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Integration : correction of the exercises.

1. (a) Assume that f : [a, b] → R is a continuous function such that f(x) ≥ 0 for all x ∈ (a, b), and
∫ b

a
f(t)dt = 0.

Show that f(x) = 0 for all x ∈ [a, b] ; can you use the fundamental theorem of calculus to prove this result ?

(b) Use this to show that if f is continuous on [a, b] and
∫ b

a
f(t)dt = 0 then there must exist t ∈ (a, b) such

that f(t) = 0.
Correction. (a) First,notice that, since f is continuous, proving that f(t) = 0 for all t ∈ [a, b] is the same as
proving that f(t) = 0 for all t ∈ (a, b). Now, let us prove the contraposite of the result we are interested in ;
in other words, let us prove that if f(x) > 0 for some x ∈ (a, b), f(x) ≥ 0 for all x ∈ (a, b) and f is continuous

on [a, b] then
∫ b

a
f(t)dt > 0. To prove this, notice that since f is continuous at x there exists δ > 0 such that

f(y) ≥ f(x)
2

for all y ∈ [a, b] such that |y − x| ≤ δ. If δ is small enough, [x− δ, x + δ] ⊂ [a, b] ; but then

∫ x+δ

x−δ

f(t)dt ≥ 2δ
f(x)

2
= δf(x) > 0 .

Since f(y) ≥ 0 for all y ∈ [a, b], we know that
∫ x−δ

a
f(t)dt ≥ 0 and

∫ b

x+δ
f(t)dt ≥ 0 ; thus the additivity theorem

shows that
∫ b

a
f(t)dt > 0, which is what we wanted.

One can indeed prove this result using the fundamental theorem of calculus (and the mean value theorem) :
Set F (x) =

∫ x

a
f(t)dt ; then F is di�erentiable and F ′(x) = f(x) ≥ 0, hence F is increasing. We have F (a) = 0

by de�nition, and the assumption that
∫ b

a
f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

actually F is constant on [a, b], thus its derivative is equal to 0 on [a, b], and this gives f(x) = 0 for all x ∈ [a, b].
(b) First, notice that if f doesn't take the value 0 on (a, b) then f is either always > 0 or always < 0 on [a, b]
(because of the intermediate value theorem). But then the preceding quesion shows that one cannot have∫ b

a
f(t)dt = 0. Hence there must exist t ∈ (a, b) such that f(t) = 0.

2. Use the result of the preceding exercise to solve the following questions.

(a) Find all the continuous functions f : [a, b] → R such that

∫ b

a

f(t)dt = (b− a) sup{|f(x)| : x ∈ [a, b]}.

(b) Assume f : [0, 1] → R is a continuous function such that

∫ 1

0

f(t)dt =
1
2
; prove that there exists a ∈ (0, 1)

such that f(a) = a.

(c) Show that if f, g are continuous on [0, 1] and
∫ 1

0
f(t)dt =

∫ 1

0
g(t)dt then there must exist some c ∈ [0, 1]

such that f(x) = g(c).
Correction. (a) The function g de�ned on [a, b] by g(x) = sup{|f(x)| : x ∈ [a, b]} − f(x) is continuous,

and g(x) ≥ 0 for all x ∈ [a, b]. The assumption
∫ b

a
f(t)dt = (b − a) sup{|f(x)| : x ∈ [a, b]} is equivalent to∫ b

a
g(t)dt = 0, which in turn is equivalent to g(x) = 0 for all x ∈ [a, b]. This means that the functions that

satisfy the equality we are interested in are the functions f which are constant on [a, b], and nonnegative.

(b) Assume that for all t ∈ (0, 1) one has f(t) > t ; then we know that
∫ 1

0
(f(t) − t)dt > 0, and this is the

same as saying that
∫ 1

0
f(t)dt > 1

2 . Similarly, if f(t) < t for all t ∈ (0, 1) one gets
∫ 1

0
f(t)dt > 1

2 . Thus, it is

only possible that
∫ 1

0
f(t)dt = 1

2 if there exist t, t′ ∈ (0, 1) such that f(t) ≥ t, f(t′) ≤ t′. If either f(t) = t
or f(t′) = t′ we are done ; otherwise the function x 7→ f(x) − x changes sign on (0, 1). Since this function is
continuous, the mean value theorem ensures that it must have a zero on (0, 1), which shows that there exists
a ∈ (0, 1) such that f(a) = a.
(c) This is a direct consequence of question 1(b) (applied to the continuous function f − g).



3. Using Riemann sums, compute the limits (when n → +∞) of the following sequences :

n∑
k=1

1
n + k

;
n∑

k=1

n

n2 + k2
;

n∑
k=1

k2

n3
;

n∑
k=1

(
sin(

kπ

2n
− sin(

(k − 1)π
2n

) ln(1 + sin(
kπ

2n
)
)
; ;

n∑
k=1

(−1)k

k
.

Correction. Here, the trick is to recognize Riemann sums : the �rst one is

n∑
k=1

1
n + k

=
1
n

n∑
k=1

1
1 + k

n

, and this

is a Riemann sum for the function x 7→ 1
1 + x

for a tagged partition of [0, 1] with mesh 1/n. Thus, we obtain

lim
( n∑

k=1

1
n + k

)
=

∫ 1

0

dt

1 + t
= ln(2).

The second one is similar :

n∑
k=1

n

n2 + k2
=

1
n

n∑
k=1

1

1 +
(

k
n

)2 , hence lim(
n∑

k=1

n

n2 + k2
) =

∫ 1

0

dt

1 + t2
=

arctan(1)− arctan(0) =
π

4
.

The third one is more of the same :

n∑
k=1

k2

n3
=

1
n

n∑
k=1

(k

n

)2
, hence lim

( n∑
k=1

k2

n3

)
=

∫ 1

0

t2dt =
1
3
.

The fourth one looks nasty, but again it is a Riemann sum for the continuous function t 7→ ln(1 + t) on [0, 1],
with regard to the tagged partition {

[
sin

( (k−1)π
2n

)
, sin

(
kπ
2n

)]
, sin

(
kπ
2n

)
}, the mesh of which is smaller than 1

2n

(use the mean value theorem to prove this). Hence when n → +∞ the sum converges to
∫ 1

0
ln(1 + t)dt, which

is computable using integration by parts :∫ 1

0

ln(1 + t)dt =
[
(t + 1) ln(t + 1)

]1
t=0

−
∫ 1

t=0

1dt = 2 ln(2)− 1 .

The last one doesn't look like a Riemann sum ; there is some work to be done before one can see a Riemann
sum appear. Assume �rst that n = 2p ; one has

u2p =
n∑

k=1

(−1)k

k
= −

n∑
k=1

1
k

+ 2
p∑

k=1

1
2k

= −
n∑

k=1

1
k

+
p∑

k=1

1
k

Hence, when n = 2p, one has

n∑
k=1

(−1)k

k
= −

2p∑
k=p+1

1
k

= −
p∑

k=1

1
p + k

. The sum on the right is actually a

Riemann sum for the continuous function t 7→ 1
1+x on [0, 1] and the tagged partition {[k−1

p , k
p ], k

p}, the mesh of

which is 1
p (can you see why ?). So, we see that u2p converges to −

∫ 1

0
dt

1+t = ln(2). Since u2p+1−u2p converges

to 0, we see that one also has lim(u2p+1) = − ln(2). A theorem we saw in class ensures that (un) is convergent
and lim(un) = − ln(2).

4. Let f, g : [0, 1] → R be continuous functions. Show that lim
n→∞

1
n

n∑
k=1

f
(k

n

)
g
(k − 1

n

)
=

∫ 1

0

f(t)g(t) dt.

Correction. This is trickier than it looks : if we had f
(k

n

)
g
(k

n

)
in the sum, then it would just be a usual

Riemann sum and we could apply the results seen in class. Unfortunately, this is not what we have ; how can
we deal with this ? One can proceed as follows : �rst, write that

1
n

n∑
k=1

f
(k

n

)
g
(k − 1

n

)
=

1
n

n∑
k=1

f
(k

n

)
g
(k

n

)
+

1
n

n∑
k=1

f
(k

n

)(
g
(k − 1

n

)
− g

(k

n

))
.

The �rst term converges to
∫ 1

0
f(t)g(t)dt, so we want to prove that the second term converges to 0. For that,

we use the fact that g is uniformly continuous on [0, 1] ; given ε > 0, there exists δε such that |x− y| ≤ δε ⇒



|f(x)− f(y)| ≤ ε for all x, y ∈ [a, b]. Hence if n is big enough one has |g
(

k−1
n

)
− g

(
k−1

n

)
| ≤ ε, so that

∣∣ 1
n

n∑
k=1

f
(k

n

)(
g
(k − 1

n

)
− g

(k

n

)∣∣ ≤ ε
1
n

n∑
k=1

|f
(k

n

)
| .

Since f is Riemann-integrable |f | also is Riemann-integrable, hence 1
n

∑n
k=1 |f

(
k
n

)
| converges to

∫ b

a
|f(t)|dt.

So if n is big enough one has 1
n

∑n
k=1 |f

(
k
n

)
| ≤

∫ b

a
|f(t)|dt + 1. Putting all this together, we get that for any ε

there exists K ∈ N such that | 1n
∑n

k=1 f
(

k
n

)(
g
(

k−1
n

)
− g

(
k
n

)
)| ≤ ε(

∫ b

a
|f(t)|dt + 1) for all n ≥ K. This proves

that 1
n

∑n
k=1 f

(
k
n

)(
g
(

k−1
n

)
− g

(
k
n

))
converges to 0 (when n → +∞), which is what we needed to prove.

5. Let f : [0, 1] → R be a continuous function such that

∫ 1

0

f(u)ukdu = 0 for all k ∈ {0, . . . , n}. Show that f

has at least n + 1 distinct zeros in (0, 1).
Hint : prove the result by induction using integration by parts and Rolle's theorem.
Correction. Following the hint, let us prove the result by induction. For n = 0 the result is a direct consequence

of exercise 1 ; assume the result is true for n. Then pick a continuous function f such that

∫ 1

0

f(u)ukdu = 0

for all k ∈ {0, . . . , n + 1}, and set F (x) =
∫ x

0

f(t)dt. The assumption on f for k = 0 yields F (0) = F (1) = 0.

Also, for any k = 1, . . . , n, one has∫ 1

0

ukdu =
[
kuk−1

]1
0
− k

∫ 1

0

uk−1F (u)du

Thus we obtain

∫ 1

0

uk−1F (u)du = 0 for all k = 1, . . . , n, which yields (because of our induction hypothesis)

that F has at least n distinct zeros in (0, 1). Since F (0) = F (1) = 0, F must have at least n + 2 distinct zeros
on [0, 1]. And F ′ = f has a zero between any two zeros of F , which shows that f has at least n + 1 distinct
zeros on (0, 1).

7.1.13. We need to use the de�nition of a Riemann integral ; assume the points c1, . . . , cn are indexed in such
a way that c1 < c2 < . . . < cn−1 < cn, and set M = max{|f(ci)| : i = 1, . . . , n}. Then pick a tagged partition
Ṗ = {[xi−1, xi], ti}i=1,...m of [a, b]. One has

|S(f, Ṗ)| =
∣∣ m∑

i=1

(xi − xi−1)f(ti)
∣∣ ≤ m∑

i=1

|(xi − xi−1)f(ti)| ≤ ‖Ṗ‖
m∑

i=1

|f(ti)| .

Since there are only n points in the interval at which f(x) 6= 0, and at each of these points one has |f(x)| ≤ M ,
we see that |S(f, Ṗ)| ≤ ‖Ṗ‖.2n.M (because there can be at most two ti with the same value, and at most n
points at which f is nonzero, so at most 2n of them can appear in the sum). But then (since n, M are constant)
we are done : if one sets δε = ε

2nM , what we have proved implies that for any partition Ṗ with mesh less than

δε one has |S(f, Ṗ)| ≤ ε. This is exactly what we needed to prove that f ∈ R([a, b]) and
∫ b

a
f(x)dx = 0.

7.1.14. This is a consequence of the preceding exercise : indeed, the function f − g satis�es the condition of

exercise 7.1.13, hence f − g ∈ R[a, b] and
∫ b

a
(f(t) − g(t))dt = 0. But then f = (f − g) + g is the sum of two

Riemann-integrable functions, so f ∈ R([a, b]) and
∫ b

a
f(t)dt =

∫ b

a
(f(t)− g(t))dt +

∫ b

a
g(t)dt =

∫ b

a
g(t)dt.

7.1.15. Let us follow the hint : pick ε > 0, set δε = ε
4α and pick a tagged partition Ṗ = {[xi−1, xi], ti}i=1,...,n

with mesh ≤ δε. Then by de�nition one has S(ϕ, Ṗ) =
∑n

i=1(xi − xi1)ϕ(ti). There are two possibilities for
ϕ(ti) : either it is equal to 0, or it is equal to α. Only the ti's that belong to [c, d] contribute to the sum. Let
I = {i : ti ∈ [c, d]}. Then S(ϕ, Ṗ) = α

∑
i∈I(xi− xi−1). Since ti ∈ [xi−1, xi], ti can only be in [c, d] if (xi−1 < a

and xi ≥ a), or (xi−1, xi are both in [c, d]), or (xi−1 ≤ d and xi > d). The �rst and third condition can each



be satis�ed at most by one index, and the remaining [xi−1, xi] from a partition of a subinterval of [c, d], so
that S(ϕ, Ṗ) ≤ α(d − c) + 2δεα. Similarly, the "chunk" of [x, d] that can be missed by the ti's is at most 2δε

long, hence S(ϕ, Ṗ) ≥ α(d− c)− 2δεα. This shows that whenever Ṗ is a tagged partition with mesh less than
δε = ε

4α one has

α(d− c)− ε

2
≤ S(ϕ, Ṗ) ≤ α(d− c) +

ε

2
.

This is enough to show that ϕ ∈ R([a, b] and
∫ b

a
ϕ(t)dt = α(d− c).

7.2.11. Let's follow the hint and de�ne (given ε > 0) αε, ωε by αε(x) =

{
−M if x ∈ [a, c)
f(x) if x ∈ [c, b]

and ωε(x) ={
M if x ∈ [a, c)
f(x) if x ∈ [c, b]

(c is to be speci�ed later). Then one has αε(x) ≤ f(x) ≤ ωε(x) for all x ∈ [a, b]. Also, αε, ωε

are both Riemann-integrable on [a, b] because of the Additivity theorem. Finally, one has
∫ b

a
(ωε(t)−αε(t))dt =∫ c

a
2Mdt = 2M(c− a) by de�nition of αε, ωε. Hence if one sets c = a + ε

2M we get that
∫ b

a
(ωε(t)− αε(t)) ≤ ε.

So we managed to prove that the assumptions of the Squeeze Theorem are satis�ed, hence f ∈ R([a, b]). Then
since |f(x) ≤ M for all x ∈ [a, b] we see that

∣∣ ∫ c

a
f(t)dt

∣∣ ≤ M(c − a), so limc→a

∫ c

a
f(t)dt = 0. Thus the

additivity theorem gives limc→a

∫ b

c
f(t)dt =

∫ b

a
f(t)dt.

7.2.12. This is a consequence of the preceding exercise : |g(x)| ≤ 1 for all x ∈ [0, 1], and g is continuous on
[c, 1] for all c ∈ (0, 1). Hence it is Riemann-integrable on [0, 1].

7.2.16. Set F (x) =
∫ x

a
f(t)dt ; since f is continuous on [a, b], the fundamental theorem of calculus ensures

that F is di�erentiable on [a, b], hence it satis�es the assumptions of the Mean Value theorem on this interval,
so there exists c ∈ (a, b) such that F (b) − F (a) = F ′(c)(b − a). This is the same as saying that there exists

c ∈ (a, b) such that
∫ b

a
f(t)dt = f(c)(b− a).

One can also solve this exercise di�erently : one has f([a, b]) = [m,M ] by the theorems about continuous

functions, from which we get m(b− a) ≤
∫ b

a
f(t)dt ≤ M(b− a) But then m ≤

R b
a

f(t)dt

b−a ≤ M , hence there exists

c such that f(c) =
R b

a
f(t)dt

b−a , which is the same as saying that (b− a)f(x) =
∫ b

a
f(t)dt.

7.2.17. We can apply a similar method to the one in the exercise above : denote again f([a, b]) by [m,M ].
Then one has

∫ b

a
f(t)g(t) − m

∫ b

a
g(t)dt =

∫ b

a
(f(t) − m)g(t)dt ≥ 0 (because f(t) ≥ m and g(t) ≥ 0 for all

t ∈ [a, b]. Similarly, one �nds that
∫ b

a
f(t)g(t)dt ≤ M

∫ b

a
g(t)dt. Put together, this yields

m ≤ 1∫ b

a
g(t)dt

∫ b

a

f(t)g(t)dt ≤ M .

Thanks to the intermediate value theorem, we can now conclude : there exists c ∈ [a, b] such that f(c) =
1R b

a
g(t)dt

∫ b

a
f(t)g(t)dt, which is the same as

∫ b

a
f(t)g(t)dt = f(c)

∫ b

a
g(t)dt. This result is clearly false if one no

longer assumes that g takes nonnegative values ; for instance, let a = −1, b = 1, f(t) = t and g(t) = t. Then

one has
∫ b

a
f(t)g(t)dt = 1 but f(c)

∫ b

a
g(t)dt = 0 for all c ∈ [0, 1].

7.3.11. Here one needs to apply the Chain Rule (and the fundamental theorem of calculus), which yields :

(a) In this case F (x) = G(x2), where G′(x) =
1

1 + x3
; hence F ′(x) =

2x

1 + (x2)3
=

2x

1 + x6
.

(b) This time F (x) = G(x) − G(x2), where G′(x) =
√

1 + x2. Hence F ′(x) = G′(x) − 2xG′(x2) =
√

1 + x2 −
2x
√

1 + x4.

7.3.13. Set �rst F (x) =
∫ x

0
f(t)dt. Then we know that F is di�erentiable and F ′(x) = f(x). By de�nition, we

have g(x) = F (x + c)− F (x− c), hence g is a composition of di�erentiable functions. Thus g is di�erentiable
on R, and the Chain Rule yields g′(x) = F ′(x + c)− F ′(x− c) = f(x + c)− f(x− c).



7.3.14. First notice that the assumption on f implies that
∫ 1

0
f(t)dt = 0 (take x = 0). Set F (x) =

∫ x

0
f(t)dt.

Then the assumption on F become F (x) = F (1) − F (x) for all x ∈ [0, 1], and since F (1) = 0 this yields
F (x) = 0 for all x ∈ [0, 1]. Since f is continuous the fundamental theorem of calculus gives F ′ = f , hence
f(x) = 0 for all x ∈ [0, 1].

7.3.21. (a) The functions x 7→ (tf(x) + g(x))2 and x 7→ (tf(x)− g(x))2 are both Riemann-integrable on [a, b]
and take nonnegative values, hence

∫ b

a
(tf(u)± g(u))2dt ≥ 0.

(b) We have :∫ b

a

(tf(u)+g(u))2du =
∫ b

a

(t2f2(u)+2tf(u)g(u)+g(u)2)du = t2
∫ b

a

f(u)2du+2t

∫ b

a

f(u)g(u)du+
∫ b

a

g(u)2du .

Since the quantity on the left is positive, we obtain −2t
∫ b

a
f(u)g(u)du ≤ t2

∫ b

a
f(u)2du+

∫ b

a
g(u)2du. Hence for

any t > 0 we have −2
∫ b

a
f(u)g(u)du ≤ t

∫ b

a
f(u)2du + 1

t

∫ b

a
g(u)2du. Similarly, using the fact that

∫ b

a
(tf(u) −

g(u))2du ≥ 0, one obtains 2
∫ b

a
f(u)g(u)du ≤ t

∫ b

a
f(u)2du + 1

t

∫ b

a
g(u)2du. The two inequalities together yield

2|
∫ b

a

f(u)g(u)du| ≤ t

∫ b

a

f(u)2du +
1
t

∫ b

a

g(u)2du .

(c) If
∫ b

a
f2(u)du = 0 then the result above implies that 2|

∫ b

a
f(u)g(u)du| ≤ 1

t

∫ b

a
g(u)2du for all t > 0. This is

only possible if
∫

f(u)g(u)du = 0.
(d) Since one has both fg ≤ |fg| and −fg ≤ |fg|, it is true that both

∫ b

a
f(u)g(u)du ≤

∫ b

a
|f(u)g(u)|du and

−
∫ b

a
f(u)g(u)du ≤

∫ b

a
|f(u)g(u)|du. This means that |

∫ b

a
f(u)g(u)du| ≤

∫ b

a
|f(u)g(u)|du, which is equivalent

to the inequality on the left.

To prove the inequality on the right,recall that we know from (b) (applied to |f |, |g|) that t2
∫ b

a
f2(u)du +

2t
∫ b

a
|f(u)g(u)|du+

∫ b

a
g−u)2du ≥ 0 for all t ∈ R. This means that the polynomial function t 7→ t2

∫ b

a
f2(u)du+

2t
∫ b

a
|f(u)g(u)|du +

∫ b

a
g − u)2du keeps a constant sign on R, and this is possible only if its discriminant

4
( ∫ b

a
|f(u)g(u)|u

)2 − 4
∫ b

a
f2(u)du

∫ b

a
g(u)2du is ≤ 0. In other words, one must have( ∫ b

a

|f(u)g(u)|du

)2

≤
∫ b

a

f(u)2du

∫ b

a

g(u)2du .

To get the inequality we are asked to prove, apply this inequality to the functions f(t) = 1/t and g(t) = 1 :

this yields

( ∫ b

a
dt
t

)2

≤
∫ b

a
dt
t2

∫ b

a
dt = ( 1

a −
1
b )(b− a) = (b−a)2

ab . Taking the square root, one has

∫ b

a

dt

t
≤ (b− a)√

ab


