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Integration : correction of the exercises.

1. (a) Assume that f: [a,b] — R is a continuous function such that f(z) > 0 for all « € (a,b), and fub f(t)dt = 0.
Show that f(x) =0 for all = € [a,b]; can you use the fundamental theorem of calculus to prove this result ?
(b) Use this to show that if f is continuous on [a, ] and f: f(¢)dt = 0 then there must exist ¢ € (a,b) such
that f(t) = 0.

Correction. (a) First,notice that, since f is continuous, proving that f(¢) = 0 for all ¢ € [a, b] is the same as
proving that f(¢t) = 0 for all ¢ € (a,b). Now, let us prove the contraposite of the result we are interested in;
in other words, let us prove that if f(z) > 0 for some x € (a,b), f(x) > 0 for all x € (a,b) and f is continuous
on [a,b] then f; f(t)dt > 0. To prove this, notice that since f is continuous at x there exists 0 > 0 such that

f(=)
Fly) 2 =5

for all y € [a,b] such that |y — x| < ¢. If § is small enough, [x — d,z + d] C [a,b]; but then

/w+5 F(t)dt > 25@ —6f(z)>0.
z—0

Since f(y) > 0 for all y € [a, b], we know that f;ﬂs f(#)dt > 0 and f:ﬁ% f(t)dt > 0; thus the additivity theorem

shows that f; f(t)dt > 0, which is what we wanted.

One can indeed prove this result using the fundamental theorem of calculus (and the mean value theorem) :
Set F(z) = [” f(t)dt; then F is differentiable and F'(z) = f(x) > 0, hence F is increasing. We have F(a) = 0
by definition, and the assumption that f; f(t)dt = 0 gives F(b) = 0. Since F' is increasing, this means that
actually F' is constant on [a, b], thus its derivative is equal to 0 on [a, b], and this gives f(z) = 0 for all z € [a, b].
(b) First, notice that if f doesn’t take the value 0 on (a,b) then f is either always > 0 or always < 0 on [a, ]
(because of the intermediate value theorem). But then the preceding quesion shows that one cannot have
ff f(t)dt = 0. Hence there must exist ¢ € (a,b) such that f(¢) = 0.

2. Use the result of the preceding exercise to solve the following questions.
b

(a) Find all the continuous functions f: [a,b] — R such that / f(@®)dt = (b —a)sup{|f(x)|: = € [a,b]}.
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(b) Assume f: [0,1] — R is a continuous function such that / f(t)dt = = ; prove that there exists a € (0,1)
0

such that f(a) = a.

(c) Show that if f, g are continuous on [0, 1] and fol ft)dt = fol g(t)dt then there must exist some ¢ € [0, 1]
such that f(z) = g(c).

Correction. (a) The function g defined on [a,b] by g(x) = sup{|f(z)|: € [a,b]} — f(x) is continuous,
and g(x) > 0 for all z € [a,b]. The assumption f: f@®)dt = (b — a)sup{|f(z)|: € [a,b]} is equivalent to
ffg(t)dt = 0, which in turn is equivalent to g(z) = 0 for all € [a,b]. This means that the functions that
satisfy the equality we are interested in are the functions f which are constant on [a, b], and nonnegative.

(b) Assume that for all ¢ € (0,1) one has f(t) > ¢; then we know that fol(f(t) —t)dt > 0, and this is the

same as saying that fol ft)ydt > % Similarly, if f(t) < ¢ for all ¢t € (0,1) one gets fol ft)ydt > % Thus, it is
only possible that fol f(t)dt = 1 if there exist ¢,¢’ € (0,1) such that f(t) > t, f(t') < t'. If either f(t) =t
or f(t') =t we are done; otherwise the function x — f(x) — x changes sign on (0, 1). Since this function is
continuous, the mean value theorem ensures that it must have a zero on (0, 1), which shows that there exists
a € (0,1) such that f(a) = a.

(c) This is a direct consequence of question 1(b) (applied to the continuous function f — g).



3. Using Riemann sums, compute the limits (when n — +00) of the following sequences :

n

1 " (k—1)x km = (—D)F
Zn+k’ ;”2 =R Zn?” ; sin( sin(——— ™ )111(1+51n(2n)) ; P
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Correction. Here, the trick is to recognize Riemann sums : the first one is Z 5 n E T and this
n n

k=1 k=1 n

1
is a Riemann sum for the function z — T for a tagged partition of [0, 1] with mesh 1/n. Thus, we obtain
x

n

. 1 bodt
hm(z m) :‘/0 Tt = In(2).

k=1
- n 1 & 1 - n Loat
The second one is similar : Z — == Z ———, hence 1im(z —) = / —=
2 1 12 2> 2 4 12 2
7Tkzln R iy () Zn? 4k o 1+t
arctan(l) — arctan(0) = 1
The third one is more of the same : Z K 1 2": (ﬁ)2 hence lim ( 2": k—Q) = /1 t2dt = -
=" —nkzln ’ k:1n3 o -

The fourth one looks nasty, but again it is a Riemann sum for the continuous function ¢ — In(1 +¢) on [0, 1],

with regard to the tagged partition {[sin ((k;) ) sin (’”)] ,sin (’2“—;‘)}, the mesh of which is smaller than i

(use the mean value theorem to prove this). Hence when n — +o0 the sum converges to fol In(1 4+ t)d¢, which
is computable using integration by parts :

1

/1 In(1+6)dt = [(t + 1) In(t +1)],_, — / 1dt = 21n(2) —
0 t

Jt=0

The last one doesn’t look like a Riemann sum ; there is some work to be done before one can see a Riemann
sum appear. Assume first that n = 2p; one has

[
N

I

I

[
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Hence, when n = 2p, one has = —Z ol The sum on the right is actually a
k=1 k:p+1 k=1 P
Riemann sum for the continuous function ¢ — on [0, 1] and the tagged partition {[k;1 , %], %}, the mesh of
= In(2). Since ugp11 — ugy converges

1+L
S 1
which is % (can you see why 7). So, we see that ug, converges to — [ 1—_“

to 0, we see that one also has lim(usp41) = —1In(2). A theorem we saw in class ensures that (u,) is convergent
and lim(u,) = —In(2).

k —1 !
4. Let f,g:[0,1] — R be continuous functions. Show that lim — Z f(=)g(——) = / f(®)g(t)dt
n 0

n—oo n n

k:
Correction. This is trickier than it looks : if we had f(f)g(f) in the sum, then it would just be a usual
n’’'n

Riemann sum and we could apply the results seen in clags. Unfortunately, this is not what we have ; how can
we deal with this? One can proceed as follows : first, write that

F A0 = T e + L) ()

k=1 k=1

3\H
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The first term converges to fol f@)g(t)dt, so we want to prove that the second term converges to 0. For that,
we use the fact that g is uniformly continuous on [0,1]; given € > 0, there exists 0. such that |z — y| < 0. =



|f(z) — f(y)| < e for all z,y € [a,b]. Hence if n is big enough one has |g(%1) — g(%=1)| < ¢, so that
L, ky, k- k
RIS BRI

Since f is Riemann-integrable |f| also is Riemann-integrable, hence 1 37" | |f(£)[ converges to fab |f(t)|dt.
So if n is big enough one has £ >0 [f(£)] < f |f(t)|dt + 1. Puttmg all this together, we get that for any
there exists K € N such that |% S F(E)(g(EL) —g(E)) < E(If |f(t)|dt + 1) for all n > K. This proves

n

that L 370 f(E)(g(E2L) — g(£)) converges to 0 (when n — +00), which is what we needed to prove.

1
5. Let f:[0,1] — R be a continuous function such that / f(u)u*du = 0 for all k € {0,...,n}. Show that f
0

has at least n + 1 distinct zeros in (0, 1).
Hint : prove the result by induction using integration by parts and Rolle’s theorem.
Correction. Following the hint, let us prove the result by induction. For n = 0 the result is a direct consequence

1
of exercise 1; assume the result is true for n. Then pick a continuous function f such that / fw) ukdu =0

for all k € {0,...,n+ 1}, and set F(z / f(t)dt. The assumption on f for k = 0 yields F(0) = F(1) = 0.

Also, for any k£ = 1,...,n, one has

1 1
/ uFdu = [kuk_l]; - k/ P F (u)du
0 0

1
Thus we obtain / uF = F(u)du = 0 for all k = 1,...,n, which yields (because of our induction hypothesis)

0
that F has at least n distinct zeros in (0, 1). Since F(0) = F(1) = 0, F must have at least n 4 2 distinct zeros
on [0,1]. And F’' = f has a zero between any two zeros of F', which shows that f has at least n + 1 distinct
zeros on (0, 1).

7.1.13. We need to use the definition of a Riemann integral ; assume the points ¢y, ..., ¢, are indexed in such
a way that c; < cy < ... <cuo1 <cp, and set M = max{|f(c;)|: i = 1,...,n}. Then pick a tagged partition
P = {[xi—hxi],ti}i:l,.“m of [Cl, b] One has

m m m

P)| = IZ — i) f(t)| < ) (@i = wima) ()] < ||75||Z|f(tz)l

=1

Since there are only n points in the interval at which f(z) # 0, and at each of these points one has [f(x)| < M,
we see that [S(f,P)| < ||P|.2n.M (because there can be at most two t; with the same value, and at most n
points at which f is nonzero, so at most 2n of them can appear in the sum) But then (since n, M are constant)
we are done : if one sets 0. = 5.5, what we have proved implies that for any partition P with mesh less than

0. one has |S(f, P)| < e. This is exactly what we needed to prove that f € R([a,b]) and f f(z)dx = 0.

7.1.14. This is a consequence of the preceding exercise : indeed, the function f — g satisfies the condition of
exercise 7.1.13, hence f — g € R]a,b] and ff(f(t) —g(t))dt = 0. But then f = (f — g) + g is the sum of two
Riemann-integrable functions, so f € R([a,b]) and f; ft)dt = f;(f(t) —g(t))dt + fj g(t)dt = f;g(t)dt

7.1.15. Let us follow the hint : pick ¢ > 0, set 6. = ;= and pick a tagged partition P = {lric1, i), ti}i=1,...n
with mesh < §.. Then by definition one has S(p,P) = 3.1 (2; — @, )¢(t;). There are two possibilities for
¢(t;) : either it is equal to 0, or it is equal to a. Only the ¢;’s that belong to [c,d] contribute to the sum. Let
I={i:t; €[e,d]}. Then S(<p, ) =a (@i —wq). Since t; € [w;_1, 2], t; can only be in [c,d] if (z;-1 < a
and x; > a), or (x;—1,x; are both in [¢,d]), or (x;—1 < d and z; > d). The first and third condition can each



be satisfied at most by one index, and the remaining [v;_1,z;] from a partition of a subinterval of [c,d], s
that S(p,P) < a(d — ¢) + 20.a. Similarly, the "chunk" of [z,d] that can be missed by the ¢;’s is at most 25
long, hence S(p,P) > a(d — ¢) — 25.cv. This shows that whenever P is a tagged partition with mesh less than
0e = 7= one has

a(d=c)- = <8 P) ald—e)+ 2

This is enough to show that ¢ € R([a,b] and fab p(t)dt = a(d — ¢).

—-M ifx€la,c)

f(z) ifz € e and we(z) =

7.2.11. Let’s follow the hint and define (given € > 0) a.,w: by a.(z) = {

M ifz€a,c)
f(z) ifz € e,
are both Riemann-integrable on [a, b] because of the Additivity theorem. Finally, one has f:(wg(t) —a.(t))dt =

[ 2Mdt = 2M (c — a) by definition of a., w.. Hence if one sets ¢ = a + 35; we get that fab(wg(t) —a.(t)) <e.
So we managed to prove that the assumptions of the Squeeze Theorem are satisfied, hence f € R([a, b]). Then
since |f(z) < M for all z € [a,b] we see that | [7 f(t)dt| < M(c — a), so lime_, [ f(t)dt = 0. Thus the

additivity theorem gives lim, ., [ f(t)dt = [ f(t)dt

(cis to be specified later). Then one has a.(2) < f(x) < we(z) for all x € [a, b]. Also, a., we

7.2.12. This is a consequence of the preceding exercise : |g(z)| < 1 for all € [0, 1], and ¢ is continuous on
[c,1] for all ¢ € (0,1). Hence it is Riemann-integrable on [0, 1].

7.2.16. Set F(x f f(®)dt; since f is continuous on [a,b], the fundamental theorem of calculus ensures
that F is dlfferentlable on [a,b], hence it satisfies the assumptions of the Mean Value theorem on this interval,
so there exists ¢ € (a,b) such that F(b) — F(a) = F'(c)(b — a). This is the same as saying that there exists

¢ € (a,b) such that fab ft)ydt = f(c)(b—a).

One can also solve this exercise differently : one has f([a,b]) = [m, M] by the theorems about continuous
b

functions, from which we get m(b—a) < f; f(t)dt < M(b—a) But then m < % < M, hence there exists

¢ such that f(c) = Lo f()dt , which is the same as saying that (b — a)f(z) = ff ft)de

b—a

7.2.17. We can apply a similar method to the one in the exercise above : denote again f([a,b]) by [m, M].
Then one has fab f(tgt) — mf(f g(t)dt = fb(f(t) —m)g(t)dt > 0 (because f(t) > m and g(t) > 0 for all
t € [a,b]. Similarly, one finds that f: ft)g(t)dt < Mf g(t)dt. Put together, this yields

m < b /f t)dt < M .
t)dt

Thanks to the intermediate value theorem, we can now conclude there exists ¢ € [a,b] such that f(c) =
o0 q(t)dt f f(t)g(t)dt, which is the same as f f(t) f g(t)dt. This result is clearly false if one no

longer assumes that g takes nonnegatlve values ; for instance, let a = —1, b =1, f(t) =t and g(t) = t. Then
one has f;f(t) (t)dt =1 but f(c) f g(t)dt =0 for all ¢ € [0, 1].

7.3.11. Here one needs to apply the Chain Rule (and the fundamental theorem of calculus), which yields :
1 2 2
(a) In this case F(x) = G(x?), where G'(z) = T3 ; hence F'(z) = o (a: s = 1—|—$x6'
(b) This time F(z) = G(z) — G(2?), where G'(z) = V1 + 2. Hence F'(z) = G'(x) — 22G'(2?) = V1 + 22 —
221 + 2.

7.3.13. Set first F(x fo t)dt. Then we know that F is differentiable and F’'(z) = f(z). By definition, we
have g(z) = F(z + c) F(z— c) hence g is a composition of differentiable functions. Thus g is differentiable
on R, and the Chain Rule yields ¢'(z) = F'(z+¢) — F'(x —¢) = f(x +¢) — f(z —¢).




7.3.14. First notice that the assumption on f implies that fol f(t)dt = 0 (take z = 0). Set F(z) = [; f(

Then the assumption on F become F(x) = F(1) — F(z) for all z € [0,1], and since F(1) = 0 this ylelds
F(z) = 0 for all € [0,1]. Since f is continuous the fundamental theorem of calculus gives F/ = f, hence
f(z) =0 for all z € [0,1].

7.3.21. (a) The functions x — (tf(z) + g(z))? and z — (tf(x) — g(x))? are both Riemann-integrable on [a, b]

and take nonnegative values, hence f;(tf(u) + g(u))%dt > 0.
(b) We have :

b b b

/ (tf (u)+g(u)*du = / (2 2 (u)+ 2t f (u)g(u) +g(u)?)du = t2/ flu du+2t/ flu du+/ g(u)’du .
. . . o . b 2 b 2 b 2

Since the quantity on the left is positive, we obtain —2t [’ f(u)g(u)du < t* [ f(u)*du+ [ g(u)?du. Hence for

any t > 0 we have —2 f; flw)g(u)du < tf: f(u)?du + ¢ f;g(u)Qdu. Similarly, using the fact that f;(tf(u) -

g(u))?du > 0, one obtains 2 ff fuw)g(u)du < tf: f(u)?du+ 1 f: g(u)?du. The two inequalities together yield

2|/£bf(U)g(U)du|f£ tjﬁbf<u>2du«+-1/Cbg<u>2du.

c) If f; J?(u)du = 0 then the result above implies that 2| ff fuw)g(u)du| < f g(u)?du for all t > 0. This is
only possible if [ f(u)g(u)du = 0.

(d) Since one has both fg < |fg| and —fg < |fg|, it is true that both fbf u)g(u)du < fb |f(u)g(u)|du and
—f: flu)g(u)du < f: |f(u)g(u)|du. This means that |f: fu)g(u)du| < f |f(w)g(u)|du, Wthh is equ1valent
to the inequality on the left.

To prove the inequality on the right,recall that we know from (b) (applied to |f|,|g|) that ¢ f f2(u)du +

2t fb |f(u |du+f g u)?du > 0 for all t € R. This means that the polynomial function t +— 2 f 2 (uw)du+
2t f |f(u)g(u |du + f g — u)?du keeps a constant sign on R, and this is possible only if its discriminant
(fa |f ) 4fa 2 (u)du fa g(u)%du is < 0. In other words, one must have

(AWM>M) < [ stran [ g

To get the inequality we are asked to prove, apply this inequality to the functions f(¢t) = 1/t and g(t) = 1 :
b
this yields (f: dtt) < [Pt f dt = $)(b—a)= (b aa) Taking the square root, one has

a 2
fﬁ<ww)
.t~ Jab




