Graded Homework IV Correction.

1. Compute, if they exist, $\sup(A)$ and $\inf(A)$ in the following cases. In each case, state whether A admits a maximal element, and do the same for minimal elements.

$$A = \{ \frac{n - \frac{1}{n}}{n + \frac{1}{n}} : n \in \mathbb{N} \}; A = \{ \frac{p}{pq + 1} : q, p \in \mathbb{N} \}.$$

Correction. In the first case, we have, for all $x \in A$, that $x = \frac{n - \frac{1}{n}}{n + \frac{1}{n}} = \frac{n^2 - 1}{n^2 + 1}$ for some $n \in \mathbb{N}$. From this, we see that $0 \le x \le 1$ for all $x \in A$, so A is bounded. Furthermore, $0 \in A$, so since 0 is a lower bound of A we have $0 = \inf(A)$ and 0 is the minimal element of A. Notice that, for all $n \in \mathbb{N}$, one has $\frac{n^2 - 1}{n^2 + 1} = 1 - \frac{2}{n^2 + 1}$. Since $\frac{2}{n^2 + 1} \le \frac{2}{n^2} \le \frac{1}{n}$ for all $n \ge 2$, we know, by the archimedean property of the reals, that for all $\varepsilon > 0$ there is $x \in A$ such that $1 - \varepsilon < x$; therefore, $1 = \sup(A)$. Since $1 \not\in A$, A does not have a maximal element. In the second case, we have, for all $p, q \in \mathbb{N}$, that $0 < \frac{p}{pq+1} < 1$. Thus A is bounded. Furthermore, letting p = 1, we see that $\frac{1}{q+1} \in A$ for all $q \in N$, so the archimedean property of the reals implies that for any $\varepsilon > 0$ there exists $a \in A$ such that $a < \varepsilon$; since 0 is a lower bound of A, this proves that $0 = \inf(A)$ and that A doesn't have a minimal element. Similarly, letting q = 1, we see that $\frac{p}{p+1} = 1 - \frac{1}{p+1} \in A$ for all $p \in \mathbb{N}$, so the same reasoning as above proves that $1 = \sup(A)$, and A doesn't have a maximal element.

- 2. Consider the set A of all $x \in \mathbb{R}$ such that there exist two natural integers p,q satisfying p < q and $x = \frac{2p^2 3q}{p^2 + q}$.
- (a) Prove that -3 is a lower bound of A, and 2 is an upper bound.
- (b) Compute $\inf(A)$ and $\sup(A)$

Correction. One has $\frac{2p^2-3q}{p^2+q}=\frac{2(p^2+q)-5q}{p^2+q}=2-\frac{5q}{p^2+q}$. This shows that $2\geq \frac{2p^2-3q}{p^2+q}$ for all $p,q\in\mathbb{N}$, in other words it proves that 2 is an upper bound of A. Similarly, one has $\frac{2p^2-3q}{p^2+q}=-3+\frac{5p^2}{p^2+q}\geq -3$, so -3 is a lower bound of A.

(b) Letting p=1, we see that, for all q>1, $-3+\frac{5}{q+1}\in A$. Since the archimedean property of $\mathbb R$ implies that for all $\varepsilon>0$ there exists q such that $\frac{5}{q+1}<\varepsilon$, we see that for all $\varepsilon>0$ there exists q such that $-3+\frac{5}{q+1}<-3+\varepsilon$, in other words $a\in A$ such that $a<-3+\varepsilon$. Since we already saw that -3 is a lower bound of A, this implies that $-3=\inf(A)$.

Similarly, set q=p+1; we then see that, for any $p\in\mathbb{N},\ 2-\frac{5(p+1)}{p^2+p+1}=2-5\frac{1+\frac{1}{p}}{p+1+\frac{1}{p}}\in A$. Since $5\frac{1+\frac{1}{p}}{p+1+\frac{1}{p}}\leq \frac{10}{p}$ for all $p\in\mathbb{N}$, the archimedean property of the reals is again enough to ensure that, for

 $p+1+\frac{1}{p}-p$ any $\varepsilon>0$, there exists $a\in A$ such that $a\geq 2-\varepsilon$; since 2 is an upper bound of A, this means that $2=\sup(A)$.

3 (a). Prove that, for any $x \in \mathbb{R}$, $E(x) = \sup(\{n \in \mathbb{Z} : n \le x\})$ exists, and that it is the unique integer n such

that $n \le x < n+1$ (we more or less saw this in class). Use this characterization of E(x) to solve the questions (b), (c), (d) and (e) below.

- (b) Show that, for all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$, one has E(x+n) = E(x) + n.
- (c) Prove that, for all $x, y \in \mathbb{R}$ one has $E(x) + E(y) \leq E(x + y) \leq E(x) + E(y) + 1$.
- (d) Given $x \in \mathbb{R}$, what is the value of E(x) + E(-x)? (Hint : distinguish the cases $x \in \mathbb{Z}$ and $x \notin \mathbb{Z}$).

(e) Show that, for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$, one has $E(x) = E(\frac{E(nx)}{n})$.

Correction. (a) The set $\{n \in \mathbb{Z} : n \le x\}$ is bounded above by x, so it admits a least upper bound, which, as indicated, we denote by E(x). Furthermore, by definition of the least upper bound we know that for any $\varepsilon > 0$ there is $n_{\varepsilon} \in \mathbb{Z}$ such that $n_{\varepsilon} \leq x$ and $E(x) - \varepsilon \leq n_{\varepsilon} \leq E(x)$ (1). This means that, for any $\varepsilon, \varepsilon' > 0$ we have $|n_{\varepsilon} - n_{\varepsilon'}| \leq \varepsilon + \varepsilon'$. Thus, as soon as $\varepsilon < \frac{1}{2}$ and $\varepsilon' < \frac{1}{2}$, one has $|n_{\varepsilon} - n_{\varepsilon'}| < 1$; since $n_{\varepsilon} - n_{\varepsilon'} \in \mathbb{Z}$, this means that $n_{\varepsilon} - n_{\varepsilon'} = 0$, in other words that $n_{\varepsilon} = n_{\varepsilon'} = n$. Then (1) yields $|n - E(x)| \leq \varepsilon$ for all $\varepsilon > 0$, so E(x) = n. We finally proved that $E(x) \in \mathbb{Z}$. Since x is an upper bound of the set $\{n \in \mathbb{Z} : n \leq x\}$, we have $E(x) \leq x$ by definition of the least upper bound. Also, if we had $E(x) + 1 \leq x$, then we would have $E(x) + 1 \in \{n \in \mathbb{Z} : n \le x\}$; since $E(x) = \sup\{n \in \mathbb{Z} : n \le x\}$, and E(x) + 1 > E(x), this is impossible. This means that we indeed have $E(x) \le x < E(x) + 1$. Assume that another integer n has this property; then we have both $n \le x < E(x) + 1$, and $E(x) \le x < n + 1$, so that n < E(x) + 1 and E(x) < n + 1, in other words |n-E(x)|<1, so that n=E(x):E(x) indeed is the unique integer such that $E(x)\leq x< x+1$.

- (b) Let $n \in \mathbb{Z}$; by definition of E(x), one has $E(x) \le x < E(x) + 1$, so that $E(x) + n \le x + n < (E(x) + n) + 1$; since E(x) + n is an integer, the characterization obtained in question (a) enables us to conclude that E(x+n) = E(x) + n.
- (c) One has $E(x) \le x < E(x) + 1$ and $E(y) \le y < E(y) + 1$. This implies that $E(x) + E(y) \le x + y < 1$ E(x) + E(y) + 2. The left-hand part of the inequality implies that E(x) + E(y) is an integer which is smaller than x+y, so $E(x)+E(y) \le E(x+y)$; the right-hand part of the inequality means that E(x)+E(y)+2 > x+y, so that E(x+y) < E(x) + E(y) + 2; since these are integers, this may be rewritten as $E(x+y) \le E(x) + E(y) + 1$. (d) If $x \in \mathbb{Z}$, then one has E(x) = x, because x is such that $x \leq x < x + 1$. For the same reason, E(-x) = -x, so in that case we have E(x) + E(-x) = 0. If $x \notin \mathbb{Z}$, then one has E(x) < x < E(x) + 1, so -E(x)-1<-x<-E(-x); this implies that E(-x)=-E(x)-1, so in that case we get E(x)+E(-x)=-1. (e) For all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$, one has $nE(x) \leq nx$, which implies that $nE(x) \leq E(nx)$ (because E(nx)is the largest integer smaller that x). So, we have $nE(x) \leq E(nx) \leq nx$. Dividing by n, we obtain that $E(x) \leq \frac{E(nx)}{n} \leq x$. Since x < E(x) + 1, we finally obtain $E(x) \leq \frac{E(nx)}{n} < E(x) + 1$, and this means that $E(\frac{E(nx)}{n}) = E(x)$.

4. Let $\{a_i: i \in \mathbb{N}\}$ and $\{b_i: i \in \mathbb{N}\}$ be two bounded countable subsets of \mathbb{R} .

Prove that $\{|a_i - b_i| : i \in \mathbb{N}\}\$ is bounded, and that $|\sup(a_i) - \sup(b_i)| \le \sup(|a_i - b_i|)$.

Correction. For all $i \in \mathbb{N}$ one has $0 \le |a_i - b_i| \le |a_i| + |b_i| \le \sup |a_i| : i \in \mathbb{N} + \sup \{|b_i| : i \in \mathbb{N}\}$ (the two suprema on the right exist because of the assumption stating that $\{a_i: i \in \mathbb{N}\}$ and $\{b_i: i \in \mathbb{N}\}$ are bounded). Thus 0 is a lower bound of $\{|a_i - b_i| : i \in \mathbb{N}\}$, and $\sup |a_i| : i \in \mathbb{N} + \sup\{|b_i| : i \in \mathbb{N}\}$ is an upper bound, which shows that this set is bounded.

To prove the inequality, pick some $\varepsilon > 0$; there exists $j \in \mathbb{N}$ such that $a_j \geq \sup(a_i) - \varepsilon$. We then have $\sup(a_i) - \sup(b_i) \le a_j - \sup(b_i) + \varepsilon$; since $\sup(b_i) \ge b_j$, we see that $\sup(a_i) - \sup(b_i) \le a_j - b_j + \varepsilon \le \varepsilon$ $|a_j - b_j| + \varepsilon$. This implies that $\sup(a_i) - \sup(b_i) \le \sup(|a_i - b_i|) + \varepsilon$; since this is true for all $\varepsilon > 0$, we see that $\sup(a_i) - \sup(b_i) \leq \sup(|a_i - b_i|)$. Thus, we have proved that, for any two bounded countable subsets $A = \{a_i : i \in \mathbb{N}\}$ and $B = \{b_i : i \in \mathbb{N}\}$, one has $\sup(a_i) - \sup(b_i) \le \sup(|a_i - b_i|)$. Applying this result to A' = B and B' = A, we get $\sup(b_i) - \sup(a_i) \le \sup(|b_i - a_i|)$. Putting these two inequalities together, we finally obtain that $|\sup(a_i) - \sup(b_i)| \le \sup(|a_i - b_i|)$.