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1. (20 points)
Let f : R2 → R be a function with continuous partial derivatives. De�ne a function g : R → R by the formula

g(x) = f
(
x + 1, ln(1 + x2)

)
.

Explain why g is di�erentiable and give a formula for g′(x) (the formula in question should involve the partial
derivatives of f).

Answer. The function g is di�erentiable because it is a composition of di�erentiable functions ; the Chain
Rule gives us that

g′(x) = 1.
∂f

∂x

(
x + 1, ln(1 + x2)

)
+

2x

1 + x2

∂f

∂y

(
x + 1, ln(1 + x2)

)
.



2. (20 points)
Recall that polar coordinates (r, θ) are linked to cartesian coordinates (x, y) by the formulas x = r cos(θ),
y = r sin(θ). Let now γ be a curve parameterized (in polar coordinates) by the formula r(θ) = eθ, for 0 ≤ θ ≤ 1.
(a) Find a parametrization for γ in cartesian coordinates.
(b) Compute the length of γ.

Answer. (a) Using θ as a parameter, one obtains x(θ) = r(θ) cos(θ) = e(θ) cos(θ)) ; y(θ) = r(θ) sin(θ) =
eθ sin(θ) ; 0 ≤ θ ≤ 1.
(b) We know that ds =

√
(x′(θ))2 + (y′(θ))2dθ. We have x′(θ) = eθ(cos(θ)− sin(θ)), y′(θ) = eθ(sin(θ)+cos(θ).

Thus (x′(θ))2 + (y′(θ))2 = e2θ(2 cos2(θ) + 2 sin2(θ)) = 2e2θ. Plugging this in the integral, we obtain that the
length of the curve is ∫ 1

θ=0

√
2eθ dθ =

√
2(e− 1) .



3. (20 points)

For x ≥ 0, set F (x) =
∫ 1

0

ln(1 + xet)dt. Give an expression for F ′(x) that doesn't involve an integral.

Answer. Using Leibnitz's rule (which we can do because the function inside the integral has continuous partial
derivatives), we obtain

F ′(x) =
∫ 1

0

∂

∂x
(ln(1 + xet))dt =

∫ 1

0

et

1 + xet
dt =

[
1
x

ln(1 + xet)
]x

t=0

=
1
x

(
ln(1 + xe)− ln(1 + x)

)
.



4. (20 points)
Let γ be the path parameterized by x(t) = 1 + sin(2πt)e2t+3, y(t) = ln(1 + 8t), z(t) = t2 + 4t + 4, 0 ≤ t ≤ 1.
Assume γ is oriented in the direction of increasing t ; compute∫

γ

(3x2 + 2x
√

zey)dx + (2y + x2
√

zey)dy + (
x2ey

2
√

z
)dz .

Answer. This line integral looks unbelievably ugly, so we guess that there must be some path-independence

in there. Indeed, letting f(x, y, z) = x3 + x2
√

zey + y2, we see that the line integral is equal to

∫
γ

df . Thus it

only depends on the end-points of γ, which are (x(1), y(1), z(1)) = (1, ln(9), 9) and (x(0), y(0), z(0)) = (1, 0, 4).
Thus we obtain

I =
∫

γ

(3x2 + 2x
√

zey)dx + (2y + x2
√

zey + 1)dy + (
x2ey

2
√

z
)dz = f(1, ln(9), 9)− f(1, 0, 4) .

I = 1 + 3eln(9) + (ln(9))2 − (1 + 2 + 0) = 1 + 27 + 4(ln(3))2 − 3 = 25 + 4(ln(3))2 .



5. (25 points)
Let S be the cone of equation x2 + y2 = z2, 0 ≤ z ≤ H (viewed as a closed surface). Compute∫∫

S

(1− z2)y2 dσ

Answer. On the top of the surface we have x2 + y2 ≤ H2, z = H. Using polar coordinates, the integral on
the top of the surface is

ITop =
∫ 1

r=0

∫ 2π

θ=0

(1−H2)r2 sin2(θ) rdθdr = (1−H2)π
∫ 1

r=0

r3 dr =
π(1−H2)

4
.

On the side of the surface, we can use the parametrization x = z cos(θ), y = z sin(θ), z = z. We have already
used this parametrization in exercise 5, so we can use the result obtained there to get

∂P

∂z
× ∂P

∂θ
=

−z cos(θ)
−z sin(θ)

z

 .

The magnitude of this vector is z
√

2, so dσ = z
√

2dθdz. The formula for surface integrals gives that the integral
on the side of the surface is

ISide =
∫ H

z=0

∫ 2π

θ=0

(1− z2)z2 sin2(θ)z
√

2dθdz = π
√

2
∫ H

z=0

(z3 − z5) dz = π
√

2
(H4

4
− H6

6
)

.

Overall, we get that the surface integral is equal to

π(1−H2)
4

+ π
√

2
(H4

4
− H6

6
)

.



6. (30 points)

Consider the system of equations


x1 + 2x2 + 3x3 + 10x4 = 0
4x1 + 5x2 + 6x3 + x2

4 = 0
7x1 + 8x2 + 9x3 + x3

4 = 0
.

Show that this system implicitly de�nes x1, x2, x4 as functions of x3 near (0, 0, 0, 0) ; compute x′1(0), x′2(0),
x′4(0).

Answer. To check that the system implicitly de�nes x1, x2, x4 as functions of x3 near (0, 0, 0, 0), we need

to check that the determinant of the matrix

1 2 10
4 5 0
7 8 0

 is di�erent from 0. This determinant is equal to

10.(4.8− 7.5) = −30, so the implicit function theorem ensures that the system de�nes implicitly x1, x2, x4 as
functions of x3 near (0, 0, 0, 0). Implicit di�erentiation yields the relations

dx1 + 2dx2 + 3dx3 + 10dx4 = 0
4dx1 + 5dx2 + 6dx3 + 8x4dx4 = 0
7dx1 + 8dx2 + 9dx3 + 3x2

4 = 0

At the point (0, 0, 0, 0) this gives us (considering x1, x2, x3 as functions of x3)
x′1(0) + 2x′2(0) + 3 + 10x′4(0) = 0
4x′1(0) + 5x′2(0) + 6 + 0 = 0
7x′1(0) + 8x′2(0) + 9 + 0 = 0

Linear combinations of the last two lines give x′1(0) = 1, x′2(0) = −2, and the �rst line then yields that
x′4(0) = 0.



7. (35 points)
Let V be the region of space of equation x2 +y2 ≤ z ≤ 2− (x2 +y2). Denote by S the boundary of V , oriented

by the outer normal. De�ne a vector �eld ~F by the formula ~F (x, y, z) = (x3 − y3, x2y, 0). Compute in two
di�erent ways the integral ∫∫

S

~F · ~n dσ .

Answer. Let us �rst compute the �ow of ~F through S using the Divergence Theorem. We have div(~F ) =

3x2 + x2 = 4x2, so we have to compute the integral I =
∫∫

V

4x dxdydz. Given the equation of V , it is a good

idea here to use cylindrical coordinates. This gives

I =
∫ 1

r=0

∫ 2π

θ=0

∫ 2−r2

z=r2
4r2 cos2(θ) rdzdθdr =

∫ 1

r=0

∫ 2π

θ=0

4r3(2− 2r2) cos2(θ)dθ)dr = 8π

∫ 1

r=0

(r3 − r5) dr .

This eventually yields I = 8π(
1
4
− 1

6
) =

2π

3
. Now we have to compute the integral using the de�nition of a

surface integral ; when 0 ≤ z ≤ 1 the surface S is given by x2 + y2 = z, and for 1 ≤ z ≤ 2 the surface is given
by x2 + y2 = 2− z. It is a good idea to use parametrizations here ;

So the two di�erent computations give the same result, which was to be expected but is nevertheless always
a pleasure.



8. (30 points)

(a) Let D denote the set of all x, y such that y2 − 2x ≤ 0, x2 − 2y ≤ 0. Compute

∫∫
D

e
x3+y3

xy dxdy .

(Use the change of variables x = u2v and y = uv2)

(b) Let R be the set of all (x, y, z) such that x2 + y2 + z2 ≤ 4, z ≥ 0. Compute

∫∫∫
R

x2y2zdxdydz.

Answer. (a) The Jacobian matrix of this change of variables is(
2uv u2

v2 2uv

)
.

The determinant of this matrix is 3u2v2. Next, we need to �nd the domain for (u, v) ; given the conditions on
x, y one must have u, v > 0 and u2v4 ≤ 2u2v, u4v2 ≤ 2uv2. These conditions are the same as u, v > 0 and
u3 ≤ 2, v3 ≤ 2. We still need to check that our change of variables is one-to-one, and this is obviously the case

since one has u3 =
x2

y
and v3 =

y2

x
Eventually, our integral turns out to be equal to

∫ 21/3

u=0

∫ 21/3

v=0

eu3+v3
3u2v2 dudv =

∫ 21/3

u=0

u2eu3
e2 du =

e4

3
.

(We used the fact that eu3+v3
= eu3

ev3
and 3v2ev3

integrates as ev3
)

(b) Let us use spherical coordinates x = r cos(θ) sin(ϕ), y = r sin(θ) sin(ϕ), z = r cos(ϕ). We need to compute
the Jacobian determinant of this change of variables ; of course it would be easier to just know it by heart, but
recovering it is not that bad : the Jacobian matrix of the change of variables iscos(θ) sin(ϕ) −r sin(θ) sin(ϕ) r cos(θ) cos(ϕ)

sin(θ) sin(ϕ) r cos(θ) sin(ϕ) r sin(θ) cos(ϕ)
cos(ϕ) 0 −r sin(ϕ)

 .

Using an expansion with respect to the last row, we obtain that the Jacobian determinant D of this change of
variables is

D = cos(ϕ)
(
−r2 sin2(θ) sin(ϕ) cos(ϕ)−r2 cos2(θ) sin(ϕ) cos(ϕ)

)
−r sin(ϕ)

(
r cos2(θ) sin2(ϕ)+r sin2(θ) sin2(ϕ)

)
D = −r2 cos2(ϕ) sin(ϕ)− r2 sin(ϕ) sin2(ϕ) = −r2 sin(ϕ) .

Remembering that we need to use the absolute value of the determinant in the integral, we obtain

I =
∫ 2

r=0

∫ 2π

θ=0

∫ π/2

ϕ=0

r5 cos2(θ) sin2(θ) sin4(ϕ) cos(ϕ)r2 sin(ϕ) dϕdθdr

I =
∫ 2

r=0

∫ 2π

θ=0

∫ π/2

ϕ=0

r7 cos2(θ) sin2(θ) sin5(ϕ) cos(ϕ) dϕdθdr =
∫ 2

r=0

∫ 2π

θ=0

r7 sin2(2θ)
4

[
sin6(ϕ)

6

]π/2

ϕ=0

I =
∫ 2

r=0

∫ 2π

θ=0

r7 sin2(2θ)
24

dθdr =
∫ 2

r=0

∫ 2π

θ=0

r7

24
1− cos(4θ)

2
dθdr = π

∫ 2

r=0

r7

24
dr = π

28

8.24
=

4π

3
.


