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Math 380 Group G1

Graded Homework IV

Due Friday, October 6.

1. Let F : R3\{(0, 0, 0)} → R3 be the mapping de�ned by F (x, y, z) = (
x

x2 + y2 + z2
,

y

x2 + y2 + z2
,

z

x2 + y2 + z2
).

Let (x, y, z) be on the sphere of center 0 and radius 1 ; show in two di�erent ways that the Jacobian matrix of
F at (x, y, z) is equal to its inverse matrix.
(Hint : compute F ◦ F (x, y, z) and use the Chain Rule)

Correction.Set F (x, y, z) = (X, Y, Z). Then X2 + Y 2 + Z2 =
1

x2 + y2 + z2
, so that

F (F (x, y, z)) = F (X, Y, Z) = (X(x2 + y2 + z2), Y (x2 + y2 + z2), Z(x2 + y2 + z2)) = (x, y, z). Thus, F is equal
to its inverse function ; the Chain Rule then tells us that JF (F (x, y, z)) is the inverse matrix of JF (x, y, z).
If (x, y, z) is in the unit sphere, then F (x, y, z) = (x, y, z), in other words the inverse matrix to JF (x, y, z) is
JF (x, y, z).
To prove it in a di�erent way, one may "simply" compute JF (x, y, z).JF (x, y, z) for (x, y, z) on the unit sphere ;
one has

JF (x, y, z)


1

x2+y2+z2 − 2x2

(x2+y2+z2)2 − 2xy
(x2+y2+z2)2 − 2xz

(x2+y2+z2)2

− 2xy
(x2+y2+z2)2

1
x2+y2+z2 − 2y2

(x2+y2+z2)2 − 2yz
(x2+y2+z2)2

− 2xz
(x2+y2+z2)2 − 2yz

(x2+y2+z2)2
1

x2+y2+z2 − 2z2

(x2+y2+z2)2

 .

Since on the sphere one has x2 + y2 + z2 = 1, this becomes JF (x, y, z) =

1− 2x2 −2xy −2xz
−2xy 1− 2y2 −2yz
−2xz −2yz 1− 2z2

.

A direct, if long, computation yields that JF (x, y, z).JF (x, y, z) is equal to0@ (1− 2x2)2 + 4x2y2 + 4x2z2 −2xy(1− 2x2)− 2xy(1− 2y2) + 4xyz2 −2xz(1− 2x2) + 4xy2z − 2xz(1− 2z2)
−2xy(1− 2x2)− 2xy(1− 2y2) + 4xyz2 4x2y2 + (1− 2y2)2 + 4y2z2 4x2yz − 2yz(1− 2y2)− 2yz(1− 2z2)
−2xz(1− 2x2) + 4xy2z − 2xz(1− 2z2) 4x2yz − 2yz(1− 2y2)− 2yz(1− 2z2) 4x2z2 + 4y2z2 + (1− 2z2)2

1A
Let us explain how to simplify the terms in the �rst row (the other ones are similar) :

(1− 2x2)2 + 4x2y2 + 4x2z2 = 1 + 4x2(x2 − 1 + y2 + z2) = 1 because x2 + y2 + z2 = 1 ;
−2xy(1− 2x2)− 2xy(1− 2y2) + 4xyz2 = −2xy(1− 2x2 + 1− 2y2 − 2x2) = 0 for the same reason ;
−2xz(1− 2x2) + 4xy2z − 2xz(1− 2z2) = −2xz(1− 2x2 − 2y2 + 1− 2z2) = 0.

Checking all the other values, one eventually gets that JF (x, y, z).JF (x, y, z) =

1 0 0
0 1 0
0 0 1

 ; this shows that

JF (x, y, z) indeed is equal to its own inverse matrix if (x, y, z) lies on the unit sphere.

2. Assume F : (u, v) 7→ F (u, v) is a continuously di�erentiable function from R2 to R such that F (0, 0) = 0

and
∂F

∂v
(0, 0) 6= 0. Let ϕ : R3 → R2 be de�ned by ϕ(x, y, z) = (xy, x2 − y2 − z), and de�ne f = F ◦ ϕ.

Show that the equation f(x, y, z) = 0 implicitly de�nes z as a function of (x, y) near (0, 0, 0), and that one has

x
∂z

∂x
− y

∂z

∂y
= 2(x2 + y2).

Correction. By the Chain Rule, the Jacobian matrix of F ◦ ϕ at (0, 0, 0) is JF (ϕ(0, 0, 0)).Jϕ(0, 0, 0) =

JF (0, 0).Jϕ(0, 0, 0). One has Jϕ(x, y, z) =
(

y x 0
2x 2y −1

)
, so

Jf(0, 0, 0) =
(

∂F
∂u (0, 0) ∂F

∂v (0, 0)
) (

0 0 0
0 0 −1

)
=

(
0 0 −∂F

∂v (0, 0)
)

.



Since
∂F

∂v
(0, 0) 6= 0, the Implicit Function Theorem enables us to assert that the equation F (x, y, z) = 0 de�nes

implicitly z as a function of (x, y) near (0, 0, 0).

Then, implicit di�erentiation yields (y
∂F

∂u
+ 2x

∂F

∂v
)dx + (x

∂F

∂u
− 2y

∂F

∂v
)dy − ∂F

∂v
dz = 0. From this, one reco-

vers that
∂z

∂x
= y

∂F
∂u
∂F
∂v

+ 2x, and
∂z

∂y
= x

∂F
∂u
∂F
∂v

− 2y. Thus, one does indeed have x
∂z

∂x
− y

∂z

∂y
= 2(x2 + y2).

3. Recall that we saw in class that, if a system of two equations F (x, y, z) = 0 and G(x, y, z) = 0 de�nes
implicitly two of the variables as a function of the third one near a point P ∈ R3, then that system of
equations de�nes a curve in the neighborhood of P .

Prove that the system of equations

{
4xy + 2xz + 4y − z = 0
xy + xz + yz + 2x + zy − z = 0

de�nes a curve near (0, 0, 0). What is

the tangent line to this curve at that point ?

Correction. The Jacobian matrix associated to this system is

(
4y + 2z 4x + 4 2x− 1

y + z + 2 x + 2z x + 2y − 1

)
. At (0, 0, 0)

this matrix is

(
0 4 −1
2 0 −1

)
. To de�ne (y, z) implicitly as functions of x near (0, 0, 0), one needs the determinant

of

(
4 −1
0 −1

)
to be nonzero. Since this determinant is equal to −4, the equations de�ne implicitly (y, z) as

functions of n near (0, 0, 0).
To �nd the tangent line to this curve at (0, 0, 0), we can use the fact that it is orthogonal to the normal vectors

to both planes, which, reading from the Jacobian matrix, are

 0
4
−1

 and

 2
0
−1

. Thus, the tangent line is

paralel to the cross product of these two vectors, which is the vector

−4
−2
−8

. So, the tangent line to the curve

at this point is the line parallel to

−4
−2
−8

 and going through (0, 0, 0), in other words the set of (x, y, z) ∈ R3

such that x = 2y and z = 4y (You may recover these equations by saying that the tangent line is the set of
(x, y, z) which lie on both of the tangent planes of the surfaces whose intersection de�nes the curve).

4. Consider the application from R3 × R3 to R that maps (u, v) to u.v. Identifying R3 × R3 with R6 (the
�rst three variables giving the coordinates of u, and the last three giving the coordinates of v), compute the
Jacobian matrix of this application. Use this, and the Chain Rule, to show that, if u = u(t) and v = v(t), then
(u.v)′(t) = u′(t).v(t) + u(t).v′(t).
Similarly, one may consider the cross product (u, v) 7→ u× v as a function from R6 → R3. Write the Jacobian
matrix of this application. Use it to show that again (u× v)′(t) = u′(t)× v(t) + u(t)× v′(t).
Correction. In this setting, the dot product is the mapping (ux, uy, uz, vx, vy, vz) 7→ uxvx+uyvy +uzvz. Thus,
its Jacobian matrix at a point (u, v) =

(
ux uy uz vx vy vz

)
is simply

(
vx vy vz ux uy uz

)
. Now,

if t 7→ (u(t), v(t)) is a di�erentiable mapping, the Chain Rule tells us that the derivative of the mapping
t 7→ u(t).v(t) is equal to

(
vx(t) vy(t) vz(t) ux(t) uy(t) uz(t)

)


u′
x(t)

u′
y(t)

u′
z(t)

v′
x(t)

v′
y(t)

v′
z(t)

,

which is equal to vx(t)u′
x(t)+vy(t)u′

y(t)+vz(t)u′
z(t)+ux(t)v′

x(t)+uy(t)v′
y(t)+uz(t)v′

z(t) = u′(t).v(t)+u(t).v′(t) .



To do the same for the cross product, we need to use the fact that

ux

uy

uz

×

vx

vy

vz

 =

 uyvz − uzvy

−uxvz + vxuz

uxvy − vxuy

. From

this, we �nd that the Jacobian matrix of the cross product is 0 vz −uy 0 −uz uy

−vz 0 vx uz 0 −ux

vy −vx 0 −uy ux 0

 .

Using the same method as for the dot product, we obtain that (u× v)′(t) is equal to

 0 vz(t) −vy(t) 0 −uz(t) uy(t)
−vz(t) 0 vx(t) uz(t) 0 −ux(t)
vy(t) −vx(t) 0 −uy(t) ux(t) 0




u′
x(t)

u′
y(t)

u′
z(t)

v′
x(t)

v′
y(t)

v′
z(t)

 , which yields

(u× v)′(t) =

vz(t)u′
y(t)− vy(t)u′

z(t) + uy(t)v′
z(t)− uz(t)v′

y(t)
vx(t)u′

z(t)− u′
x(t)vz(t) + uz(t)v′

x(t)− v′
z(t)ux(t)

vy(t)u′
x(t)− vx(t)u′

y(t) + ux(t)v′
y(t)− uy(t)v′

x(t)

 = u′(t)× v(t) + u(t)× v′(t) .

Of course, this is not an e�cient way of computing the derivative of a dot product or a cross product : it would
be much simpler to compute derivatives directly, coordinate by coordinate.


