Final Exam.

Friday, December 15. 3 hours

You are not allowed to use your textbook or any other kind of documentation. Calculators, mobile phones and other electronic devices are also prohibited.

	NAME		
SIGNATURE	SIGNATURE		

1. (20 points) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function with continuous partial derivatives. Define a function $g: \mathbb{R} \to \mathbb{R}$ by the formula

$$g(x) = f(x+1, \ln(1+x^2))$$
.

Explain why g is differentiable and give a formula for g'(x) (the formula in question should involve the partial derivatives of f).

2. (20 points)

Recall that polar coordinates (r, θ) are linked to cartesian coordinates (x, y) by the formulas $x = r \cos(\theta)$, $y = r \sin(\theta)$. Let now γ be a curve parameterized (in polar coordinates) by the formula $r(\theta) = e^{\theta}$, for $0 \le \theta \le 1$.

- (a) Find a parametrization for γ in cartesian coordinates.
- (b) Compute the length of γ .

3. (20 points)

3. (20 points) For $x \ge 0$, set $F(x) = \int_0^1 \ln(1 + xe^t) dt$. Give an expression for F'(x) that doesn't involve an integral.

4. (20 points)

Let γ be the path parameterized by $x(t) = 1 + \sin(2\pi t)e^{2t+3}$, $y(t) = \ln(1+8t)$, $z(t) = t^2 + 4t + 4$, $0 \le t \le 1$. Assume γ is oriented in the direction of increasing t; compute

$$\int_{\gamma} (3x^2 + 2x\sqrt{z}e^y) dx + (2y + x^2\sqrt{z}e^y) dy + (\frac{x^2e^y}{2\sqrt{z}}) dz .$$

5. (25 points) Let S be the cone of equation $x^2+y^2=z^2,\,0\leq z\leq H$ (viewed as a closed surface). Compute

$$\iint_{S} (1 - z^2) y^2 \, d\sigma$$

6. (30 points)

Consider the system of equations
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 10x_4 &= 0 \\ 4x_1 + 5x_2 + 6x_3 + x_4^2 &= 0 \\ 7x_1 + 8x_2 + 9x_3 + x_4^3 &= 0 \end{cases}$$
 Show that this system implicitly defines x_1, x_2, x_4 as functions of x_3 near $(0, 0, 0, 0)$; compute $x_1'(0), x_2'(0), x_3'(0)$

 $x_4'(0)$.

7. (35 points) Let V be the region of space of equation $x^2+y^2 \le z \le 2-(x^2+y^2)$. Denote by S the boundary of V, oriented by the outer normal. Define a vector field \vec{F} by the formula $\vec{F}(x,y,z)=(x^3-y^3,x^2y,0)$. Compute in two different ways the integral

$$\iint_S \vec{F} \cdot \vec{n} \, d\sigma \ .$$

8. (30 points)

- (a) Let D denote the set of all x,y such that $y^2-2x\leq 0,\ x^2-2y\leq 0.$ Compute $\iint_D e^{\frac{x^3+y^3}{xy}}\,dxdy$. (Use the change of variables $x=u^2v$ and $y=uv^2$)
- (b) Let R be the set of all (x, y, z) such that $x^2 + y^2 + z^2 \le 4$, $z \ge 0$. Compute $\iiint_R x^2 y^2 z dx dy dz$.