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Abstract

We compute here the Borel complexity of the relation of isometry
between separable Banach spaces, using results of Gao, Kechris [1]
and Mayer-Wolf [4]. We show that this relation is Borel bireducible to
the universal relation for Borel actions of Polish groups.

1 Introduction

Over the past �fteen years or so, the theory of complexity of Borel equivalence
relations has been a very active �eld of research; in this paper, we compute
the complexity of a relation of geometric nature, the relation of (linear) isom-
etry between separable Banach spaces. Before stating precisely our result, we
begin by quickly recalling the basic facts and de�nitions that we need in the
following of the article; we refer the reader to [3] for a thorough introduction
to the concepts and methods of descriptive set theory. Before going on with
the proof and de�nitions, it is worth pointing out that this article mostly
consists in putting together various results which were already known, and
deduce from them after an easy manipulation the complexity of the relation
of isometry between separable Banach spaces. Since this problem has been
open for a rather long time, it still seems worth it to explain how this can be
done, and give pointers to the literature. Still, it seems to the author that
this will be mostly of interest to people with a knowledge of descriptive set
theory, so below we don't recall descriptive set-theoretic notions but explain
quickly what Lipschitz-free Banach spaces are and how that theory works.

Notations de�nitions.

We use the standard notations and terminology from descriptive set theory
(see [3]). The only slight variation from usual terminology is the notion of
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Polish metric space, i.e a metric separable complete metric space (X, d).
If X is a metric space, we denote by Iso(X) its isometry group, endowed
with the pointwise convergence topology.
Up to isometry, Urysohn's universal metric space U, �rst constructed by
Urysohn in [6], is the only Polish metric space with is both universal (any
separable metric space embeds in it) and ultrahomogeneous (any isometry
between two �nite subsets F1, F2 of U extends to an isometry of U). This
space has generated an increasing interest over the past few years; for more
information and bibliographical references, we refer the reader to [1] or the
more recent [5]. Here, we use the Urysohn space because of results by Gao
and Kechris [1]. To state these, we �rst need to point out that, since any
Polish metric space is isometric to some closed set F ∈ F(U), one may
consider F(U) (with the E�ros Borel structure), as being the (Borel) space
of Polish spaces. One easily checks that the relation of isometry wi (de�ned
on F(U), endowed with the E�ros Borel structure) is analytic, where

(P wi P ′) ⇔ (P and P ′ are isometric) .

To compute the exact complexity of this relation, Gao and Kechris considered
the relation wU

i de�ned, for P, P ′ ∈ F(U), by

(P wU
i P ′) ⇔ (∃ϕ ∈ Iso(U) ϕ(P ) = P ′) .

Using a variation of Kat¥tov's construction of U (cf. [2]), they proved that
(wi) ∼B (wU

i ), and that wU
i is Borel bireducible to the universal relation for

relations induced by a Borel action of a Polish group.

Acknowledgements. I would like to thank Valentin Ferenczi, and Gilles Gode-
froy, who kindly took time to discuss with me the theory of Lipschitz-free
Banach spaces.

2 Lipschitz-free Banach spaces

We begin by brie�y presenting the basic facts of the theory of Lipschitz-free
Banach spaces; we follow the second chapter of [7]. The interested reader
may �nd more informations about these spaces and bibliographical references
in [7].

If (X, d, e) is a pointed metric space, one lets Lip0(X, d, e) denote the space
of Lipschitz functions on X that map e to 0.
One de�nes a norm on Lip0(X, d, e) by setting

‖f‖ = inf{k ∈ R : f is k − Lipschitz} .
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It is worth noting that, if one chooses another basepoint e′, then Lip0(X, d, e)
and Lip0(X, d, e′) are isometric, one possible isometry being given by the
mapping f 7→ f − f(e′).
In the following, when no confusion is possible, we forget about d and e and
simply write Lip0(X); we write [Lip0(X)]1 to denote the closed unit ball of
Lip0(X).
If (X, d) is a metric space, we say that m : X → R is a molecule if m has
a �nite support, and

∑
x∈X m(x) = 0. For p, q ∈ X, one may de�ne a

molecule mpq by setting mpq = χ{p} − χ{q}, where χX stands for the charac-
teristic function of X.
For any molecule m, one may �nd points pi, qi ∈ X and reals ai such that

m =
n∑

i=1

aimpiqi
; we let ‖m‖ = inf{

n∑
i=1

|ai|d(pi, qi) : m =
n∑

i=1

aimpiqi
} .

Then ‖ · ‖ is a seminorm on the space of molecules; the Lipschitz-free space
over X, denoted by F (X), is the completion (relative to this seminorm) of
the space of molecules modulo null vectors (there are actually no null vec-
tors, as we will see shortly). This space is also known in the litterature as
the Arens-Eells space of X, or Banach-Kantorovitch space associated to X.
The following fact is the basis of the theory of Lipschitz-free Banach spaces:

Fact.(see e.g [7]) The spaces F (X)∗ and Lip0(X) are isometric.
The natural isometry T : F (X)∗ → Lip0(X) is de�ned by

∀x ∈ X (Tφ)(x) = φ(mxe) .

(here e is any point in X; recall that, if e 6= e′ ∈ X, then Lip0(X, d, e) and
Lip0(X, d, e′) are isometric).
The inverse S of T is de�ned by the formula

(Sf)(m) =
∑
x∈X

f(x)m(x) .

Therefore, the Hahn-Banach theorem implies that, for any molecule m,

‖m‖ = sup
{ ∑

x∈X

f(x)m(x) : f ∈ [Lip0(X)]1
}

.

It is interesting to notice that this means that ‖m‖ is determined by the
distances between points in the support of m and the values of m on its
support. Indeed, if Y ⊂ X is a subspace of the metric space X, it is easy
to see that any 1-Lipschitz real-valued map on Y extends to a 1-Lipschitz
real-valued map on X.
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This may be used to check that ||.|| is in fact a norm on the space of molecules,
and that the family {mxe}x∈X is linearly independent. Furthermore, one
checks easily that ||mxy|| = d(x, y) for all x, y ∈ X. Hence, if e is any point
in X, then the mapping x 7→ mxe is an isometric embedding of X in F (X),
such that the closed linear span of the image of X is equal to the whole
space F (X). In the following, we will be mainly interested in the Lipschitz-
free space over the Urysohn space U. Using the results and remarks above,
one sees that, if P ⊂ U is a Polish metric space containing 0, then the closed
linear span of P (in F (U)) is (isometric to) the Lipschitz-free space over P .
Notice that if X is a closed subset of the separable Banach space B, then the
mapping

F ∈ F(X) 7→ span(F ) ∈ F(B)

is Borel (where both F(X) and F(B) are endowed with the E�ros Borel
structure). So, if one identi�es the class of Polish spaces to the set of closed
subsets of U containing 0, and the class of separable Banach spaces to the
set of closed subspaces of F (U), then we may see the mapping X 7→ F (X)
as a Borel mapping between two standard Borel spaces.

In our context, one question about Lipschitz-free Banach spaces is of special
interest: if X is a Polish metric space, how much of its metric structure is
"encoded" in F (X)? In other words, if one knows that X, Y are Polish metric
spaces such that F (X), F (Y ) are isometric, can we �nd a relation between
the metric structures of X, Y ?
Before saying more about this, it is convenient to introduce a new de�nition:
We say that f : X → Y is a dilatation if there exists λ > 0 such that

d(f(x), f(x′)) = λd(x, x′) .

It is clear that if there is a dilatation from X onto Y then F (X) and F (Y ) are
isometric. The converse is false in general, but a beautiful result of Mayer-
Wolf imply that it holds for a rather large class of spaces; what is interesting
for us is that the relation of isometry between all Polish spaces reduces to
that of isometry between spaces in the aforementioned subclass.
Weaver [7] says that a Polish space P is concave if, for all p 6= q ∈ P , the
molecule mpq

d(p,q)
is an extreme point in the unit ball of F (X)∗∗ (here we use

the canonical embedding of F (X) into its bidual).

Theorem. (Mayer-Wolf [4]) Let P and P ′ be two concave Polish metric
spaces, and assume that F (P ) and F (P ′) are isometric. Then there exists a
dilatation from P onto P ′.

Weaver also shows that there are many concave Polish metric spaces:
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Theorem. (Weaver [7]) Let (P, d) be a Polish metric space. Then (P,
√

d)
is concave.

(actually (P, dα) is concave for any α ∈]0, 1[; we only need this fact for α = 1
2
)

Intuitively, by replacing d by
√

d (which is easily checked to be a complete
distance, compatible with the topology of P ), one has "uniformly eliminated"
the equality case in the triangle inequality, and this fact is enough to study
precisely the structure of the isometries of F (P ).
A very simple, yet very important for our construction, fact is that, if (P, d)
and (P ′, d′) are two metric spaces, then (P, d) and (P ′, d′) are isometric if,
and only if, (P,

√
d) and (P ′,

√
d′) are isometric.

This shows that one may reduce the relation of isometry between Polish
metric spaces to that of isometry between concave Polish metric spaces.

3 The construction

As we saw above, the results of Mayer-Wolf and Weaver seem to imply that
one may reduce the relation of dilatation between concave Polish metric
spaces to the relation of isometry between separable Banach spaces. Fur-
thermore, the relation of isometry between Polish spaces reduces to that of
isometry between concave metric spaces.
Now, let us explain in detail how to do this in a Borel way. First, �x the di-
ameter; for this, notice that the results of Gao and Kechris easily imply that
the relation induced by the left-translation action of Iso(U) on the subset of
F(U) made up of all the unbounded closed subsets of U is Borel bireducible
to the universal relation for relations induced by a Borel action of a Pol-
ish group. Denote A the set of such subspaces, and wi the corresponding

relation; then replace the distance d on U by d1 =
d

1 + d
. The sets of A cor-

respond to the set of closed subsets of (U, d1) of diameter (exactly) 1, and the
isometry relation is unchanged. Then change again the distance, setting this
time d2 =

√
d1: once again the isometry relation is unchanged, and the sets

in A are naturally identi�ed with the subsets of (U, d2) of diameter exactly 1.
Embed now Y = (U, d2) in U (with its usual distance) in such a way that all
isometries of Y extend to isometries of U (this may be done using Kat¥tov's
construction, see [2]). Identifying now A with the corresponding subset of
F(U), we see that A is made up of concave metric spaces of diameter 1, that
A is standard Borel, and that the relation induced by the left translation
action of {ϕ ∈ Iso(U) : ϕ(Y ) = Y } on A (which we again denote wi, since
this is really the same relation) is Borel bireducible to the universal relation
for relations induced by an action of a Polish group.
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For all P ∈ A, denote now Φ(P ) the closed linear span of P in F (U). Recall
that Φ is Borel, and Φ(P ) is linearly isometric to the Lipschitz-free Banach
space over P .

Theorem 3.1. Let P, P ′ ∈ A. Then the following assertions are equivalent:
(1) P wi P ′ .
(2) Φ(P ) and Φ(P ′) are isometric .
(3) There is a linear isometry of F (U) which maps Φ(d) onto Φ(d′).

Proof:

(2) ⇒ (1) is a direct consequence of the results of Mayer-Wolf, since all the
sets in A are concave metric spaces and have the same diameter.
(3) ⇒ (2) is a triviality, and (1) ⇒ (3) is a consequence of the fact that
any isometry of U mapping P onto P ′ extends to a linear isometry of F (U)
mapping the closed linear span of P onto that of P ′. ♦

This shows that Φ is a Borel reduction of wi to the relation of linear isometry
between Banach spaces. Since two Banach spaces are linearly isometric if and
only if they are isometric (as Polish metric spaces), this shows that there is
also a reduction in the other direction. Given the results of Gao and Kechris
[1], this is enough to compute the exact complexity of the relation of isometry
between separable Banach spaces.

Theorem 3.2. The relation of isometry between separable Banach spaces is
Borel bi-reducible to the universal relation for relations induced by a Borel
action of a Polish group.

To conclude this article, it might be worth pointing out that the complexity
of the relation of linear isomorphism between separable Banach spaces has
recently been determined by Ferenczi, Louveau and Rosendal. They proved
that this relation is Borel bireducible to the universal relation for analytic
equivalence relations; this means that it is vastly more complicated that the
relation of isometry between separable Banach spaces.
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