UE: Analyse Fonctionnelle 2

Feuille d'exercices nº 9

Dans cette feuille on note $\sigma(T)$ le spectre d'une application linéaire continue T, et $\rho(T)$ le complémentaire de $\sigma(T)$.

Exercice 1.

- 1. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{C}^N$ une suite bornée. On définit $T\colon \ell^2\to\ell^2$ en posant $T((x_n)_{n\in\mathbb{N}})=(u_nx_n)_{n\in\mathbb{N}}$.
 - (a) Montrer que T est bien définie et continue.
 - (b) Montrer que chaque u_n est une valeur propre de T.
 - (c) Montrer que si $x \notin \overline{\{u_n \colon n \in \mathbf{N}\}}$ alors $x \notin \sigma(T)$.
- 2. Ètant donnée une partie A de \mathbb{C} , donner une condition nécessaire et suffisante pour qu'il existe une application linéaire continue $T \colon \ell^2 \to \ell^2$ telle que $A = \sigma(T)$.

Exercice 2.

- 1. On définit $T \colon \ell^2 \to \ell^2$ en posant T(x)(n) = x(n+1) pour tout $x \in \ell^2$.
 - (a) Montrer que T est bien définie, continue et déterminer sa norme.
 - (b) Montrer que tout $\lambda \in \mathbb{C}$ tel que $|\lambda| < 1$ est valeur propre de T.
 - (c) Déterminer $\sigma(T)$ ainsi que l'ensemble des valeurs propres de T.
- 2. On définit $S: \ell^2 \to \ell^2$ en posant pour $x \in \ell^2$ S(x)(0) = 0 et S(x)(n) = x(n-1) pour $n \ge 1$.
 - (a) Montrer que S est bien définie, continue et déterminer sa norme.
 - (b) Montrer que S n'a pas de valeur propre.
 - (c) Montrer que $T^* = S$ puis déterminer le spectre de S.

Exercice 3. Pour $f \in L^2([0,1], \mathbb{C})$ et $t \in [0,1]$ on pose T(f)(t) = tf(t).

- 1. Montrer que $T: L^2([0,1], \mathbf{C}) \to L^2([0,1], \mathbf{C})$ est linéaire et continue.
- 2. Montrer que T n'a pas de valeur propre.
- 3. Soit $\lambda \in [0, 1[$ et soit $\varepsilon > 0$ tel que $[\lambda, \lambda + \varepsilon] \subseteq [0, 1]$. On note f_{ε} la fonction caractéristique de $[\lambda, \lambda + \varepsilon]$ et on pose $g_{\varepsilon} = \frac{1}{\sqrt{\varepsilon}} f_{\varepsilon}$. En considérant $(T \lambda id)(g_{\varepsilon})$, montrer que $\lambda \in \sigma(T)$.
- 4. Montrer que si $\lambda \in \mathbf{C} \setminus [0,1]$ alors $\lambda \notin \sigma(T)$, puis déterminer $\sigma(T)$.

Exercice 4. Soit $E = C([0,1], \mathbf{C})$ muni de $\|\cdot\|_{\infty}$. Soit K une fonction continue de $[0,1]^2$ dans \mathbf{C} . Pour $x \in [0,1]$ on pose $T(f)(x) = \int_0^x K(x,y)f(y)dy$.

- 1. Montrer que $T\colon E\to E$ est bien définie et continue.
- 2. Calculer $\lim_{n\to+\infty} ||T^n||^{\frac{1}{n}}$.
- 3. Déterminer $\sigma(T)$.
- 4. Montrer que T est compact (indication : Ascoli...).

Exercice 5. Soit E un espace de Banach sur $\mathbb{K} = \mathbf{R}$ ou \mathbf{C} et $P \colon E \to E$ un projecteur continu. On suppose que $P \notin \{0, id\}$. Montrer que $\sigma(P) = \mathrm{vp}(P) = \{0, 1\}$.

Exercice 6. Soit E un espace de Banach sur $\mathbb{K} = \mathbf{R}$ ou \mathbf{C} et $S,T:E \to E$ des applications linéaires continues.

- 1. Montrer que $\sigma(ST) \setminus \{0\} = \sigma(TS) \setminus \{0\}$ (on pourra considérer $I + T(\lambda I ST)^{-1}S$).
- 2. Montrer que si S ou T est inversible alors $\sigma(ST) = \sigma(TS)$.
- 3. Donner un exemple où on n'a pas $\sigma(ST) = \sigma(TS)$.

Exercice 7. Soit E un espace de Banach sur $\mathbb{K} = \mathbf{R}$ ou \mathbf{C} et $T : E \to E$ une application linéaire continue de rang fini. On note $F = \operatorname{Im}(T)$.

- 1. On note $T_F \colon F \to F$ la restriction de T à F. Montrer que T et T_F ont les mêmes valeurs propres.
- 2. Soit $\lambda \in \mathbb{K}^*$ et $S = \lambda i d_F T_F$. Montrer que si S est inversible alors $\lambda \notin \sigma(T)$ (on pourra considérer $(\lambda I T)(I + S^{-1}T)$).
- 3. Montrer que tout élément de $\sigma(T) \setminus \{0\}$ est une valeur propre de T.
- 4. Montrer que si E est de dimension infinie alors 0 est une valeur propre de T, puis que $\sigma(T)$ coïncide avec l'ensemble des valeurs propres de T.

Exercice 8. Soit E un espace de Banach sur $\mathbb{K} = \mathbf{R}$ ou \mathbf{C} , et soit $(\lambda_n)_{n \in \mathbf{N}}$ une suite d'éléments de $\rho(T)$ convergeant vers $\lambda \in \mathbf{C}$. On suppose de plus que $(T - \lambda_n I)^{-1}$ est bornée dans L(E). Montrer que $\lambda \in \rho(T)$.

Exercice 9. Soit H un espace de Hilbert séparable. On dit que $T: H \to H$ est un opérateur de Hilbert-Schmidt s'il existe une base orthonormée $(e_n)_{n \in \mathbb{N}}$ de H telle que $\sum_{n=0}^{+\infty} ||T(e_n)||^2 < +\infty$.

- 1. Montrer que tout opérateur de Hilbert-Schmidt est compact.
- 2. Étant donnée une suite bornée $(u_n)_{n\in\mathbb{N}}$ on définit $S\colon \ell^2\to\ell^2$ en posant $S(x)=(u_nx_n)_{n\in\mathbb{N}}$ (cf. exercice 1).
 - (a) Montrer que S est compact si, et seulement si, $(u_n)_{n\in\mathbb{N}}$ tend vers 0.
 - (b) Donner un exemple d'opérateur compact qui n'est pas de Hilbert-Schmidt.

Exercice 10. Soit E un espace de Banach réel ou complexe, S_E la sphère unité de E et $T \in \mathcal{L}(E)$ telle que $0 \notin T(S_E)$

- 1. Montrer qu'il existe $\delta > 0$ tel que pour tout $x \in E$ on ait $T(x) \ge \delta ||x||$.
- 2. Montrer que T(E) est fermé dans E.
- 3. Montrer que si T est de plus compact alors T est de rang fini.