Math 444 Group E13

Midterm I

Thursday, September 28 50 minutes

You are not allowed to use your lecture notes, textbook, or any other kind of documentation. Calculators, mobile phones and other electronic devices are also prohibited.

- 1. (25 points)
- (a) State the Density Theorem.
- (b) Let $A \subset \mathbb{R}$. Explain what the sentence "A is bounded" means.
- (c) Let $A \subset \mathbb{R}$. Define the concept of a greatest lower bound of A.
- (d) State the Completeness Property of the reals.
- (e) Let $f: A \to B$ be a function and $C \subset A$, $H \subset B$. Define what is meant by the notations f(C) and $f^{-1}(H)$. Correction. Read your notes, or the textbook!
- 2. (10 points)

Let A, B be sets and $f: A \to B$ be a function. Prove that, for all $G, H \subset B$, one has $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$ and $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$.

Correction. For any $x \in A$, one has

 $x \in f^{-1}(G \cup H) \Leftrightarrow f(x) \in G \cup H \Leftrightarrow (f(x) \in G) \text{ or } (f(x) \in H) \Leftrightarrow (x \in f^{-1}(G)) \text{ or } (x \in f^{-1}(H)) \Leftrightarrow x \in f^{-1}(G) \cup f^{-1}(H)$. This proves that $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$.

Similarly, for any $x \in A$ one has

 $x \in f^{-1}(G \cap H) \Leftrightarrow f(x) \in G \cap H \Leftrightarrow (f(x) \in G) \text{ and } (f(x) \in H) \Leftrightarrow (x \in f^{-1}(G)) \text{ and } (x \in f^{-1}(H)) \Leftrightarrow x \in f^{-1}(G) \cap f^{-1}(H).$

3. (10 points)

Let $A, B \subset \mathbb{R}$ be nonempty sets such that a < b for all $a \in A$ and all $b \in B$. Prove that $\sup(A)$ and $\inf(B)$ exist, and that $\sup(A) \leq \inf(B)$.

(Hint: you may begin by proving that $\sup(A) - \varepsilon < b$ for all $b \in B$ and all $\varepsilon > 0$)

Under the same assumptions, is it true that $\sup(A) < \inf(B)$?

Correction. Pick some $b_0 \in B$ and some $a_0 \in A$. Then for all $a \in A$ one has $a \leq b_0$, so b_0 is an upper bound of A; similarly, $b \geq a_0$ for all $b \in B$, so a_0 is a lower bound of B. Thus, A has an upper bound, and B has a lower bound; the Completeness Property of the reals implies that $\sup(A)$ and $\inf(B)$ exist.

Pick now some $\varepsilon > 0$. By definition of a least upper bound, there exists $a \in A$ such that $\sup(A) - \varepsilon < a$. Since a < b for all $b \in B$, we get that $\sup(A) - \varepsilon < b$ for all $b \in B$ (transitivity of <). Thus, $\sup(A) - \varepsilon$ is a lower bound of B, which implies that $\sup(A) - \varepsilon \leq \inf(B)$. Since this is true for all $\varepsilon > 0$, we finally obtain that $\sup(A) \leq \inf(B)$.

It is not true in general that $\sup(A) < \inf(B)$: consider for instance $A = \{0\}$ and $B = \{\frac{1}{n} : n \in \mathbb{N}\}$. Then A, B satisfy the hypothesis above, yet $\sup(A) = \inf(B) = 0$ (the fact that $\inf(B) = 0$ was seen in class and is a corollary of the archimedean property of the reals).

4. (10 points)

Assume that $f: \mathbb{R} \to \mathbb{R}$ is a function such that, for all $x, y \in \mathbb{R}$, one has f(x+y) = f(x) + f(y).

- (a) (1.5 points) Prove that f(0) = 0, and that f(-x) = -f(x).
- (b) (3.5 points) Prove by induction on n that, for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$, one has f(nx) = nf(x).
- (c) (1 point) Prove that, for all $n \in \mathbb{Z}$ and all $x \in \mathbb{R}$, one has f(nx) = nf(x).
- (d) (2 points) Prove that, for all $q \in \mathbb{Q}$ and all $x \in \mathbb{R}$ one has f(qx) = qf(x), and in particular f(q) = qf(1).
- (e) (2 points) Assume now that f is increasing, i.e $x \leq y \Rightarrow f(x) \leq f(y)$. Prove that for all $x \in \mathbb{R}$ one has

(Hint: use the density theorem to approximate x by rational numbers, and consider the cases f(1) = 0, $f(1) \neq 0$

Correction.

- (a) One must have f(0+0) = f(0) + f(0), so f(0) = 2f(0), which means that f(0) = 0. Also, since x + (-x) = 0for all $x \in \mathbb{R}$, one has f(0) = f(x + (-x)) = f(x) + f(-x), so that f(x) + f(-x) = 0, in other words f(-x) = -f(x).
- (b) Fix $x \in \mathbb{R}$, and let us prove by induction that f(nx) = nf(x) for all $n \in \mathbb{N}$. This statement is true for n=1 (it is then just the statement "f(x)=f(x)"). Assume that f(nx)=nf(x) for some $n\in\mathbb{N}$. Then one has f((n+1)x) = f(nx+x) = f(nx) + f(x) = nf(x) + f(x) (by the induction hypothesis). So we finally obtain f((n+1)x) = (n+1)f(x). We have proved that the property "f(nx) = nf(x)" is true for n=1, and is hereditary: therefore, by the Induction Theorem, it must be true for all $n \in \mathbb{N}$.
- (c) Let $n \in \mathbb{Z}$ and $x \in \mathbb{R}$. If n = 0 then f(nx) = f(0x) = f(0) by question (a), so we do have f(nx) = nf(x)in that case. If n > 0 then question (b) tells us that f(nx) = nf(x). The remaining case is n < 0; in that case -n > 0, so that f((-n)x) = -nf(x). Since f((-n)x) = f(-nx), we know by (a) that f((-n)x) = -f(nx). Putting these two things together, we obtain that -f(nx) = -nf(x), in other words f(nx) = nf(x). (d) Let $x \in \mathbb{R}$ and $q = \frac{n}{m} \in \mathbb{Q}$, where $n \in \mathbb{Z}$ and m > 0. Then, by (c), we know that
- $mf(\frac{n}{m}x) = f(m\frac{n}{m}x) = f(nx) = nf(x)$. This yields $\frac{n}{m}f(x) = f(\frac{n}{m}x)$, in other words f(qx) = qf(x). (e) Let now $x \in \mathbb{R}$, and fix $\varepsilon > 0$. Then, thanks to the Density Theorem, we know that there exist rationals
- q, q' such that $x \varepsilon \le q \le x \le q' \le x + \varepsilon$. By our additional assumption on f, we have $f(q) \le f(x) \le f(q')$, i.e $qf(1) \le f(x) \le q'f(1)$. If f(1) = 0 then we get f(x) = 0 = xf(1) for all x, and we are done. If $f(1) \ne 0$,

notice first that $f(1) \ge f(0) = 0$ because f is increasing; so f(1) > 0. Then we get $q \le \frac{f(x)}{f(1)} \le q'$, so by our choice of q, q' we obtain $x - \varepsilon \le \frac{f(x)}{f(1)} \le x + \varepsilon$. This means that $\left| \frac{f(x)}{f(1)} - x \right| \le \varepsilon$ for all $\varepsilon > 0$; we saw in class

that this implies $\frac{f(x)}{f(1)} - x = 0$, in other words f(x) = xf(1).