some N∗. X̂∗ can also be seen as the disjoint union of D∗, the
collection of the sets TN

∗ Z, Z ∈ ZN∗+1.

The figure below illustrate why points not too close to the boundary return
to X̂0, explaining the idea behind the next proposition.

figure=tower.epsf,width=15cm

How points return to X̂0.

Z is a grid of small squares and we have drawn some set A and its image and
pointed out the behavior of T̂ (x,A) for x ∈ A.

Proposition 1.1 For each δ > 0, if N∗ <∞ is large enough, then for

X̂∗ = T̂N∗X̂0,

the return time to X̂∗, R̂(x̂) = inf{n ≥ 1 : T̂n(x̂) ∈ X̂∗}, satisfies, for each
D ∈ D,

ν
(
{x ∈ D : R̂((x,D)) > n}

)
≤ const · exp[−n(P (X,T )− P (∂Z, T )− δ)]

for some positive number const <∞. This number depends on D.

We first prove that if a point is close to ∂Z then it remains bound to ∂Z for
a long time. Remark that this is obvious in dimension 1.

Lemma 1.2 Given n <∞, there exists ε > 0 such that, for all x ∈ X such that
Zn[x] is defined,

d(x, ∂Z[x]) < ε =⇒ Zn[x] ∩ ∂Z 6= ∅.

Proof : We prove that for any k ≥ 1, for every ε > 0 there exists δ > 0
depending only on Zk+1[x] such that:

d(x, ∂Z ∩ Zk[x]) < δ =⇒ d(x, ∂Z ∩ Zk+1[x]) < ε. (1)

Here we use the convention d(x,∅) = ∞. Thus, the above implication assumes

that ∂Z ∩ Zk[x] 6= ∅ and concludes that ∂Z ∩ Zk+1[x] 6= ∅.
The Lemma will follow by an obvious induction and using that Zn+1 is finite.
For arbitrary ε > 0, let

δ :=





d(∂Z ∩ Zk[x],Zk+1[x] \B(∂Z ∩ Zk+1[x], ε))

if Zk+1[x] \B(∂Z ∩ Zk+1[x], ε) 6= ∅

1 + ε otherwise.
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Observe that δ is finite (the sets are not empty) and positive: otherwise

∂Z ∩ Zk+1[x] \B(∂Z ∩ Zk+1[x], ε) 6= ∅

which is absurd. Let us prove (1).

If Zk+1[x] \ B(∂Z ∩ Zk+1[x], ε) = ∅, (1) is obvious. Otherwise, d(x, ∂Z ∩

Zk[x]) < δ implies x /∈ Zk+1[x] \B(∂Z ∩ Zk+1[x], ε). This implies that x ∈

B(∂Z ∩ Zk+1[x], ε), proving (1) and the Lemma. �

We turn to the proof of the Proposition.

Proof : Let δ > 0 and D ∈ D. Observe that D being of the form T k(A0 ∩ · · · ∩
T−kAk), P (∂D, T ) ≤ P (∂Z, T ).

Pick N so large that for all n ≥ 0,

∑

Z∈Zn

Z̄∩(∂D∪∂Z) 6=∅

g(n)(Z) ≤ eδN · e(P (∂Z,T )+δ)n and

(
2n/N
n

)
≤ eδn. (2)

Let ε1 = ε(N) > 0 be given by Lemma 1.2. Let ε2 > 0 be such that for all
x ∈ X there is a connected Γ ⊂ X with B(x, ε2) ⊂ Γ ⊂ B(x, ε1). This exists
because of the local connexity and the compactness of X.

For x ∈ D and n ≥ 0, let

ρn(x) := sup{r > 0 : B(Tnx, r) ⊂ Tn(D ∩ Zn+1[x])}.

and set
R(x) := min{n ≥ 0 : ρn(x) ≥ ε2}.

We choose N∗ <∞ so large that the diameter of the partition ZN∗ is less than
ε2. Let us observe that

R̂((x,D)) ≤ R(x) +N∗.

Indeed,

T̂R(x)+N∗(x,D) =
(
TR(x)+N∗x, TN∗(ZN∗ [TR(x)x] ∩ TR(x)(D ∩ ZR(x)[x]))

)

= (TR(x)+N∗x, TN∗ZN∗ [TR(x)x])

= T̂N∗(TR(x)x,Z[TR(x)x]) ∈ TN∗X̂0 = X̂∗.

It is therefore enough to prove the exponential estimate for ν({x ∈ D :
R(x) > n}).

Claim. For every x ∈ D such that R(x) > n, there exists a finite sequence
of times n0 = 0 < n1 < · · · < nr = n such that, for all 0 ≤ i < r,

r ≤
2n

N
+ 1 (3)

Zni+1−ni(Tnix) ∩ (∂Z ∪ ∂D) 6= ∅ (4)
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where N was defined in (2).

Let us see that the claim implies the proposition. Let

C = supn supZ∈Zn supx,y∈Z
g(n)(x)
g(n)(y)

. C < ∞ because g is Hölder and positively

lower-bounded, and T is expanding. We compute:

ν({R > n}) ≤
∑

Z ∈ Zn

∃x ∈ Z s.t. R(x) > n

ν(Z)

≤
∑

Z ∈ Zn

∃x ∈ Z s.t. R(x) > n

C · e−nP (X,T )g(n)(x) · ν(TnZ)

(we used that ν is conformal)

≤ C · e−nP (X,T )

(2n/N)+1∑

r=1

∑

n0,...,nr

r−1∏

i=0

∑

Z ∈ Zni+1−ni

Z̄ ∩ (∂Z ∪ ∂D) 6= ∅

g(ni+1−ni)(Z)

≤ C · e−nP (X,T )

(
2n

N
+ 1

)(
2n
N
n

)
eδN

2n
N en(P (∂Z,T )+δ)

≤ C · e−n(P (X,T )−P (∂Z,T )−5δ)

which is the statement of the Proposition (up to substituting δ/5 to δ). Thus,
we only need to prove the claim by building the required times ni.

Define p(k) = max{p ≥ k : Zp−k+1[T kx] ∩ ∂Z 6= ∅}+ 1 for k > 0 and p(0)
by the same formula with ∂D instead of ∂Z.

We set n0 = 0 and define the rest of the ni’s inductively.
If p(ni) ≥ n, then set r := i and stop. Otherwise proceed as follows.
As p := p(ni) < n ≤ R(x), B(T px, ε2) 6⊂ T pZp+1[x]. By the choice of

ε2, there exists a connected Γ with B(T px, ε2) ⊂ Γ ⊂ B(T px, ε1). As Γ is
connected, there must be points of the boundary of T pZp+1[x] within ε1 of
T px. Each such point is the image by T p−q|Zp−q+1[T qx] of some point zi+1

of ∂Z[T qx] for some q ∈ [0, p]. d(zi+1, ∂Z[T qx]) < ε1 as T is non-contracting.
Select such a q maximizing p(q). Finally set ni+1 = q and go on inductively.

Remark that p(ni+1) > p(ni) by construction (indeed,

zi+1 ∈ Zp(ni)−ni+1+1[Tni+1x] ∩ ∂Z) so that r is well-defined. Also p(ni−1) <
ni+1 because otherwise, as p(ni+1) > p(ni), q = ni+1 would contradict the
maximality of p(ni) among the p(q), q ≤ p(ni−1).

Thus we have defined a finite sequence n0 = 0 < n1 < · · · < nr. This
sequence obviously satisfies eq. (4).
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We conclude by proving that for 1 ≤ i ≤ r − 2, ni+2 − ni ≥ N so that eq.
(3) is also satisfied.

Consider the point zi defined above. As d(zi, T
nix) < ε1, p(ni) ≥ ni +N by

Lemma 1.2. Now, we saw above that ni+2 ≥ p(ni). This proves the claim and
the proposition. �

2 The inducing tower

Working from the previous Markov extension X̂, we define another tower
describing the map induced by T̂ on X̂∗ following L.-S. Young’s philosophy
[Y1].

Let ∆0 = X̂∗ be the enlarged basis of the Markov tower previously defined.
We shall write x for a point of ∆0 ⊂ X ×D.

Let (∆0,j)j∈N be the partition of ∆0 obtained by dividing it first into level

sets {x : R̂(x) = r} and then according to Zr+1 on the rth level set, i.e.,
(∆0,j)j∈N is the coarsest partition of ∆0 such that R̂(x) and ZR̂(x)(x) are con-
stant on atoms.

We define
∆ℓ = {(x, ℓ) / x ∈ ∆0 and R̂(x) > ℓ}.

The tower ∆ ⊂ X × D × N is the disjoint union of the ∆ℓ’s. We will denote
by ∆ℓ,j ⊂ ∆ℓ the set of (x, ℓ) such that (x, 0) belongs to ∆0,j . The ∆ℓ,j ’s for
ℓ ∈ N, j ∈ N, form a partition of ∆ which we will denote by P.

Let F : ∆ −→ ∆ be defined in the following way:

{
F (x, ℓ) = (x, ℓ+ 1) if ℓ+ 1 < R̂(x)

= (T̂ R̂(x)x, 0) otherwise.

Remark that we do not assume that the images FR∆0,j are the whole basis
∆0. That is why we have to introduce the partition {B1, . . . , Bp} of ∆0 gen-
erated by {FR∆0,j : j ∈ N}. It is finite because each FR∆0,j corresponds to
some union of elements of D∗, which is finite.

Finally, we lift the probability measure ν on X to a measure ν̂ on ∆ defined
by:

ν̂(S × {D} × {ℓ}) = ν(S).

Since ∆0 is a finite union of D̂, D ∈ D, ν̂(∆0) <∞. Also, by the choice of N∗,
supp(ν̂) = ∆.

We define the following metric on ∆:

d0(x, y) = C · exp
∑

j>s(x,y)

ωj(g).

where s(x, y) = min{k ≥ 0 : F k(x), F k(y) are not in the same element of P} and
C = exp

∑
j≥1 ωj(g). This last constant is introduced to have (A.III) below.

Let us summarize the crucial properties of the tower.
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(A.I) Exponentially small upper floors. 1.1,

ν̂
(
{x ∈ ∆0 / R̂(x) > ℓ}

)
≤ const · γℓ

for some 0 < γ < 1. In particular, ν̂(∆) =
∑

ℓ ν̂(∆ℓ) ≤ const
∑

ℓ γ
ℓ < ∞.

Moreover, the support of ν̂ is ∆: this follows from our construction and
the fact that the support of ν contains TN∗X. In what follows, we assume
that ν̂ has been normalized i.e. ν̂(∆) = 1.

(A.II) Generating Partition. The partition P generates under F i.e.: the
partition

∨∞
n=0 F

−nP is the partition into points. In particular, d0 defines
a metric on ∆.

(A.III) Bounded distortion. Let JF be the Jacobian of F with respect to ν̂.
Obviously, JF (x, ℓ) = 1 if ℓ+ 1 < R̂(x) and JF (x, R̂(x) − 1) = gR̂(x)(x).

If x, y are in the same Bj , we can defined their paired pre-images x′ and
y′ as follows. Fnx′ = x, Fny′ = y and F k(x′) and F k(y′) belong to the
same element of P for 0 ≤ k < n. We have:

∣∣∣∣
JFn(x′)

JFn(y′)
− 1

∣∣∣∣ ≤ d0(x, y).

Indeed,
∣∣∣∣
JFn(x′)

JFn(y′)
− 1

∣∣∣∣ ≤ C ·

∣∣∣∣log
JFn(x′)

JFn(y′)

∣∣∣∣ ≤
∑

j≥n+s(x,y)

ωj(n).

(A.IV) Large image and Markov properties. Large image: there exists η > 0
such that

inf
j∈N

ν̂(F R̂(∆0,j)) ≥ η.

Markov property: F R̂∆0,j is a union of some ∆0,p.

2.1 Lifting a.c.i.m.’s

To deal with an ergodic a.c.i.m. on X we first have to lift it to the inducing
tower ∆, i.e.,

Proposition 2.1 If µ is an ergodic ν-a.c.i.m. on X, then there exists an
ergodic ν̂-a.c.i.m. µ̂ on ∆ projecting to µ.

To prove this, we begin by finding a non zero, not necessarily invariant
probability measure µ̂0 on ∆ with projection on X absolutely continuous w.r.t.
µ. We set µ̂0 = 1X̂∗∩π−1(S) · ν̂ where S is invariant and such that µ(S) = 1 and

µ′(S) = 0 for all other ergodic ν-a.c.i.m.’s (there can be only countably many
measures wich are pairwise singular and absolutely continuous w.r.t. a given
measure).

12



We have to check that this µ̂0 can be normalized. Because of (A.I), π∗(ν̂) ≤
C · ν for some constant C < ∞, so that µ̂0 is finite. We have to see that µ̂0

is not zero. But this follows from the invariance of S and the fact that ν̂-a.e.
point of X̂ eventually enters X̂∗ by Proposition 1.1.

Thus we can normalize µ̂0.

Now, we claim that we can take µ̂ to be any weak* limit point, say µ̂, of the
sequence 1

n

∑n−1
k=0 F

k
∗ µ̂0.

Clearly µ̂ is F -invariant. Let us show that µ̂ is ν̂-absolutely continuous. For
this we consider the sequence of the corresponding densities. Introducing the
transfer operator for (F, ν̂),

Lf(x) =
∑

y∈F−1(x)

f(y)

JF (y)

where JF is the Jacobian of F w.r.t. ν̂, these densities are 1
n

∑n−1
k=0 L

k dµ̂0

dν̂ (recall

that dµ̂0

dν̂ = C). The absolute continuity will therefore follow from:

Claim. There is a constant K <∞ such that for all x ∈ ∆, n ≥ 0, (Ln1)(x) ≤
K.

The claim together with ν̂(∆) = 1 allows the application of the Lebesgue
dominated convergence theorem to see that the µ-absolute continuity of the
projections of the measures F k

∗ µ̂0 passes to the limit µ̂. For the same reason, µ̂
is a probability measure. Finally, as π∗µ̂ << ν and π∗µ̂(S) = 1, π∗µ̂ << µ and,
by ergodicity, π∗µ̂ = µ, proving the Proposition, except for the claim. We need
some facts.

Recall that P is the partition of ∆ obtained by translation from the partition

of ∆0 according to the return time R̂ and ZR̂-itinerary. For k ∈ N and x ∈ ∆,
Ck(x) denotes the k,P-cylinder which contains x.

Lemma 2.2 There exists C < ∞ such that for any ℓ ∈ N, x ∈ ∆ℓ and k ∈ N

with F kx ∈ ∆0,

C−1ν̂(Ck(x)) ≤
1

JF k(x)
≤ Cν̂(Ck(x)).

Proof : Let x ∈ ∆ℓ such that F k(x) ∈ ∆0. The Markov property and the
large image property (A.IV) imply that ν̂(F kCk(x)) ≥ η > 0. The bounded
distortion property (A.III) gives:

C−1 ν̂(Ck(x))

ν̂(F kCk(x))
≤

1

JF k(x)
≤ C

ν̂(Ck(x))

ν̂(F kCk(x))

C−1 ν̂(Ck(x))

1
≤

1

JF k(x)
≤ C

ν̂(Ck(x))

η

The Lemma is proved. �
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We now prove the claim.
The upper bound Ln1 ≤ K follows from Lemma 2.2, writing:

Ln1(x) =
∑

x′∈F−nx

1

JFn(x′)
≤ C

∑

x′∈F−nx

ν̂(Cn(x
′)) ≤ C · ν̂(X̂) (1)

3 Proof of the Theorems

Let us first quote a theorem with two corollaries that give our Main Theorem
and Central Limit Theorem for an abstract tower. These are proved in a com-
panion paper which considers a more general setting, in particular non-Hölder
smoothness. However the reader may remark that in the Hölder setting of the
present paper, these facts essentially reduce to L.-S. Young’s abstract results
[Y1], after taking care of the following technicalities:

• We have a “Markov rather than a Bernoulli picture”: the returns are not
to ∆0, but to finitely many elements B1, . . . , Bp ⊂ ∆0;

• Our return times are not lower bounded by an arbitrary a priori constant;

• The tower is not aperiodic.

Theorem 3.1 [BuMa] Let (∆, F, ν̂, d0) be a tower system satisfying (A.I - IV).
Let L be the transfer operator associated to it.

Then, if µ̂ is a ν̂-a.c.i.m., there exist an integer 1 ≤ p <∞ a decomposition
∆ =

⋃p−1
k=0 T

k∆∗ (mod µ̂) (F p(∆∗) = X̂∗) and a function h∗ ∈ L∞(∆∗) such
that, for any ϕ : ∆∗ → R bounded with K(ϕ) <∞,

‖Lnϕ− µ̂∗(ϕ) · h∗‖∞ ≤ (‖ϕ‖∞ +K(ϕ)) · un

for all n ≥ 0. Here µ̂∗ = p · µ̂ · 1∆∗
, K(ϕ) is the supremum of the Lipschitz

constants, w.r.t. d0, of the restrictions ϕ|∆i,j .
The sequence (un)n≥1 depends on (F, ν̂) and goes to zero with a speed which

can be explicited:

1. if ωn(g) = O(ρn) for some ρ < 1, then un = O(κn) for some κ < 1;

2. if ωn(g) = O(n−α) for some α > 1, then un = O(n−(α−1)).

Corollary 3.2 [BuMa] In the same situation, we have that for all ϕ,ψ ∈
L∞(∆∗) with K(ϕ) <∞,

∣∣∣∣∣∣

∫

∆

ϕ ◦ Fn · ψ dµ̂−

∫

∆

ϕdµ̂

∫

∆

ψ dµ̂

∣∣∣∣∣∣
≤ (‖ϕ‖∞ +K(ϕ))‖ψ‖L1(µ̂∗) · un

for all n ≥ 0 for the same sequence (un)n≥1 as above.

Corollary 3.3 [BuMa] Assuming additionaly that
∑

n≥1 un < ∞, we have
the Central Limit Theorem for all functions ϕ bounded and d0-Lipschitz.
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To deduce our Main Theorem and our Central Limit Theorem, it is enough
to first lift the ergodic ν-a.c.i.m. µ to ∆ using Proposition 2.1 and make the
following remark. If ϕ,ψ : X → R are as in the Main Theorem, then ϕ ◦ π is
bounded and γ-Hölder continuous and ψ ◦ π ∈ L∞. Finally remark that the
integrals over ∆ involving these lifted functions are equal to the integrals in the
Main Theorem.
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