Feuille d'exercices n° 2 : Compacité et espaces de fonctions continues

Exercice 1. Théorème de Riesz.

Dans cet exercice on fixe un espace vectoriel normé $(X, \|\cdot\|)$.

- 1. (a) Soit Y un sous-espace vectoriel fermé de X, distinct de X, et 0 < r < 1. Montrer qu'il existe $x \in X$ tel que ||x|| = 1 et $d(x, Y) \ge r$.
 - **Indication.** Fixer $u \in X \setminus Y$ de norme 1, un vecteur $y \in Y$ tel que $||u y|| \le \frac{1}{r}d(u, Y)$, et considérer $x = \frac{u y}{||u y||}$.
 - (b) On suppose que Y est de dimension finie, contenu dans X et distinct de X. Montrer qu'il existe $x \in X$ tel que ||x|| = 1 et d(x, Y) = 1.
- 2. Dans cette question on suppose que *X* n'est pas de dimension finie.
 - (a) Construire une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de X tels que $||x_n|| = 1$ pour tout $n \in \mathbb{N}$, et $||x_n x_m|| \ge 1$ pour tout $n \ne m \in \mathbb{N}$.
 - (b) Montrer que la boule unité fermée de $(X, \|\cdot\|)$ n'est pas compacte.

Exercice 2. Montrer que tout espace métrique compact est séparable.

Exercice 3. Soit (X, d) un espace métrique complet, et $K \subset X$. Montrer que les propriétés suivantes sont équivalentes :

- 1. (K, d) est compact.
- 2. K est fermé dans (X,d) et (K,d) est *précompact*, autrement dit pour tout $\varepsilon > 0$ il existe $k_1, \ldots, k_n \in K$ tels que $K \subseteq \bigcup_{i=1}^n B(k_i, \varepsilon)$.

Indication. Montrer que dans un espace précompact toute suite admet une sous-suite de Cauchy.

Exercice 4. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de $\mathcal{C}^1([0,1], \mathbb{R})$.

- 1. On suppose que $f_n(0) = 0$ pour tout $n \in \mathbb{N}$ et qu'il existe une constante M telle que $||f'_n||_{\infty} \leq M$ pour tout $n \in \mathbb{N}$. Montrer qu'il existe une sous-suite de $(f_n)_{n \in \mathbb{N}}$ qui converge uniformément. La limite appartient-elle nécessairement à $\mathcal{C}^1([0,1],\mathbb{R})$?
- 2. On suppose qu'il existe une constante M telle que $||f_n||_{\infty} \leq M$ et $||f_n'||_{\infty} \leq M$ pour tout $n \in \mathbb{N}$. Montrer qu'il existe une sous-suite de $(f_n)_{n \in \mathbb{N}}$ qui converge uniformément. La limite appartient-elle nécessairement à $\mathcal{C}^1([0,1],\mathbb{R})$?

Exercice 5. Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction continue à support compact différente de la fonction nulle. Pour $n \in \mathbf{N}$ et $x \in \mathbf{R}$ on pose $f_n(x) = f(x+n)$. Montrer que :

- 1. La famille $(f_n)_{n \in \mathbb{N}}$ est équicontinue.
- 2. Pour tout $x \in \mathbf{R}$ $(f_n(x))_{n \in \mathbf{N}}$ est relativement compact.
- 3. La suite $(f_n)_{n \in \mathbb{N}}$ n'admet pas de sous-suite convergente dans $(C_b(\mathbf{R}), \|\cdot\|_{\infty})$.

Exercice 6. Dans cet exercice on note $H = (L^2([0,1]), \|\cdot\|_2)$. Pour $f \in H$ et $x \in [0,1]$ on pose

$$T(f)(x) = \int_0^x f(u)du$$

- 1. Montrer que $T: H \to H$ est bien définie, continue, et que l'image de T est contenue dans $\mathcal{C}([0,1], \mathbf{R})$.
- 2. On note B la boule unité fermée de H. Montrer que T(B) est relativement compact dans H (on pourra commencer par essayer de montrer que T(B) est relativement compact dans $(C([0,1], \mathbf{R}), \|\cdot\|_{\infty})$.

Exercice 7. Théorème de Stone-Weierstrass.

Dans cet exercice, on fixe un espace métrique compact (X,d), ainsi qu'un sous-espace vectoriel \mathcal{A} de $\mathcal{C}(X,\mathbf{R})$ avec les propriétés suivantes :

- Pour tout $f, g \in A$ leur produit fg appartient aussi à A.
- Les fonctions constantes appartiennent à A.
- Pour tout $x \neq y \in X$, il existe $f \in A$ tel que $f(x) \neq f(y)$.

Le premier objectif de l'exercice est de démontrer que \mathcal{A} est dense dans $(\mathcal{C}(X, \mathbf{R}), \|\cdot\|_{\infty})$.

- 1. Faire le lien entre cet énoncé et le théorème de Weierstrass, qu'on suppose connu (et qu'on va utiliser dans la suite).
- 2. (a) Montrer que si $f,g \in \mathcal{C}(X,\mathbf{R})$ on a $\max(f,g) = \frac{f+g+|f-g|}{2}$; donner une formule analogue pour $\min(f,g)$.
 - (b) Montrer que si $f,g \in \mathcal{A}$ alors $\max(f,g)$ et $\min(f,g)$ appartiennent à $\overline{\mathcal{A}}$.

 Indication. Commencer par traiter le cas où $||f||_{\infty}$ et $||g||_{\infty}$ sont plus petits que $\frac{1}{2}$, et utiliser le fait que $t \mapsto |t|$ est limite uniforme de fonctions polynômes sur [0,1].
- 3. Montrer que si $x_1 \neq x_2 \in X$ et $\alpha_1, \alpha_2 \in \mathbf{R}$ alors il existe $f \in \mathcal{A}$ telle que $f(x_1) = \alpha_1$ et $f(x_2) = \alpha_2$.
- 4. On fixe $g \in C(X, \mathbf{R})$ et $\varepsilon > 0$.
 - (a) Soit $x \in X$. Pour tout $y \in X$ on fixe $f_y \in \mathcal{A}$ telle que $f_y(x) = g(x)$ et $f_y(y) = g(y)$. Montrer, à l'aide de la propriété de Borel–Lebesgue, qu'il existe $y_1, \ldots, y_n \in X$ tels que pour tout $z \in X$ il existe $i \in \{1, \ldots, n\}$ tel que $f_{y_i}(z) > g(z) - \varepsilon$.

Indication. Considérer les ouverts $U_y = \{z: f_y(z) > g(z) - \varepsilon\}.$

On pose $h_x = \max(f_{y_1}, \ldots, f_{y_n})$.

- (b) Montrer que $h_x \in \overline{A}$, $h_x(x) = g(x)$ et que pour tout $z \in X$ on a $h_x(z) > g(z) \varepsilon$.
- (c) En utilisant une idée similaire à celle qui nous a permis de construire les h_x , montrer qu'il existe $h \in \overline{\mathcal{A}}$ telle que pour tout $x \in X$ on ait $g(x) \varepsilon < h(x) < g(x) + \varepsilon$.
- 5. Application. montrer que les polynômes trigonométriques sont denses dans l'espace des fonctions continues et 2π -périodiques.
- 6. Application. Soit $(x_n)_{n \in \mathbb{N}}$ une partie dénombrable dense de (X, d). On note $f_n(x) = d(x_n, x)$ et on note \mathcal{A} la **Q**-algèbre unitaire engendrée par $\{f_n \colon n \in \mathbb{N}\}$ et la fonction constante $x \mapsto 1$.
 - (a) Montrer que A est dénombrable.
 - (b) À l'aide du théorème de Stone–Weierstrass, montrer que \mathcal{A} est dense dans $(\mathcal{C}(X,\mathbf{R}),\|\cdot\|_{\infty})$ et obtenir une nouvelle preuve du résultat vu en cours selon lequel $(\mathcal{C}(X,\mathbf{R}),\|\cdot\|_{\infty})$ est séparable.
- 7. (a) Soit **D** le disque unité fermé de **C**. Les fonctions polynomiales sont-elles denses dans $\mathcal{C}(\mathbf{D}, \mathbf{C})$?
 - (b) Énoncer et démontrer un analogue du théorème de Stone–Weierstrass, valide pour des fonctions à valeurs complexes.

Exercice 8. Soit (X,d) un espace métrique et $K \subset X$ une partie compacte non vide. On note $\mathcal{C}_b(X)$ l'espace des fonctions continues bornées sur X, à valeurs réelles, muni de $\|\cdot\|_{\infty}$. On note $\mathcal{C}(K)$ l'espace des fonctions continues sur K, à valeurs réelles, qu'on munit également de $\|\cdot\|_{\infty}$.

On considère l'application $\Phi \colon \mathcal{C}_b(X) \to \mathcal{C}(K)$ qui à $f \in \mathcal{C}_b(X)$ associe sa restriction à K.

- 1. Montrer que Φ est continue et déterminer sa norme subordonnée.
- 2. Soit $f \in C_b(X)$. Montrer qu'il existe $\tilde{f} \in C_b(X)$ telle que $\Phi(\tilde{f}) = \Phi(f)$ et $\|\tilde{f}\|_{\infty} = \|\Phi(f)\|_{\infty}$.
- 3. Á l'aide du théorème de Stone–Weierstrass, démontrer que $Im(\Phi)$ est dense dans C(K).
- 4. Montrer que $(\operatorname{Im}(\Phi), \|\cdot\|_{\infty})$ est un espace de Banach. **Indication.** Considérer une série absolument convergente $\sum_n \Phi(f_n)$ dans $\operatorname{Im}(\Phi)$; justifier et exploiter le fait que $\sum_n \tilde{f}_n$ est aussi absolument convergente.
- 5. Montrer que toute $f \in \mathcal{C}(K)$ admet un prolongement continu $g \in \mathcal{C}(X)$ tel que $||g||_{\infty} = ||f||_{\infty}$.