
University of Illinois at Urbana-Champaign Fall 2006

Math 444 Group E13

Midterm I

Thursday, September 28
50 minutes

You are not allowed to use your lecture notes, textbook, or any other kind of documentation.

Calculators, mobile phones and other electronic devices are also prohibited.

1. (25 points)
(a) State the Density Theorem.
(b) Let A ⊂ R. Explain what the sentence "A is bounded" means.
(c) Let A ⊂ R. De�ne the concept of a greatest lower bound of A.
(d) State the Completeness Property of the reals.
(e) Let f : A → B be a function and C ⊂ A, H ⊂ B. De�ne what is meant by the notations f(C) and f−1(H).
Correction. Read your notes, or the textbook !

2. (10 points)
Let A,B be sets and f : A → B be a function. Prove that, for all G, H ⊂ B, one has f−1(G ∪ H) =
f−1(G) ∪ f−1(H) and f−1(G ∩H) = f−1(G) ∩ f−1(H).
Correction. For any x ∈ A, one has
x ∈ f−1(G ∪ H) ⇔ f(x) ∈ G ∪ H ⇔ (f(x) ∈ G) or (f(x) ∈ H) ⇔ (x ∈ f−1(G)) or (x ∈ f−1(H)) ⇔ x ∈
f−1(G) ∪ f−1(H). This proves that f−1(G ∪H) = f−1(G) ∪ f−1(H).
Similarly, for any x ∈ A one has
x ∈ f−1(G ∩H) ⇔ f(x) ∈ G ∩H ⇔ (f(x) ∈ G) and (f(x) ∈ H) ⇔ (x ∈ f−1(G)) and (x ∈ f−1(H)) ⇔ x ∈
f−1(G) ∩ f−1(H). This proves that f−1(G ∩H) = f−1(G) ∩ f−1(H).

3. (10 points)
Let A,B ⊂ R be nonempty sets such that a < b for all a ∈ A and all b ∈ B. Prove that sup(A) and inf(B)
exist, and that sup(A) ≤ inf(B).
(Hint : you may begin by proving that sup(A)− ε < b for all b ∈ B and all ε > 0)
Under the same assumptions, is it true that sup(A) < inf(B) ?
Correction. Pick some b0 ∈ B and some a0 ∈ A. Then for all a ∈ A one has a ≤ b0, so b0 is an upper bound
of A ; similarly, b ≥ a0 for all b ∈ B, so a0 is a lower bound of B. Thus, A has an upper bound, and B has a
lower bound ; the Completeness Property of the reals implies that sup(A) and inf(B) exist.
Pick now some ε > 0. By de�nition of a least upper bound, there exists a ∈ A such that sup(A)− ε < a. Since
a < b for all b ∈ B, we get that sup(A) − ε < b for all b ∈ B (transitivity of <). Thus, sup(A) − ε is a lower
bound of B, which implies that sup(A) − ε ≤ inf(B). Since this is true for all ε > 0, we �nally obtain that
sup(A) ≤ inf(B).

It is not true in general that sup(A) < inf(B) : consider for instance A = {0} and B = { 1
n

: n ∈ N}. Then
A,B satisfy the hypothesis above, yet sup(A) = inf(B) = 0 (the fact that inf(B) = 0 was seen in class and is
a corollary of the archimedean property of the reals).



4. (10 points)
Assume that f : R → R is a function such that, for all x, y ∈ R, one has f(x + y) = f(x) + f(y).
(a) (1.5 points) Prove that f(0) = 0, and that f(−x) = −f(x).
(b) (3.5 points) Prove by induction on n that, for all x ∈ R and all n ∈ N, one has f(nx) = nf(x).
(c) (1 point) Prove that, for all n ∈ Z and all x ∈ R, one has f(nx) = nf(x).
(d) (2 points) Prove that, for all q ∈ Q and all x ∈ R one has f(qx) = qf(x), and in particular f(q) = qf(1).
(e) (2 points) Assume now that f is increasing, i.e x ≤ y ⇒ f(x) ≤ f(y). Prove that for all x ∈ R one has
f(x) = xf(1).
(Hint : use the density theorem to approximate x by rational numbers, and consider the cases f(1) = 0,
f(1) 6= 0)
Correction.

(a) One must have f(0+0) = f(0)+f(0), so f(0) = 2f(0), which means that f(0) = 0. Also, since x+(−x) = 0
for all x ∈ R, one has f(0) = f(x + (−x)) = f(x) + f(−x), so that f(x) + f(−x) = 0, in other words
f(−x) = −f(x).
(b) Fix x ∈ R, and let us prove by induction that f(nx) = nf(x) for all n ∈ N. This statement is true for
n = 1 (it is then just the statement "f(x) = f(x)"). Assume that f(nx) = nf(x) for some n ∈ N. Then one
has f((n + 1)x) = f(nx + x) = f(nx) + f(x) = nf(x) + f(x) (by the induction hypothesis). So we �nally
obtain f((n + 1)x) = (n + 1)f(x). We have proved that the property "f(nx) = nf(x)" is true for n = 1, and
is hereditary : therefore, by the Induction Theorem, it must be true for all n ∈ N.
(c) Let n ∈ Z and x ∈ R. If n = 0 then f(nx) = f(0x) = f(0) by question (a), so we do have f(nx) = nf(x)
in that case. If n > 0 then question (b) tells us that f(nx) = nf(x). The remaining case is n < 0 ; in that case
−n > 0, so that f((−n)x) = −nf(x). Since f((−n)x) = f(−nx), we know by (a) that f((−n)x) = −f(nx).
Putting these two things together, we obtain that −f(nx) = −nf(x), in other words f(nx) = nf(x).
(d) Let x ∈ R and q =

n

m
∈ Q, where n ∈ Z and m > 0. Then, by (c), we know that

mf( n
mx) = f(m n

mx) = f(nx) = nf(x). This yields
n

m
f(x) = f(

n

m
x), in other words f(qx) = qf(x).

(e) Let now x ∈ R, and �x ε > 0. Then, thanks to the Density Theorem, we know that there exist rationals
q, q′ such that x− ε ≤ q ≤ x ≤ q′ ≤ x + ε. By our additional assumption on f , we have f(q) ≤ f(x) ≤ f(q′),
i.e qf(1) ≤ f(x) ≤ q′f(1). If f(1) = 0 then we get f(x) = 0 = xf(1) for all x, and we are done. If f(1) 6= 0,

notice �rst that f(1) ≥ f(0) = 0 because f is increasing ; so f(1) > 0. Then we get q ≤ f(x)
f(1)

≤ q′, so by our

choice of q, q′ we obtain x− ε ≤ f(x)
f(1)

≤ x + ε. This means that |f(x)
f(1)

− x| ≤ ε for all ε > 0 ; we saw in class

that this implies
f(x)
f(1)

− x = 0, in other words f(x) = xf(1).


