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STRUCTURES

JULIEN MELLERAY

ABSTRACT. These notes are an expanded write-up of two lectures given in Lyon
in the spring of 2011, during a special semester on model theory. We discuss some
applications of Baire category methods to the study of automorphism groups of
homogeneous countable first-order structures.

1. BACKGROUND ON POLISH SPACES AND BAIRE CATEGORY

We begin by discussing quickly some basic notions from descriptive set theory.
A very good general reference is the book by Kechris [K]. For the theory of Polish
group actions, the curious reader may also consult [G]. For the parallels between
measure and category, I cannot recommend Oxtoby’s gem of a book [O] too highly.

Definition 1.1. A Polish space is a topological space (X, τ) whose topology admits
a countable basis and is induced by a complete metric.

Note that, by definition, a Polish space has a countable dense subset. I will often
use in the following the fact that any topological space with a countable basis has
the Lindelöff property, i.e from any open cover of X one may extract a countable
subcover.

Example. R, Rn are examples of Polish spaces, as is any compact metric space, and
any locally compact separable metric space.

Example. Let X be a Polish space; then XN, endowed with the product topology,
is a Polish metric space. Indeed, if (Ui) is a basis of the topology of X, sets of the
form {x̄ ∈ XN : ∀i ≤ N xi ∈ Uni} form a countable basis of the topology of XN.
Also, if d is a complete metric compatible with the topology of X, then the metric
d∞ defined by

d∞(x̄, ȳ) =
∞

∑
i=0

2−i min(d(xi, yi), 1)

is a complete metric compatible with the product topology on XN.
A sequence x̄n converges to x̄ in XN if and only if xn(i) converges to x(i) for all

i.
The spaces {0, 1}N and NN, where {0, 1} and N are endowed with the discrete

topology, are of particular importance in descriptive set theory.

Theorem 1.2 (Baire). Let X be a Polish space, and (On) be a sequence of dense open
subsets of X. Then ∩On is dense in X.
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Notation. Let X be a Polish space. Then A ⊆ X is Gδ if A = ∩On where each On is
open. If each (On) is dense, we say that A is dense Gδ; note that the Baire category
theorem says that a dense Gδ set is indeed dense.

We say that A ⊆ X is comeager if A contains a dense Gδ; A is meager if the
complement of A is comeager, i.e if A is contained in a countable union of closed
subsets of X with empty interior.

Remark. If (X, τ) is a Polish space, O is an open subset of X, then O, with the
induced topology, is Polish. Indeed, if d is a complete metric on X, then dO defined
on O by

dO(x, y) = d(x, y) +
∣∣∣∣ 1
d(x, X \O)

− 1
d(y, X \O)

∣∣∣∣
is a complete metric compatible with the topology induced by τ on O.

This is particularly useful, since one may “localize ” the Baire category theorem,
based on the observation that if X is Polish, A ⊆ X is comeagre and O is open in
X, then A ∩O is comeagre in O. We will use this frequently without mention.

Notation. If X is Polish, we will use the notation

∀∗x ∈ X A(x)

to signify that {x : x satisfies A(x)} is comeager in X. Baire’s category theorem
says that the two assertions

∀n ∈ N ∀∗x ∈ X An(x)

and
∀∗x ∈ X ∀n ∈ N An(x)

are equivalent in a Polish space.

The notation ∀∗x must be understood as meaning “for almost all x”; thus the
Baire category notions give us a notion of largeness - a subset A of a Polish space X
is large if almost every element of X belongs to A, i.e if A is comeager - and, dually,
a notion of smallness (meager sets). This should remind the reader of full measure
sets/nullsets in measure theory; as in that context, a countable intersection of large
sets is large, dually, a countable union of small sets is small. Just as in the measure-
theoretic context, not every set need behave nicely with regard to this notion of
largeness: one has to introduce a concept of measurability adapted to our context.

Definition 1.3. Let X be a Polish space. A subset A of X is Baire-measurable if there
exists an open subset O of X such that A∆O is meager.

An important point here is that, if A is Baire-measurable and not meagre, then
A is comeagre in some nonempty open subset O of X.

Proposition 1.4. Let X be a Polish space. Baire-measurable subsets of X form a σ-algebra.

An immediate corollary of this is that any Borel set is Baire-measurable, since
any open set is obviously Baire-measurable and Borel sets form the smallest σ-
algebra containing the open sets.

We will need something stronger.

Proposition 1.5. Let X, Y be Polish spaces, f : X → Y a continuous map, and B ⊆ X a
Borel subset. Then f (B) is Baire-measurable.
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Let us illustrate the analogy between measure and category further with the
following analogue of the Fubini theorem.

Theorem 1.6 (Kuratowski–Ulam). Let X, Y be Polish spaces, and A ⊆ X × Y be a
Baire-measurable subset. Then the following properties are equivalent.

(1) A is comeagre in X×Y.
(2) {x : Ax is comeagre in Y} is comeagre in X, where Ax = {y ∈ Y : (x, y) ∈ A}.

Note that, symbolically, this theorem says that the assertions

∀∗(x, y) ∈ X×Y A(x, y)

and
∀∗x ∈ X ∀∗y ∈ Y A(x, y)

are equivalent, for a Baire-measurable subset of X×Y.

Proof. To familiarize ourselves with Baire-category proofs, we sketch the proof of
the fact that (1) implies (2) in the particular case when A is open (the general case
then follows rather easily, and the converse implication is also a good exercise on
Baire category). So, let A be a dense open subset of X × Y. Then Ax is open in Y
for all x ∈ X, so we need to prove that

{x ∈ X : Ax is dense in Y}

is comeagre in X. To that end, fix a countable basis (Un) of the topology of Y, and
assume w.l.o.g that each Un is nonempty. Saying that Ax is dense in Y is the same
as saying that Ax ∩Un is nonempty for all n, thus we need to prove that

∀∗x ∀n Ax ∩Un 6= ∅.

Via the Baire theorem, this is equivalent to

∀n ∀∗x Ax ∩Un 6= ∅.

Equivalently, denoting by π : X × Y → X the projection map, we need to show
that π(A ∩ (X ×Un)) is comeager in X for all n. It is not hard to check that the
projection of any open subset of X ×Un is open in X, and the projection of any
dense subset of X×Un is dense in X. Since A∩ (X×Un) is open dense in X×Un,
we obtain that π(A ∩ (X × Un)) is open dense in X, finishing the proof in that
particular case.

�

2. POLISH GROUPS

Definition 2.1. A topological group is a pair (G, τ) where G is a group, τ is a topol-
ogy on G, and the group operations (g, h) 7→ gh and g 7→ g−1 are continuous (this
is equivalent to simply requiring that (g, h) 7→ gh−1 is continuous).

Definition 2.2. A Polish group is a topological group whose topology is Polish.

Example. (R,+), (Rn,+), Lie groups, locally compact separable metrizable groups
are Polish groups.

The following is the main example of Polish group we will be discussing.
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Example. Denote by S∞ tthe group of all bijections of N. The topology is given by
the pointwise convergence topology for the discrete topology on N; explicitly, a
basis of the topology is given by subsets of the form

{σ ∈ S∞ : σ(i1) = j1, . . . , σ(in) = jn}.
Of particular importance is the fact that a basis of open neighborhoods of id is
given by the family (Vn) where

Vn = {σ ∈ S∞ : ∀i ≤ n σ(i) = i}.
These subsets are actually subgroups, so that S∞ has a basis of neighborhoods of
id consisting of open subgroups.

To see that there is a complete metric inducing the topology of S∞, one may for
instance set, for all σ, τ ∈ S∞,

δ(σ, τ) = 2−n where n = min{i : σ(i) 6= τ(i)}
(with min(∅) = +∞) and then check that the metric d defined by d(σ, τ) =
δ(σ, τ) + δ(σ−1, τ−1) works.

This leads to plenty of other examples: indeed, any closed subgroup of S∞ is a
Polish group in its own right. This class of groups is intimately related to model
theory: if M is a first-order countable structure, with universe N, its automor-
phism group Aut(M) is naturally a subgroup of S∞ (here and below, I always
assume that languages contain =, so that any automorphism of a first-order struc-
ture induces a bijection of its universe).

Actually, Aut(M) is a closed subgroup of S∞. Let us for instance check that, if
R is a n-ary relation symbol of the language ofM, then {σ ∈ S∞ : σ preserves R}
is a closed subgroup of S∞. This is the same as proving that the set of all σ that do
not preserve R is open; to show this, pick σ in that set, and let i1, . . . , in, j1, . . . , jn
be such that σ(ik) = jk, M |= R(i1, . . . , in) and M |= ¬R(j1, . . . , jn) (the other
case is dealt with in the same way). Then, the set of τ such that τ(ik) = jk for
all k ∈ {1, . . . , n} is open in S∞, contains σ, and any element of that set does not
preserve R.

Using a similar proof for function symbols, we see that Aut(M) is a closed
subgroup of S∞ for any first-order structure with universe N. Allow us to mention
that the converse is true without giving a proof.

Theorem 2.3. Let G be a closed subgroup of S∞. Then, there exists a first-order countable
homogeneous relational structureM such that G is isomorphic (as a topological group) to
Aut(M).

Now, the plan is to address the following type of question: whenM is a “nice”
structure, what does Aut(M) (as an abstract group) remember about M? Is M
encoded in Aut(M)? Can we reconstructM from Aut(M)?

A good reference for the rest of these notes is MacPherson’s survey [M]. Let us
recall the following theorem.

Theorem 2.4 (Ahlbrandt–Ziegler). Let M, N be ω-categorical countable structures.
ThenM and N are bi-interpretable if and only if Aut(M) and Aut(N ) are isomorphic
as topological groups.

Thus, our focus shifts to the following issue: knowing that Aut(M) and Aut(N )
are isomorphic as abstract groups, under what assumptions can we obtain that
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Aut(M) and Aut(N ) are isomorphic as topological groups? Can we recover the
topological structure of Aut(M) from its algebraic structure?

We now discuss Baire-category conditions that ensure that a homomorphism
from a Polish group to another is continuous. These should make apparent some
ideas that we will use later, if time permits.

3. CONTINUITY OF MORPHISMS BETWEEN POLISH GROUPS

The method of proof of the following theorem, due to Pettis, will be essential
for the rest of this lecture.

Theorem 3.1 (Banach). Let G, H be Polish groups, and ϕ : G → H a homomorphism.
Assume that ϕ is Baire-measurable, i.e ϕ−1(O) is Baire-measurable for any open subset O
of H. Then ϕ is continuous.

Note that the assumption of the theorem is true when ϕ is Borel measurable.
We postpone the proof of this theorem for the moment. Let us make note of a nice
corollary.

Corollary 3.2. Let G, H be Polish groups, ϕ : G → H an abstract group isomorphism,
and assume that ϕ is Baire-measurable. Then ϕ is a topological group isomorphism.

Proof. By Banach’s theorem, we know that ϕ : G → H is continuous. Let ψ : H →
G denote the inverse of ϕ. Then, for any open subset O of G, we have ψ−1(O) =
ϕ(O), so by Proposition 1.5, ψ−1(O) is Baire-measurable, and then Banach’s the-
orem implies that ψ is continuous. Hence ϕ is a homeomorphism and we are
done. �

To prove Banach’s theorem, we will first establish an important lemma.

Notation. When G is a group and A is a subset of G, we set A−1 := {a−1 : a ∈ A}.
Similarly, if A, B ⊆ G we let A · B := {ab : a ∈ A, b ∈ B}.
Lemma 3.3 (Pettis). Let G be a Polish group. For A ⊆ G, define

O(A) =
⋃
{O open in X : A is comeagre in O}.

Then, for any A, B ⊆ G, one has

O(A) ·O(B) ⊆ A · B.

Note that O(A) is open, and by Lindelöff’s property it is actually a countable
union of open sets in which A is comeagre, so A is comeagre in O(A). The con-
verse is true exactly when A is Baire-measurable.

We also note that the definition of O(A) makes it straightforward to check that
O(A−1) = O(A)−1 and, for all g ∈ G, O(g · A) = g ·O(A) (because inversion and
left-translation are homeomorphisms of G).

Proof. Pick g ∈ O(A) ·O(B). Then we have O(A) ∩ g ·O(B)−1 6= ∅, equivalently,
O(A) ∩O(g · B−1) 6= ∅. Note that A is comeagre in O(A), hence in O(A) ∩O(g ·
B−1); similarly, g · B−1 is comeagre in O(g · B−1), hence in O(A) ∩O(g · B−1).

Hence A ∩ g · B−1 is comeagre in the nonempty open set O(A) ∩O(g · B−1),
thus A ∩ g · B−1 is nonempty, so g ∈ A · B. �

Theorem 3.4. Let G be a Polish group, and A ⊆ G be a Baire-measurable, non-meagre
subset of G. Then 1G belongs to the interior of A · A−1.
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Proof. By assumption, O(A) is nonempty, and it is open by definition; hence O(A−1) =
O(A)−1 is also nonempty open, and O(A) ·O(A−1) is also open, and contains 1G.
Pettis’ lemma asserts that O(A) ·O(A−1) ⊆ A · A−1, and we are done. �

Corollary 3.5. Let G be a Polish group, and H be a Baire-measurable, non-meager sub-
group. Then H is clopen in G.

Proof. By Pettis’ theorem, 1 belongs to the interior of H · H−1 = H. Hence H
has nonempty interior, which easily implies since H is a subgroup that H is open.
Then G \ H =

⋃
g 6∈H gH is also open, hence H is closed, and we are done. �

Proof of Banach’s theorem. Since ϕ is a homomorphism, we only need to show that
ϕ is continuous at 1G, i.e that for any open set V ⊆ H containing 1H there is an
open set U ⊆ G containing 1G and such that ϕ(U) ⊆ V.

Pick such a V, and use the continuity of group operations to find an open neigh-
borhood W of 1H such that W ·W−1 ⊆ V. Note that ϕ(G) is covered by translates
of ϕ(G) ∩W, which is open in ϕ(G), hence the Lindelöff property implies that
there exist a sequence (gn) of elements of G such that

ϕ(G) =
⋃
n

ϕ(gn) · (ϕ(G) ∩W)

From this we obtain
G =

⋃
n

gn · ϕ−1(W)

and this implies that ϕ−1(W) is not meagre in G (otherwise G itself would be
meagre, contradicting the Baire category theorem).

Thus we may apply Pettis’ theorem to ϕ−1(W), and obtain an open set U 3 1G
such that U ⊆ ϕ−1(W) · (ϕ−1(W))−1. We are done, since

ϕ(U) ⊆W ·W−1 ⊆ V.

�

Recall that we only really care, in our setting, about homomorphisms with val-
ues in S∞. A way to ensure that such homomorphisms are continuous is given by
the following property.

Definition 3.6. Let G be a Polish group. We say that G has the small index property
if any subgroup of G with at most countable index is open.

Remark. Usually, for the small index property one asks that groups of index stricly
less than the continuum be open. Given the restricted scope of these notes, the
property above is sufficient for our purposes and will make some proofs simpler,
so we use nonstandard terminology to simplify the exposition (also, to be com-
pletely honest, I know of no example where one property is satisfied and the other
is not!).

Theorem 3.7. Let G be a Polish group with the small index property. Then any homo-
morphism from G to S∞ is continuous.

Proof. Let ϕ : G → S∞. As above, we need to show that ϕ is continuous at 1G;
given that id has a basis of open neighborhoods made up of open subgroups, it is
enough to show that ϕ−1(V) is open for any open subgroup V of S∞.
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By the Lindelöff property, V must have at most countable index (S∞ is covered
by left-translates of V, which are open, so S∞ is covered by countably many left-
translates of V).

Hence ϕ−1(V) is a subgroup of G with at most countable index (G/ϕ−1(V)
embeds in S∞/V), so ϕ−1(V) is open since G has the small index property, and we
are done. �

An immediate corollary of this, and Ahlbrandt-Ziegler’s theorem 2.4, is that
ifM, N are ω-categorical structures, Aut(M) has the small index property and
Aut(M), Aut(N ) are isomorphic as abstract groups, thenM andN are bi-interpretable.

Remark. If you believe in the axiom of choice, it should be pointed out that there
exist discontinuous homomorphisms between Polish groups. For instance, (R,+)
and (R2,+) are vector spaces of the same dimension (continuum) over Q, hence
they are isomorphic as abstract groups. However, they are not homeomorphic,
hence any isomorphism between (R,+) and (R2,+) must be discontinuous.

4. SMALL INDEX PROPERTY AND AMPLE GENERICS

We refer to MacPherson [M] for information about Fraı̈ssé classes and the re-
lated terminology. Whenever K is a Fraı̈ssé class, we will denote by K its limit.
To simplify the exposition we assume from now on that all our Fraı̈ssé classes are
defined using a relational language.

Definition 4.1. A Fraı̈ssé class K has the free amalgamation property if, whenever
B1, B2 ∈ K, fi : A → Bi are embeddings, there exists D ∈ K and embeddings
gi : Bi → D such that g1 ◦ f1 = g2 ◦ f2 and, in addition, for each relation symbol R
of the language of K, no tuple of D which satisfies R meets both g1(B1) \ g1 f1(A)
and g2(B2) \ g2 f2(A) (since the language contains =, this implies that g1(B1) ∩
g2(B2) = g1 f1(A), the so-called disjoint amalgamation property).

Definition 4.2. A Fraı̈ssé class K has the extension property if, for all A ∈ K, there
exists B ∈ K such that A ≤ B and any partial automorphism of A extends to a
global automorphism of B.

Example. Hrushovski [H] showed that the class of finite graphs has the extension
property. This was the start of investigations of this property, which is typically
very hard to establish (well, not for the class of all finite sets, for instance...). A
more general version of this is Herwig’s result [H] implying that, if K is a Fraı̈ssé
class in a finite relational language, K has the free amalgamation property and K
is closed under weak substructures, then K has the extension property.

In the spirit of these notes, it is particularly interesting to analyze how the ex-
tension property of a Fraı̈ssé class K is reflected in the properties of the automor-
phism group of K. The following proposition is more or less implicit in [HHLS],
and explicitly stated in [H] in a slightly different way. As stated below, I believe it
appeared for the first time in [KR].

Proposition 4.3. Let K be a Fraı̈ssé class with limit K, and G = Aut(K). Then the
following conditions are equivalent:

(1) K has the extension property.
(2) There exists a countable chain of compact subgroups G1 ≤ G2 ≤ . . . whose

union is dense in G.
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Notation. If G is a group and ḡ ∈ Gn, we denote by 〈ḡ〉 the subgroup generated by
g1, . . . , gn.

Proof. Let us first show that (1) implies (2). Fix n < ω. Consider

Fn = {ḡ ∈ Gn : ∀x ∈ K 〈ḡ〉 · x is finite}
Note that Fn = {ḡ ∈ Gn : 〈ḡ〉 is relatively compact} (if ḡ ∈ Fn then 〈ḡ〉 embeds in
a product of finite permutation groups, which is compact; conversely, the orbit of
any point under a compact subgroup of S∞ must be a compact subset of N, hence
finite). We claim that Fn is dense Gδ.

To see that Fn is Gδ, it is enough to show that for all x ∈ K the set Ωx = {ḡ ∈
Gn : 〈ḡ〉 · x is finite} is open; indeed, if ḡ ∈ Ωx, set A = 〈ḡ〉 · x. Then A is finite,
hence the set of h̄ coinciding with ḡ on A is open, contains ḡ, and any such h̄
belongs to Ωx.

Next, we need to show that each Ωx is dense. To that end, pick a nonempty
open subset O of Gn, and assume that there exist partial automorphisms p1, . . . , pn
with domains A1, . . . , An, range B1, . . . , Bn such that O is made up of all ḡ such
that gi extends pi for all i. Let C be the union of all the A′is and B′is and {x}; this
is a structure of K (recall that the language is relational). Apply the extension
property of K to find D ∈ K in which C embeds and automorphisms g1, . . . , gn of
D extending p1, . . . , pn. Then use homogeneity to assume that C ⊆ D ⊆ K and to
extend g1, . . . , gn to automorphisms of K (still denoted by g1, . . . , gn). Then ḡ ∈ O
by construction, and 〈ḡ〉 · x ⊆ D is finite, so ḡ ∈ O∩Ωx, showing that Ωx is dense.

Thus Fn is dense Gδ; it follows that

{ḡ ∈ GN : ∀n(g1, . . . , gn) ∈ Fn}
is dense Gδ in GN. An easy exercise on Baire category is that

{ḡ ∈ GN : {gi} is dense in G}
is also dense Gδ. Hence we may pick ḡ in the intersection of these two sets, and de-
fine Gn = 〈g1, . . . , gn〉. Then each Gn is compact and their union is dense, finishing
the proof that (1) implies (2).

The converse implication is easier: pick A ∈ K, and let p1, . . . , pn denote the
partial automorphisms of A. Viewing A in K, pi defines a nonempty open subset
of G for all i ∈ {1, . . . , n}. Hence, we may find m such that Gm contains an element
extending pi for all i. As Gm is compact, Gm · x is finite for all x, so B = Gm · A is
finite, and invariant by any element of Gm. �

The relevance of the extension property in our context is that it often implies the
following property, which in turn will be seen to imply the small index property.

Definition 4.4. Let G be a Polish group. We say that G has ample generics if for all
n there exists ḡ ∈ Gn such that the diagonal conjugacy class

{(gg1g−1, . . . , ggng−1) : g ∈ G}
is comeagre in Gn.

If such a ḡ exists, we call it a generic element of Gn.

The previous definition was introduced by Hodges, Hodkinson, Lascar and
Shelah [HHLS] in the context of automorphism groups of countable structures,
and then studied by Kechris and Rosendal [KR] in the more general context of
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Polish groups. The approach we discuss below was initiated in [HHLS] and re-
fined in [KR].

Let us point out two easy facts about ample generics before moving on:

• If ḡ and h̄ are generic in Gn, then there exists k ∈ G such that kḡk−1 = h̄.
Indeed, both sets {kḡk−1 : k ∈ G} and {kh̄k−1 : k ∈ G} are comeager, hence
they must intersect, so ḡ and h̄ have the same diagonal conjugacy class.
• If ḡ is generic in Gn and G has ample generics, then ∀∗h (ḡ, h) is generic in

Gn+1. Indeed, the Kuratowski-Ulam theorem applied to the set of generic
elements of Gn+1 implies that

∀∗ x̄ ∈ Gn ∀∗h ∈ G (x̄, h) is generic.

Thus {x̄ ∈ Gn : ∀∗h ∈ G (x̄, h) is generic} is comeagre in Gn; this set is also
invariant under diagonal conjugacy, so it must contain ḡ, and we are done.

Theorem 4.5. Assume K is a Fraı̈ssé class with the free amalgamation property and the
extension property. Denote by K the Fraı̈ssé limit of K. Then Aut(K) has ample generics.

Proof. Fix an integer n. Consider the set Ω of all ḡ ∈ Gn such that
(1) ∀x ∈ K 〈ḡ〉 · x is finite.
(2) For any B ∈ K, any C ∈ K such that B ≤ C and any automorphisms

p1, . . . , pn of C leaving B invariant and coinciding with gi on B, there exists
C̃ ⊆ K such that (C̃, g1|C̃, . . . , gn|C̃) ∼= (C, p1, . . . , pn).

We already saw that the extension property implies that the set of elements satis-
fying condition (1) is dense Gδ. It is easy to see that condition (2) also defines a Gδ

set. To show that it is dense, fix B ≤ C and automorphisms p1, . . . , pn of C such
that pi(B) = B for all i.

Let O be a nonempty open subset of G, and assume without loss of generality
that there exists D ⊆ K and automorphisms q1, . . . , qn of D such that O consists of
the set of all (g1, . . . , gn) extending (q1, . . . , qn). We need to find automorphisms
g1, . . . , gn of G extending q1, . . . , qn and such that either some gi does not coincide
with pi on B, or there exists C̃ such that (C̃, g1|C̃, . . . , gn|C̃) ∼= (C, p1, . . . , pn).

If some qi does not coincide with pi on E := D ∩ B, then any automorphisms
extending q1, . . . , qn willl do. Otherwise, notice that E must be fixed by q1, . . . , qn.
Then, we may amalgamate freely D and C over E, and glue together pi and qi to
obtain automorphisms gi of E. Call this free amalgam D; using the homogeneity
of K, we may realize F inside K in such a way that D ⊆ F, and extend g1, . . . , gn
to automorphisms of K extending q1, . . . , qn. We ensured that there exists C̃ such
that (C̃, g1|C̃, . . . , gn|C̃) ∼= (C, p1, . . . , pn), and we are done.

This shows that Ω is dense Gδ in Gn. It is not hard, using a back-and-forth ar-
gument, to show that for ḡ, h̄ ∈ Ω there exists k ∈ G such that kḡk−1 = h̄, proving
that Ω is a single diagonal conjugacy class, hence that G has ample generics. �

Note that the assumptions of the previous theorem are satisfied for example
when K is the class of finite sets (then G = S∞), K is the class of finite graphs (then
G is the automorphism group of the random graph), and more generally when
K has the free amalgamation property, is closed under weak substructures and is
defined over a finite relational language.

To conclude these notes, we’ll apply the techniques of [HHLS] and [KR] to show
that any Polish group with ample generics must have the small index property.
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Below, to simplify the notation a little bit, we denote the diagonal conjugacy
action of G on Gn by ∗.

Lemma 4.6. [KR] Let G be a Polish group with ample generics, and ḡ ∈ Gn a generic
element. Assume that A, B ⊆ G are such that A is not meager, and B is not meager in
any nonempty open set.

Then, for any open neighborhood V of 1G, there exist g1 ∈ A, g2 ∈ B such that (ḡ, g1)
and (ḡ, g2) are generic, and h ∈ V such that h ∗ (ḡ, g1) = (ḡ, g2).

Proof. Denote by Ω the comeagre diagonal conjugacy class in Gn+1. We saw, right
after the definition of ample generics, that the set C = {h : (ḡ, h) ∈ Ω} is comeagre
in G. Hence we may pick h1 ∈ A ∩ C.

Note that C = Stab(ḡ) ∗ h1, where Stab(ḡ) is the stabilizer of ḡ for the diagonal
conjugacy action.

Hence Stab(ḡ) ∗ h1 is comeagre in G; as Stab(ḡ) is the union of countably many
translates of Ṽ = V ∩ Stab(ḡ), this implies that Ṽ ∗ h1 is not meagre.

As Ṽ ∗ h1 is Baire-measurable by Proposition 1.5, this means that Ṽ ∗ h1 is
comeagre in some nonempty open set O, and the same must then be true of (Ṽ ∗
h1) ∩ C. Since B is not meagre in O, we may pick h2 ∈ B ∩ (Ṽ ∗ h1) ∩ C, which
concludes the proof. �

Lemma 4.7 (Fundamental lemma for ample generics [KR]). Let G be a Polish group
with ample generics, (An), (Bn) be two sequences of subsets of X such that for all n An is
not meager and Bn is not meager in any nonempty open set. Then there exists a continuous
map a 7→ ha from 2N to G such that, for any a, b ∈ 2N, n ∈ N such that a|n = b|n,
a(n) = 0, b(n) = 1, one has (ha ∗ An) ∩ (hb ∗ Bn) 6= ∅.

Sketch of proof. Pick a complete metric d inducing the topology of G. Then, using
Lemma 4.6, it is not hard to build sequences (gs)s∈2<ω and ( fs)s∈2<ω of elements
of G such that (denoting ḡs = (gs|1, . . . , gs) and hs = fs|1 . . . fs, h∅ = 1G):

(1) ḡs is generic in G|s|, where |s| denotes the length of s.
(2) gs_0 ∈ A|s| and gs_1 ∈ B|s|.
(3) fs_0 = 1G and d(hs, hs fs_1) < 2−|s|.
(4) fs_1 ∗ ḡs_1 = ḡs_0.

From the third condition above, it is easy to see that for all a ∈ 2ω, ha|n converges
to an element of G, denoted by ha.

The last two conditions imply that, for any s and any extension t of s _ 0 one
has ht ∗ gs_0 = hsgs_0, and for any extension t of s _ 1 one has ht ∗ gs_1 =
hs_1 ∗ gs_1 = hs ∗ gs_0.

Hence, for any a, b, n as in the statement of the lemma, we have, letting s =
a|n = b|n, that ha ∗ gs_0 = hs ∗ gs_0 = hb ∗ gs_1. Since the second condition
ensured that gs_0 ∈ An and gs_1 ∈ Bn, we are done. �

Theorem 4.8 ([HHLS], [KR]). Let G be a Polish group with ample generics. Then G has
the small index property.

Proof. Let H be a subgroup of G with at most countable index. Since G is the union
of at most countably many left-translates of H, H cannot be meager. If G \ H is
meager in some nonempty open set O, then H is comeager in O, so Pettis’ Lemma
implies that H · H−1 = H has nonempty interior, thus H is open and we are done.
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In other words, we know that H is not meagre in G, and we may assume that
(G \ H) is not meagre in any nonempty open subset of G; thus, we may apply
Lemma 4.7 with An = H and Bn = G \ H or all n. This gives us a map a 7→ ha
from 2N to G as in the statement of Lemma 4.7.

Let now a, b be distinct elements of 2N, let n be the smallest integer such that
a(n) 6= b(n) and assume w.l.o.g that a(n) = 0, b(n) = 1. Then Lemma 4.7 ensures
that (ha ∗ H) ∩ (hb ∗ (G \ H)) 6= ∅, in other words (h−1

b ha ∗ H) ∩ (G \ H) 6= ∅.
Hence h−1

b ha does not belong to H, so the map a 7→ ha H is an injection from 2N to
G/H, contradicting the fact that H has at most countable index.

�

Before ending these notes, we should point out that, using the fundamental
lemma for ample generics above, Kechris and Rosendal [KR] actually prove the
stronger result that any Polish group G with ample generics must have the au-
tomatic continuity property, i.e any homomorphism from G to a Polish group is
necessarily continuous. They also discuss various other consequences of ample
generics, and present examples of groups with ample generics beyond those that
were mentioned here. Finally, they provide a characterization of Fraı̈ssé classes K
such that the automorphism group of K has ample generics.

Also, to toot my own horn a little bit and to make a link with continuous logic,
which was discussed in Itaı̈ ben Yaacov’s talks, it may be worth pointing out that
at the moment no example of a Polish group having ample generics and which is
not a closed subgroup of S∞ is known. To tackle more general Polish groups, ideas
from continuous logic adapt relatively well (e.g any Polish group is isomorphic,
as a topological group, to the automorphism group of a homogeneous Polish met-
ric structure), leading to the notion of a “Polish topometric group” and a related
notion of ample generics, which are discussed in [BYBM] and [BYM].
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