University of Illinois at Urbana-Champaign Fall 2006
Math 444 Group E13

Graded Homework IV
Correction.

1. Compute, if they exist, sup(A4) and inf(A) in the following cases. In each case, state whether A admits a

maximal element, and do the same for minimal elements.
1
n—u p
A= L:neN}; A={———:q,p€e N}L
e } { pa R }

1
n

1 2
n—= n*-1
Correction. In the first case, we have, for all x € A, that x = o= for some n € N. From this,

1 2
we see that 0 <z < 1for all z € A, so A is bounded. Furthermorz,—g g A, :o :i—nlce 0 is a lower bound of A we
have 0 = inf(A) and 0 is the minimal element of A. Notice that, for all n € N, one has 227: =1- nQL—Fl
T < % < % for all n > 2, we know, by the archimedean property of the reals, that for all € > 0
there is € A such that 1 — e < z; therefore, 1 = sup(A). Since 1 ¢ A, A does not have a maximal element.

< 1. Thus A is bounded. Furthermore, letting

Since

In the second case, we have, for all p,q € N, that 0 < P
pq+1

p =1, we see that

1

1 € Afor all ¢ € N, so the archimedean property of the reals implies that for any € > 0
q

there exists a € A such that a < ¢; since 0 is a lower bound of A, this proves that 0 = inf(A) and that A

P 1
=1- € Afor all p e N, so
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the same reasoning as above proves that 1 = sup(A), and A doesn’t have a maximal element.

doesn’t have a minimal element. Similarly, letting ¢ = 1, we see that

2. Consider the set A of all x € R such that there exist two natural integers p,q satisfying p < ¢ and

2p? — 3q
xT=——.
P’ +4q

(a) Prove that —3 is a lower bound of A, and 2 is an upper bound.

(b) Compute inf(A) and sup(A)
2p% —3q  2(p? -5 5 2p% — 3

Correction. One has p2 ¢ _ (p —;—q) 4_9_ 5 9 This shows that 2 > y for all p,q € N,
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in other words it proves that 2 is an upper bound of A. Similarly, one has —— = —3 + > —3, so

P*+q P +q
—3 is a lower bound of A.

5
(b) Letting p = 1, we see that, for all ¢ > 1, —3 + P € A. Since the archimedean property of R implies
q
5
that for all ¢ > 0 there exists ¢ such that P < e, we see that for all ¢ > 0 there exists ¢ such that
q

-3+ % < =3+ ¢, in other words a € A such that a < —3 4 ¢. Since we already saw that —3 is a lower
q

bound of A, this implies that —3 = inf(A).
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Similarly, set ¢ = p + 1; we then see that, for any p € N, 2 — ﬁ = —5% € A. Since
pP+p+1 p+1+5
1+1
T—il < — for all p € N, the archimedean property of the reals is again enough to ensure that, for
p »

any € > 0, there exists a € A such that a > 2 —¢; since 2 is an upper bound of A, this means that 2 = sup(A).

3 (a). Prove that, for any z € R, E(x) = sup({n € Z: n < z}) exists, and that it is the unique integer n such



hat n <z < n+1 (we more or less saw this in class). Use this characterization of E(z) to solve the questions
b), (c), (d) and (e) below.

b) Show that, for all € R and all n € Z, one has E(z + n) = E(z) + n.

c) Prove that, for all ,y € R one has E(z) + E(y) < E(z+y) < E(z)+ E(y) +1

d) Given z € R what is the value of E(x) + E(—x)? (Hint : distinguish the cases = € Z and = ¢ Z).

E
) Show that, for all z € R and all n € N, one has E(z) — B(Z"2)y.

Correction. (a) The set {n € Z: n < z} is bounded above by z, so it admits a least upper bound, which,

as indicated, we denote by E(x). Furthermore, by definition of the least upper bound we know that for any

€ > 0 there is n. € Z such that n. < z and E(z) —e < n. < E(z) (1). This means that, for any ¢,&’ > 0
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we have |n. — no| < e+ ¢’. Thus, as soon as € < 3 and ¢’ < =, one has |n. — n./| < 1; since n. — n € Z,

this means that n. — ne = 0, in other words that n. = n. = n. Then (1) yields |n — E(z)| < e for all € > 0,
so E(x) = n. We finally proved that E(z) € Z. Since z is an upper bound of the set {n € Z: n < z}, we
have E(z) < x by definition of the least upper bound. Also, if we had E(z) + 1 < z, then we would have
Ez)+1e{neZ:n<z};since E(x) =sup{n € Z: n <z}, and E(z) + 1 > E(x), this is impossible. This
means that we indeed have E(z) < x < E(z) + 1. Assume that another integer n has this property ; then we
have both n <z < E(z) + 1, and E(z) < x <n+ 1, so that n < F(z) + 1 and E(z) < n + 1, in other words
[n — E(z)| < 1, so that n = E(z) : E(x) indeed is the unique integer such that F(x) <z < x + 1.

(b) Let n € Z; by definition of E(x), one has E(x) <z < E(z)+1, so that E(z)+n <z+n < (E(z)+n)+1;
since E(x) + n is an integer, the characterization obtained in question (a) enables us to conclude that
E(x +n) = E(x) + n.

(c) One has E(z) < z < E(zx) +1 and E(y) < y < E(y) + 1. This implies that E(z) + E(y) < z +y <
E(x) 4+ E(y) + 2. The left-hand part of the inequality implies that E(x) + E(y) is an integer which is smaller
than z+y, so E(x)+E(y) < E(xz+y); the right-hand part of the inequality means that E(z)+ E(y)+2 > z+y,
sothat E(z+y) < E(x)+E(y)+2; since these are integers, this may be rewritten as E(x+y) < E(z)+E(y)+1.
(d) If © € Z, then one has F(x) = =, because z is such that x < x < z + 1. For the same reason,
E(—z) = —z, so in that case we have E(x) + E(—x) = 0. If z ¢ Z, then one has F(z) < z < E(z) + 1, so
—E(x)—1 < —x < —E(—); this implies that E(—x) = —E(x)—1, so in that case we get E(z)+FE(—z) = —1.
(e) For all z € R and all n € N, one has nE(z) < nz, which implies that nE(z) < E(nz) (because E(nz)
is the largest integer smaller that x). So, we have nE(z) < E(nz) < nz. Dividing by n, we obtain that

< z. Since z < E(z) + 1, we finally obtain F(z) < < E(x) 41, and this means that

4. Let {a;: i € N} and {b;: i € N} be two bounded countable subsets of R.

Prove that {|a; — b;|: i € N} is bounded, and that |sup(a;) — sup(b;)| < sup(Ja; — b;|) .

Correction. For all i« € N one has 0 < |a; — b;| < |a;| + |b;] < supla;|: i € N+ sup{|b;|: ¢ € N} (the two

suprema on the right exist because of the assumption stating that {a;: i € N} and {b;: ¢ € N} are bounded).

Thus 0 is a lower bound of {|a; — b;|: i € N}, and sup|a;|: i € N+ sup{|b;|: i € N} is an upper bound, which

shows that this set is bounded.

To prove the inequality, pick some £ > 0; there exists j € N such that a; > sup(a;) —e. We then have

sup(a;) — sup(b;) < a; — sup(b;) + €; since sup(b;) > b;, we see that sup(a;) — sup(b;) < a; —b; +¢ <

|a; — b;| + €. This implies that sup(al) —sup(b;) < sup(Ja; — b;|) + €; since this is true for all € > O we see

that sup(al) — sup(b;) < sup(|a; — b;|). Thus, we have proved that, for any two bounded countable subsets
= {a;: i € N} and B = {b;: i € N}, one has sup(a;) — sup(b;) < sup(|a; — b;]) . Applying this result to

A’ B and B’ = A, we get sup(b;) — sup(a;) < sup(|b; — a;|) . Putting these two inequalities together, we

finally obtain that |sup(ai) —sup(b;)| < sup(|a; — bi]).



