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Stabilizers of closed sets in the Urysohn space

Julien Melleray

Abstract

Building on earlier work of Katětov, Uspenskij proved in [9] that the
group of isometries of Urysohn’s universal metric space U, endowed
with the pointwise convergence topology, is a universal Polish group
(i.e it contains an isomorphic copy of any Polish group). Answering
a question of Gao and Kechris, we prove here the following, more
precise result: for any Polish group G, there exists a closed subset F
of U such that G is topologically isomorphic to the group of isometries
of U which map F onto itself.

1 Introduction

In a posthumously published article ([7]), P.S Urysohn constructed a com-
plete separable metric space U that is universal (meaning that it con-
tains an isometric copy of every complete separable metric space), and ω-
homogeneous (i.e such that its isometry group acts transitively on isometric
r-tuples contained in it).
In recent years, interest in the properties of U has greatly increased, espe-
cially since V.V Uspenskij, building on earlier work of Katětov, proved in
[8] that the isometry group of U (endowed with the product topology) is a
universal Polish group, that is to say any Polish group is isomorphic to a
(necessarily closed) subgroup of it.
In [2], S. Gao and A.S Kechris used properties of U to study the complex-
ity of the equivalence relation of isometry between certain classes of Polish
metric spaces; as a side-product of their construction, they proved the beau-
tiful fact that any Polish group is (topologically) isomorphic to the isometry
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group of some Polish space. A consequence of their construction is that, for
any Polish group G, there exists a sequence (Xn) of closed subsets of U such
that G is isomorphic to Iso(U, (Xn)) = {ϕ ∈ Iso(U) : ∀n (ϕ(Xn) = Xn)}.
This led them to ask the following question (cf [2]):
Can every Polish group be represented, up to isomorphism, by a group of
the form Iso(U, F ) for a single subset F ⊆ U ?

The purpose of this article is to provide a positive answer to this question
by proving the following theorem:

Theorem 1.1. Let G be a Polish group. There exists a closed set F ⊆ U
such that G is (topologically) isomorphic to Iso(F ), and every isometry of
F is the restriction of a unique isometry of U; in particular, G is isomorphic
to Iso(U, F ).

This gives a somewhat concrete realization of any Polish group as a sub-
group of Iso(U).
The construction, which will be detailed in section 3, starts with a bounded
Polish metric space X such that G is isomorphic to Iso(X) (the isometry
group of X, endowed with the product topology) (Gao and Kechris proved
that such an X always exist see [2]). Identifying G with Iso(X), we con-
struct an embedding of X in U and a discrete, unbounded sequence (xn) ⊆ U
such that F = X ∪{xn} has the desired properties (here we identify X with
its image via the embedding provided by our construction).

Acknowledgements. Several conversations with Mathieu Florence while I
was working on this paper were very helpful; for this I am extremely grateful,
and owe him many thanks.

2 Notations and definitions

If (X, d) is a complete separable metric space, we say that it is a Polish
metric space, and often write it simply X.
To avoid confusions, we say, if (X, d) and (X ′, d′) are two metric spaces,
that f is an isometric map if d(x, y) = d′(f(x), f(y)) for all x, y ∈ X; if f is
onto, then we say that f is an isometry.
A Polish group is a topological group whose topology is Polish. If X is a
separable metric space, then we denote its isometry group by Iso(X), and
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endow it with the product topology, which turns it into a second countable
topological group, and into a Polish group if X is Polish (see [1] or [5] for a
thorough introduction to the theory of Polish groups).
We say that a metric space X is finitely injective iff for any finite subsets
K ⊆ L and any isometric map ϕ : K → X there exists an isometric map
ϕ̃ : L → X such that ϕ̃|K = ϕ. Up to isometry, U is the only finitely injective
Polish metric space (see [7]).
Let (X, d) be a metric space; we say that f : X → R is a Katětov map iff

∀x, y ∈ X |f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y) .

These maps correspond to one-point metric extensions of X. We denote by
E(X) the set of all Katětov maps on X and endow it with the sup-metric,
which turns it into a complete metric space.
That definition was introduced by Katětov in [4], and it turns out to be
pertinent to the study of finitely injective spaces, since one can easily see by
induction that a non-empty metric space X is finitely injective if, and only
if,

∀x1, . . . , xn ∈ X ∀f ∈ E({x1, . . . , xn}) ∃z ∈ X ∀i = 1 . . . n d(z, xi) = f(xi) .

If Y ⊆ X and f ∈ E(Y ), define f̂ : X → R ( the Katětov extension of f) by

f̂(x) = inf{f(y) + d(x, y) : y ∈ Y }.

Then f̂ is the greatest 1-Lipschitz map on X which is equal to f on Y ; one
checks easily (see for instance [4]) that f̂ ∈ E(X) and f 7→ f̂ is an isometric
embedding of E(Y ) into E(X).
To simplify future definitions, we will say that if f : X → R and S ⊆ X are
such that
∀x ∈ X f(x) = inf{f(s) + d(x, s) : s ∈ S}, then S is a support of f , or that
S controls f .
Notice that if S controls f ∈ E(X) and S ⊆ T , then T controls f .
Also, X isometrically embeds in E(X) via the Kuratowski map x 7→ fx,
where
fx(y) = d(x, y). A crucial fact for our purposes is that

∀f ∈ E(X) ∀x ∈ X d(f, fx) = f(x).

Thus, if one identifies X with its image in E(X) via the Kuratowski map,
E(X) is a metric space containing X and such that all one-point metric

4



extensions of X embed isometrically in E(X).

We now go on to sketching Katětov’s construction of U; we refer the reader
to [2], [3], [7] and [9] for a more detailed presentation and proofs of the
results we will use below.
Most important for the construction is the following

Theorem 2.1. (Urysohn) If X is a finitely injective metric space, then the
completion of X is also finitely injective.

Since U is, up to isometry, the unique finitely injective Polish metric space,
this proves that the completion of any separable finitely injective metric
space is isometric to U.
The basic idea of Katětov’s construction works like this: if one lets X0 = X,
Xi+1 = E(Xi) then, identifying each Xi to a subset of Xi+1 via the Kura-
towski map, let Y be the inductive limit of the sequence Xi.
The definition of Y makes it clear that Y is finitely injective, since any
{x1, . . . , xn} ⊆ Y must be contained in some Xm, so that for any f ∈
E({x1, . . . , xn}) there exists z ∈ Xm+1 such that d(z, xi) = f(xi) for all i.
Thus, if Y were separable, its completion would be isometric to U, and one
would have obtained an isometric embedding of X into U.
The problem is that E(X) is in general not separable: at each step, we have
added too many functions.
Define then E(X, ω) = {f ∈ E(X) : f is controlled by some finite S ⊆ X} .
E(X, ω) is easily seen to be separable if X is, and the Kuratowski map ac-
tually maps X into E(X, ω), since each fx is controlled by {x}.
Notice also that, if {x1, . . . , xn} ⊆ X and f ∈ E({x1, . . . , xn}), then its
Katětov extension f̂ is in E(X,ω), and d(f̂ , fxi

) = f(xi) for all i.
Thus, if one defines this time X0 = X, Xi+1 = E(Xi, ω), then the inductive
limit Y of ∪Xi is separable and finitely injective, hence its completion Z is
isometric to U, and X ⊆ Z.
The most interesting property of this construction is that it enables one to
keep track of the isometries of X: indeed, any ϕ ∈ Iso(X) is the restriction
of a unique isometry ϕ̃ of E(X, ω), and the mapping ϕ 7→ ϕ̃ from Iso(X)
into Iso(E(X, ω)) is an isomorphic embedding of topological groups.
That way, we obtain for all i continuous embeddings Ψi : Iso(X) → Iso(Xi),
such that Ψi+1(ϕ)|Xi

= Ψi(ϕ) for all i and all ϕ ∈ Iso(X).
This in turns defines a continuous embedding from Iso(X) into Iso(Y ),
and since extension of isometries defines a continuous embedding from the
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group of isometry of any metric space into that of its completion (see [8]),
we actually have a continous embedding of Iso(X) into the isometry group
of Z, that is to say Iso(U) (and the image of any ϕ ∈ Iso(X) is actually an
extension of ϕ to Z ).

3 Proof of the main theorem

To prove theorem 1.1 ,we will use ideas very similar to those used in [2] ;
all the notations are the same as in section 2.
We will need an additional definition, which was introduced in [2]:
If X is a metric space and i ≥ 1, let

E(X, i) = {f ∈ E(X) : f has a support of cardinality ≤ i}

We endow E(X, i) with the sup-metric.
Gao and Kechris proved the following result, of which we will give a new,
slightly simpler proof:

Theorem 3.1. (Gao-Kechris)
If X is a Polish metric space and i ≥ 1 then E(X, i) is a Polish metric
space.

Proof:
Notice first that the separability of E(X, i) is easy to prove; we will prove
its completeness by induction on i.
The proof for i = 1 is the same as in [2]; we include it for completeness.
First, let (fn) be a Cauchy sequence in E(X, 1).
It has to converge uniformly to some Katětov map f , and it is enough to
prove that f ∈ E(X, 1).
By definition of E(X, 1), there exists a sequence (yn) such that

∀x ∈ X fn(x) = fn(yn) + d(yn, x) (∗)

But then let ε > 0, and let M be big enough that m, n ≥ M ⇒ d(fn, fm) ≤
ε.
Then, for m, n ≥ M , one has

2d(yn, ym) = (fn(ym)− fm(ym)) + (fm(yn)− fn(yn)) ≤ 2ε .
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This proves that (yn) is Cauchy, hence has a limit y.
One easily checks that f(y) = lim fn(yn), so that (∗) gives us, letting n →∞

∀x ∈ X f(x) = f(y) + d(y, x) .

That does the trick for i = 1; suppose now we have proved the result for
1 . . . i− 1, and let (fn) be a Cauchy sequence in E(X, i).
By definition, there are yn

1 , . . . yn
i such that:

∀x ∈ X fn(x) = min
1≤j≤i

{fn(yn
j ) + d(yn

j , x)} (∗∗) .

Once again, (fn) converges uniformly to some Katětov map f , and we want
to prove that f ∈ E(X, i).
Thanks to the induction hypothesis, we can assume that there is δ > 0 such
that for all n and all k 6= j ≤ i one has d(yn

j , yn
k ) ≥ 2δ (if not, a subsequence

of (fn) can be approximated by a Cauchy sequence in E(X, i− 1), and the
induction hypothesis applies).
Let dn = min{fn(x) : x ∈ X}.
Then (dn) is Cauchy, so it has a limit d ≥ 0; up to some extraction, and
if necessary changing the enumeration of the sequence, we can assume that
there is p ≥ 1 and δ′ > 0 such that:
- ∀j ≤ p fn(yn

j ) → d
- ∀j > p ∀n fn(yn

j ) > d + δ′.
Let ε > 0, α = min(δ, δ′, ε) and choose M big enough that n, m ≥ M ⇒
d(fn, fm) < α

4
and |fn(yn

j )− d| < α
4

for all j ≤ p.
Then, for n, m ≥ M and j ≤ p one has:
fn(ym

j ) < d+ α
2
, so there exists k ≤ p such that fn(ym

j ) = fn(yn
k )+d(ym

j , yn
k ).

Such a yn
k has to be at a distance strictly smaller than δ from ym

j : there is at
most one yn

k that can work, and there is necessarily one. Thus, one obtains,
as in the case i = 1, that d(yn

k , ym
j ) ≤ ε .

This means that one can assume, choosing an appropriate enumeration, that
for k ≤ p each sequence (yn

i )n is Cauchy, hence has a limit yk .
Define then f̃n : x 7→ min

1≤k≤p
{fn(yn

i ) + d(x, yn
k )} .

f̃n ∈ E(X, p), and one checks easily, since yn
k → yk for all k ≤ p, that (f̃n)

converges uniformly to f̃ , where f̃(x) = min
1≤k≤p

{f(yk) + d(x, yk)} .

If p = i then we are finished; otherwise, notice that, using again the induc-
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tion hypothesis, we may assume that there is η > 0 such that

∀n ∀j > p fn(yn
j ) < f̃n(yn

j )− η (∗ ∗ ∗).

Now define g̃n by g̃n(x) = min
j>p
{fn(yn

j ) + d(x, yn
j )}.

Choose M such that n,m ≥ M ⇒ d(fn, fm) <
η

4
and d(f̃n, f̃m) <

η

4
.

Then (***) shows that for, all n, m ≥ M and all j > p,

fm(yn
j ) ≤ fn(yn

j ) +
η

4
≤ f̃n(yn

j )− 3η

4
≤ f̃m(yn

j )− η

2
,

so that fm(yn
j ) = fm(ym

k ) + d(yn
j , ym

k ) for some k > p.
Consequently, for m, n ≥ M and j > p, fm(yn

j ) = g̃m(yn
j ); by definition,

fm(ym
j ) = g̃m(ym

j ).
This proves that for all n, m ≥ M one has d(g̃n, g̃m) ≤ d(fn, fm), so that
(g̃n) is Cauchy in E(X, i − p), hence has a limit g̃ ∈ E(X, i − p) by the
induction hypothesis.
But then, (**) shows that, for all x ∈ X, f(x) = min(f̃(x), g̃(x)), and this
concludes the proof. ♦

If Y is a nonempty, closed and bounded subset of a metric space X, define

E(X,Y ) = {f ∈ E(X) : ∃d ∈ R+ ∀x ∈ X f(x) = d + d(x, Y )}

E(X, Y ) is closed in E(X), and is isometric to R+.

Now we can go on to the
Proof of theorem 1.1.
Essential to our proof is the fact that for every Polish group G there exists
a Polish space (X, d) such that G is isomorphic to the group of isometries
of X (This result was proved by Gao and Kechris, see [2]).
So, let G be a Polish group, and X be a metric space such that G is iso-
morphic to Iso(X).
One can assume that X contains more than two points, and (X, d) is

bounded, of diameter d0 ≤ 1.(If not, define d′(x, y) =
d(x, y)

1 + d(x, y)
. Then

(X, d′) is now a bounded Polish metric space with the same topology as X,
and the isometries of (X, d′) are exactly the isometries of (X, d) ).
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Let X0 = X, and define inductively bounded Polish metric spaces Xi, of
diameter di, by:

Xi+1 =
{
f ∈ E(Xi, i) ∪

⋃
j<i

E(Xi, Xj) : ∀x ∈ Xi f(x) ≤ 2di

}
(We endow Xi+1 with the sup-metric; since Xi canonically embeds isomet-
rically in Xi+1 via the Kuratowski map, we assume that Xi ⊆ Xi+1).
Remark that di → +∞ with i, and that each Xi is a Polish metric space.

Let then Y be the completion of
⋃
i≥0

Xi.

The definition of ∪Xi makes it easy to see that it is finitely injective, so that
Y is isometric to U.
Also, any isometry g ∈ G extends to an isometry of Xi, and for any i and
g ∈ G there is a unique isometry gi of Xi such that gi(Xj) = Xj for all j ≤ i
and gi

|X0
= g (same proof as in [4]).

Remark also that the mappings g 7→ gi, from G to Iso(Xi), are continuous
(see [8]).
All this enables us to assign to each g an isometry g∗ of Y , given by
g∗|Xi

= gi, and this defines a continuous embedding of G into Iso(Y ) (see

again [8] for details).
It is important to remark here that, if f ∈ Xi+1 is defined by
f(x) = d + d(x, Xj) for some d ≥ 0 and some j < i, then g∗(f) = f for all
g ∈ G (This was the aim of the definition of Xi: adding ”many” points that
are fixed by the action of G).

Notice that an isometry ϕ of Y is equal to g∗ for some g ∈ G if, and only
if, ϕ(Xn) = Xn for all n.
The idea of the construction is then simply to construct a closed set F such
that ϕ(F ) = F if, and only if, ϕ(Xn) = Xn for all n. To achieve this, we
will build F as a set of carefully chosen ”witnesses”.

The construction proceeds as follows:
First, let (ki)i≥1 be an enumeration of the non-negative integers where every
number appears infinitely many times.
Using the definition of the sets Xi, we choose recursively for all i ≥ 1 points
ai ∈ ∪n≥1Xn(the witnesses), non-negative reals ei, and a nondecreasing se-
quence of integers (ji) such that :
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- e1 ≥ 4; ∀i ≥ 1 ei+1 > 4ei .
- ∀i ≥ 1 ji ≥ ki , ai ∈ Xji+1 and ∀x ∈ Xji

d(ai, x) = ei + d(x, Xki−1)
- ∀i ≥ 1 ∀g ∈ G g∗(ai) = ai.
(This is possible, since at step i it is enough to fix ei > max(4ei−1, diam(Xki

)),
then find ji ≥ max(1 + ji−1, ki) such that diam(Xji

) ≥ ei, and define
ai ∈ Xji+1 by the equation above; then, by definition of g∗ and of ai, one
has g∗(ai) = ai for all g ∈ G)

Let now F = X0 ∪ {ai}i≥1; since X0 is complete, and d(ai, X0) = ei → +∞,
F is closed.
We claim that for all ϕ ∈ Iso(Y ), one has

(ϕ(F ) = F ) ⇐⇒ (ϕ ∈ G∗).

The definition of F makes one implication obvious.
To prove the converse, we need a lemma:

Lemma 3.2. If ϕ ∈ Iso(F ), then ϕ(X0) = X0, so that ϕ(ai) = ai for all i.
Moreover, there exists g ∈ G such that ϕ = g∗|F .

Admitting this lemma for a moment, it is now easy to conclude:
Notice that lemma 3.2 implies that G is isomorphic to the isometry group
of F , and that any isometry of F extends to Y .
Thus, to conclude the proof of theorem 1.1, we only need to show that the
extension of a given isometry of F to Y is unique. As explained before,
it is enough to show that, if ϕ ∈ Iso(Y ) is such that ϕ(F ) = F , then
ϕ(Xn) = Xn for all n ≥ 0.
So, let ϕ ∈ Iso(Y ) be such that ϕ(F ) = F .
It is enough to prove that ϕ(Xn) ⊇ Xn for all n ∈ N (since this will also be
true for ϕ−1), so assume that this is not true, i.e there is some n ∈ N and
x 6∈ Xn such that ϕ(x) ∈ Xn.
Let δ = d(x, Xn) > 0 (since Xn is complete), and pick y ∈ ∪Xm such that
d(x, y) ≤ δ

4
.

Then y ∈ Xm \Xn for some m > n; now choose i such that ki = n + 1 and
ji ≥ m .
Then we know that

d(ϕ(y), ϕ(ai)) = d(y, ai) = ei + d(y, Xn) ≥ ei +
3δ

4
, and
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d(ai, ϕ(y)) ≤ d(ai, ϕ(x)) + d(x, y) ≤ ei +
δ

4
, so that d(ϕ(ai), ai) ≥ δ

2
, and

this contradicts lemma 3.2. ♦

It only remains to give the
Proof of lemma 3.2:
Since we assumed that X0 has more than two points and diam(X0) ≤ 1, the
definition of F makes it clear that

∀x ∈ F (x ∈ X0) ⇔ (∃y ∈ F : 0 < d(x, y) ≤ 1)

The right part of the equivalence is invariant by isometries of F , so this
proves that ϕ(X0) = X0 for any ϕ ∈ Iso(F ). In turn, this easily implies
that ϕ(ai) = ai for all i ≥ 1.
Thus, if one lets g ∈ G be such that g|X0

= ϕ|X0
, we have shown that

ϕ = g∗|F . ♦
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