M1 - Mathématiques générales

Feuille d'exercices nº 6 : Transformée de Fourier

Pour $f \in L^1(\mathbf{R}^n)$ et $\xi \in \mathbf{R}^n$ on note $\hat{f}(\xi) = \int_{\mathbf{R}^n} e^{-ix\cdot\xi} f(x) dx$. On note \mathcal{F} la transformée de Fourier sur $L^2(\mathbf{R}^n)$, et on rappelle que pour tout $f \in L^1(\mathbf{R}^n) \cap L^2(\mathbf{R}^n)$ on a $\mathcal{F}(f) = \hat{f}$.

Exercice 1. Soit $f \in L^1(\mathbb{R}^n)$.

- 1. Soit $\varepsilon > 0$. Pour $x \in \mathbf{R}^n$ on pose $f_{\varepsilon}(x) = \frac{1}{\varepsilon^n} f\left(\frac{x}{\varepsilon}\right)$. Montrer que $f_{\varepsilon} \in L^1(\mathbf{R}^n)$, que pour tout ξ on a $\hat{f}_{\varepsilon}(\xi) = \hat{f}(\varepsilon \xi)$ et $|\hat{f}_{\varepsilon}(\xi)| \leq ||f||_1$.
- 2. Soit $h \in \mathbf{R}^n$. Pour $x \in \mathbf{R}^n$ on note $\tau_h f(x) = f(x h)$. Montrer que $\tau_h f \in L^1(\mathbf{R}^n)$ et que pour tout $\xi \in \mathbf{R}^n$ on a $\widehat{\tau_h f}(\xi) = e^{-ih\cdot\xi} \hat{f}(\xi)$.
- 3. Montrer que $\bar{f} \in L^1(\mathbf{R}^n)$ et que pour tout $\xi \in \mathbf{R}^n$ on a $\hat{f}(\xi) = \overline{\hat{f}(-\xi)}$
- 4. Pour $x \in \mathbf{R}^n$ on note $\check{f}(x) = f(-x)$. Montrer que $\check{f} \in L^1(\mathbf{R}^n)$ et que pour tout $\xi \in \mathbf{R}^n$ on a $\hat{f}(\xi) = \check{f}(\xi)$.

Exercice 2.

- 1. Soit f la fonction caractéristique de l'intervalle [0,1]. Montrer que $f \in L^1(\mathbf{R})$ mais $\hat{f} \notin L^1(\mathbf{R})$.
- 2. Montrer que si f et \hat{f} appartiennent à $L^1(\mathbf{R})$ alors f est continue et bornée.

Exercice 3. On garde les notations du premier exercice, et on note \mathcal{F} la transformée de Fourier sur $L^2(\mathbf{R}^n)$. Montrer que pour tout $f \in L^2(\mathbf{R}^n)$ on a $\mathcal{F}^*(f) = \mathcal{F}(f)$.

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{C}$ intégrable, à support compact et dont la transformée de Fourier est également à support compact. Montrer que f est la fonction nulle. (Indication : considérer $F \colon \mathbf{C} \to \mathbf{C}$ définie par $F(z) = \int_{\mathbf{R}} e^{-\imath tz} f(t) dt$)

Exercice 5.

- 1. Soit $a \leq b \in \mathbf{R}$. Calculer la transformée de Fourier de la fonction indicatrice $\chi_{[a,b]}$.
- 2. À l'aide de ce résultat, retrouver le fait que la transformée de Fourier de toute fonction de $L^1(\mathbf{R})$ tend vers 0 à l'infini.
- 3. Déduire du résultat de la première question la valeur de l'intégrale $\int_{\mathbf{R}} \left(\frac{\sin(t)}{t}\right)^2 dt$.
- 4. On note $f: x \mapsto \frac{\sin(x)}{x}$. Déterminer $\mathcal{F}(f)$.

Exercice 6. Calculer les transformées de Fourier de $f,g: \mathbb{R} \to \mathbb{R}$ définies par $f(x) = e^{-|x|}$ et $g(x) = \frac{1}{1+x^2}$.

Exercice 7. On cherche à résoudre l'équation différentielle suivante :

$$\forall x \in \mathbf{R} \quad -y''(x) + y(x) = e^{-2|x|} \tag{E}$$

1. Montrer que si f est solution de cette équation et f, f' appartiennent à $L^1(\mathbf{R})$ alors pour tout ξ on a

$$\hat{f}(\xi) = \frac{4}{3} \left(\frac{1}{1 + \xi^2} - \frac{1}{4 + \xi^2} \right)$$

2. Déterminer toutes les solutions de (E).

Exercice 8. Déterminer les fonctions $f \in L^1(\mathbf{R})$ telles que $\int_{\mathbf{R}} f(x-t)f(t)dt = \frac{1}{x^2+1}$ pour presque tout $x \in \mathbf{R}$

Exercice 9. Soit
$$f: \mathbf{R} \to \mathbf{R}$$
 définie par $f(x) = \frac{1}{x^2+1}$. Pour $n \in \mathbf{N}^*$, calculer $\underbrace{f * \dots * f}_{n \text{ fois}}$.

Exercice 10.

- 1. En utilisant la transformée de Fourier, montrer qu'il n'existe pas de $g \in L^1(\mathbf{R}^d)$ telle que pour tout $f \in L^1(\mathbf{R}^d)$ on ait f * g = f.
- 2. Déterminer toutes les fonctions $f \in L^1(\mathbf{R}^d)$ telles que f * f = f.
- 3. Résoudre f * f = f dans $L^2(\mathbf{R})$.
- 4. Existe-t-il $f,g \in L^1(\mathbf{R}^d)$ telles que f * g = 0 mais f et g sont non nulles?

Exercice 11. Soit $g \in \mathcal{S}(\mathbf{R})$. Montrer qu'il existe une unique fonction $f \in \mathcal{S}(\mathbf{R})$ telle que $f^{(12)} + f^{(8)} + f = g$. Que pensez-vous du cas général d'une équation différentielle $\sum_{i=0}^{n} a_i f^{(i)} = g$?

Exercice 12. L'équation de la chaleur pour une barre infinie.

On fixe une fonction $h \in L^1(\mathbf{R})$, et on cherche à résoudre l'équation de la chaleur d'inconnue u et de condition initiale h:

$$\begin{cases} \forall (t, x) \in \mathbf{R}_{+}^{*} \times \mathbf{R} & \frac{\partial u}{\partial t} - \frac{\partial^{2} u}{\partial x^{2}} = 0 \\ u(0, \cdot) = h \text{ dans } L^{1}(\mathbf{R}) \end{cases}$$

On cherche une solution u à cette équation telle que $\frac{\partial u}{\partial t}$ et $\frac{\partial u}{\partial x^2}$ existent et soient continues sur $\mathbf{R}_+^* \times \mathbf{R}$.

- 1. On commence par supposer que u est une solution, aussi régulière que nécessaire pour que les calculs suivants aient un sens. Pour $t \ge 0$ on note $v(t, \xi)$ la transformée de Fourier de $x \mapsto u(t, x)$.
 - (a) Montrer que pour tout ξ fixé on a

$$\forall t > 0 \quad \frac{\partial v}{\partial t}(t,\xi) = -\xi^2 v(t,\xi) \quad \text{ et } \quad v(0,\xi) = \hat{h}(\xi) \ .$$

(b) En déduire (sous des hypothèses de régularité à préciser) que

$$\forall (t,x) \in \mathbf{R}_+^* \times \mathbf{R} \quad u(t,x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbf{R}} h(y)e^{-(x-y)^2/4t} \, dy$$

2. Montrer qu'il existe une solution u de l'équation de la chaleur sur $\mathbf{R}_+^* \times \mathbf{R}$ de condition initiale h telle que

$$\lim_{t\to 0^+} \|u(t,\cdot) - h\|_1 = 0.$$

(On pourra commencer par reconnaître un produit de convolution dans la formule de la question précédente puis exploiter les propriétés du produit de convolution)