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Graded Homework X .

Due Friday, November 17.

1. Compute the surface integral

∫∫
S

x2y2z dσ, where S is the portion of the cone of equation x2 + y2 = z2

where 0 ≤ z ≤ 1.
Correction. Let's use cartesian coordinates here ; one has z =

√
x2 + z2, and the projection of our cone onto

the (x, y)-plane is the disk D of equation x2 + y2 = 1.

We have dσ =

√
1 +

x2

x2 + y2
+

y2

x2 + y2
dxdy =

√
2dxdy, and we get

∫∫
S

x2y2z dσ =
∫∫

D

x2y2
√

x2 + z2
√

2 dxdy =
∫ 2π

θ=0

∫ 1

r=0

r4 sin2(θ) cos2(θ)
√

2.r.r drdθ =

∫ 2π

θ=0

sin2(2θ)
4

.

√
2

7
dθ =

∫ 4π

0

√
2 sin2(u)

8.7
du =

2π
√

2
56

=
π
√

2
28

.

2. Compute the surface integral

∫∫
S

xz dσ, where S is the surface parameterized by


x = r cos(θ)
y = r sin(θ)
z = θ

0 ≤ r ≤ R,

0 ≤ θ ≤ π.
Correction. This time, we are using a parametric description ; using the same notations as in class, we have

∂P

∂r
=

cos(θ)
sin(θ)

0

, and
∂P

∂θ
=

−r sin(θ)
r cos(θ)

1

, which yields
∂P

∂r
× ∂P

∂θ
=

 sin(θ)
− cos(θ)

r

 , ‖∂P

∂r
× ∂P

∂θ
‖ =

√
1 + r2 ; so

∫∫
S

xz dσ =
∫ R

r=0

∫ π

θ=0

r cos(θ)θ
√

1 + r2 drdθ =
∫ R

r=0

r
√

1 + r2 dr

∫ π

θ=0

θ cos(θ) dθ =

[
(1 + r2)3/2

3

]R

r=0

[
θ sin(θ) + cos(θ)

]π

0

=
2
3
(
1− (1 + R2)3/2

)
.

3. Compute the surface integral

∫∫
S

(x + y2 + z3)dσ, where S is the boundary of the cube given by the inequa-

lities 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.
Correction. This cube (as any other) has six faces, so we actually need to compute six di�erent surface
integrals. The choice of normal doesn't matter here since we are computing the integral of a scalar function ;
the integrals are :

(on the face x = 0, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1)
∫ 1

y=0

∫ 1

z=0

(y2 + z3)dzdy =
∫ 1

y=0

(y2 +
1
4
)dy =

7
12

;

(on the face x = 0, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1)
∫ 1

y=0

∫ 1

z=0

(1 + y2 + z3)dzdy = 1 +
7
12

=
19
12

;

(on the face y = 0, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1)
∫ 1

x=0

∫ 1

z=0

(x + z3)dzdx =
∫ 1

x=0

(x +
1
4
)dx =

3
4

;

(on the face y = 1, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1)
∫ 1

x=0

∫ 1

z=0

(x + 1 + z3)dzdx = 1 +
3
4

=
7
4

;



(on the face z = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1)
∫ 1

x=0

∫ 1

y=0

(x + y2)dydx =
∫ 1

x=0

(x +
1
3
)dx =

5
6

;

(on the face z = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1)
∫ 1

x=0

∫ 1

y=0

(x + y2 + 1)dydx = 1 +
5
6

=
11
6

.

Finally, we get that the value of the integral is
7
12

+
19
12

+
3
4

+
7
4

+
5
6

+
11
6

=
22
3
.

4. Let H be the portion of hyperboloid parameterized by


x = u cos(v)− sin(v)
y = u sin(v) + cos(v) ,

z = u

0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

(a) Show that the surface area of H is 2π

∫ 1

0

√
2u2 + 1 du.

(b) De�ne sh(t) =
et − e−t

2
, ch(t) =

et + e−t

2
. Show that 1+sh2(t) = ch2(t). Use this to compute the area of H.

Correction.(a) Using again the same notations as in class, we have
∂P

∂u
=

cos(v)
sin(v)

1

 and
∂P

∂v
=

−u sin(v)− cos(v)
u cos(v)− sin(v)

0

.

This yields
∂P

∂u
× ∂P

∂v
=

 sin(v)− u cos(v)
−u sin(v)− cos(v)

u cos2(v)− sin(v) cos(v) + u sin2(v) + sin(v) cos(v)

 =

 sin(v)− u cos(v)
−u sin(v)− cos(v)

u

. We

�nally obtain

‖∂P

∂u
×∂P

∂v
‖ =

√
u2 + sin2(v)− 2u sin(v) cos(v) + u2 cos2(v) + u2 sin2(v) + 2u sin(v) cos(v) + cos2(v) =

√
1 + 2u2 .

Thus, the surface area of H is

∫ 1

u=0

∫ 2π

v=0

√
1 + 2u2dvdu = 2π

∫ 1

u=0

√
1 + 2u2du.

(b) One has 1 + sh2(t) = 1 +
e2t + e−2t − 2

4
=

e2t + e−2t + 2
4

=
(

et + e−t

2

)2

= ch2(t).

The point of this is that one has
√

1 + sh2(t) = ch(t). Given the integral that we wish to compute, it is then

tempting to set
√

2u = sh(t), so that
√

2du = ch(t)dt. The bounds of our integral under this change of variable
become : α such that sh(α) = 0, i.e α = 0, and β such that sh(β) =

√
2. We will compute β later on ; for now,

just remember how it is de�ned. Our formula for the surface area of H becomes

Area(H) = 2π

∫ β

u=0

√
1 + sh2(t)

ch(t)√
2

dt =
2π√

2

∫ β

0

ch2(t)dt =
2π√

2

∫ β

0

ch(2t) + 1
2

dt;

Area(H) =
π√
2

[
sh(2t)

2
+ t

]β

t=0

=
π√
2

( sh(2β)
2

+ β
)

=
π√
2

(
sh(β)ch(β) + β

)
=

π√
2
(
√

2
√

3 + β) = π
√

3 +
πβ√

2
.

Remark To compute the integral above, we used the formulas ch(2u) = 2ch2(u)−1, and sh(2u) = 2sh(u)ch(u) =

2sh(u)
√

1 + sh2(u) (these may be checked using the de�nitions of the functions, and are part of the so-called

hyperbolic geometry)
Now, we still need to compute β ; in general, given a real number u, how can we �nd u such that sh(t) = u ? In
mathematical terms, we need to compute the inverse function of sh ; of course you can use the corresponding
touch on your hi-tech calculator/mobile phone ( ?), but it would be good to be able to compute it using a pen

and paper (how quaint). We want to solve et − e−t = 2u ; setting T = et, this equation becomes T − 1
T

= 2u,

or T 2 − 2uT − 1 = 0, which is pretty easily solvable : the solutions are T = u ±
√

1 + u2. Since the T we're
looking for is equal to et, it must be a positive number ; so the solution we are looking for is T = u +

√
1 + u2,

and we eventually obtain t = ln(T ) = ln(u +
√

1 + u2). Thus, β = ln(
√

2 +
√

1 + 2) = ln(
√

2 +
√

3), and we
�nally obtain

Area(H) = π
√

3 +
π√
2

ln(
√

2 +
√

3) .


