
We wish to prove by induction that, for all n ∈ N,
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Call this statement P (n).

(a) Initialization: P (1) is the statement 1 ≥ 1, which is true.

(b) Induction: assume that P (n) is true for some n. Then, we have
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the inequality we’re looking for, it is therefore enough to prove that
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To show this, we use the conjugate quantity method:
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This last inequality is just what we were looking for to deduce from
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n + 1; in other words, P (n+1) is true.

Conclusion: (a) shows that P (1) is true, and (b) proves that the prop-
erty P (n) is hereditary, i.e that if P (n) is true then P (n + 1) is also
true; both statements together imply, by the induction theorem, that
P (n) is true for all n.
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