Graded Homework I

Due Friday, Sept. 8.

1. Prove by induction that for all $n \ge 1$ one has

$$\frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2} < 2$$
.

(*Hint*: it is actually simpler to prove that the quantity on the left is $\leq 2 - 1/n...$)

2. Let us prove by induction that all that the pencils in the world are the same color: denote by P(n) the property "in any group of n pencils, all the pencils are the same color". Then P(1) is true...

Let us now assume that P(n) is true, and try to prove that P(n+1) is also true. Given a group of n+1 pencils, take one of them away: by the induction hypothesis, the n pencils remaining are all the same color. Put that pencil back, and take away another one: the n pencils remaining are again the same color; consequently, all the n+1 pencils are the same color, so P(n+1) is true.

Therefore P(n) is true for all n, and we are done with the proof.

What is the problem with the proof above?

- 3. Let X, Y, Z be three sets and $f: Y \to Z, g: X \to Y$ two bijective maps.
- What is the domain of $f \circ g$? What is its range?
- Same questions for $(f \circ g)^{-1}$. Prove that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
- 4. Let X, Y, Z be three sets and $f: X \to Y, g: Y \to Z$ be functions. Prove the following assertions:
- $(g \circ f \text{ one-to-one}) \Rightarrow (f \text{ one-to-one})$
- $(g \circ f \text{ onto}) \Rightarrow (g \text{ onto})$.

Are the converse assertions true in general?

- 5. Let $g, h: \mathbb{R} \to \mathbb{R}$ be the functions defined by $g(x) = x^2$, h(x) = x + 2. Let $h = g \circ f$.
- Determine $h(\mathbb{R})$ and h(E), where $E = \{x \in \mathbb{R} : 0 \le x \le 1\}$.
- Determine $h^{-1}(F)$ and $h^{-1}(G)$, where $F = (1, +\infty)$ and G = [0, 4].
- 6. Let $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ be the functions defined by

$$\forall k \in \mathbb{N} \ f(k) = 2k \text{ and } g(k) = \begin{cases} \frac{k}{2} & \text{if } k \text{ is even} \\ \frac{k+1}{2} & \text{if } k \text{ is odd} \end{cases}.$$

- Determine if f is one-to-one, onto; same questions for g.
- Compute $f \circ g$ and $g \circ f$; determine whether they are one-to-one, onto.