
University of Illinois at Urbana-Champaign Fall 2006
Math 444 Group E13

Midterm II

Thursday, November 2.
50 minutes

You are not allowed to use your lecture notes, textbook, or any other kind of documentation.

Calculators, mobile phones and other electronic devices are also prohibited.

1. (20 points)
(a) State the Density Theorem (of rational numbers in the real line).
(c) State the Bolzano-Weierstrass theorem for sequences of real numbers.
(d) De�ne the notions of a bounded set of reals, of a bounded sequence.
(e) De�ne what a sequence of real numbers is, and what a subsequence of a sequence (xn) is.

2. (5 points)

Show that the sequence (xn) de�ned by the formula xn = 1− (−1)n +
1
n
is not convergent.

Correction. One has x2n =
1
2n

and x2n+1 = 2 +
1

2n + 1
, so we see that (x2n) converges to 0 and (x2n+1)

converges to 2. This is enough to show that (xn) is not convergent : if it were, all of its subsequences would
be convergent and have the same limit.

3 (15 points)
(a) Prove that x ≤ x2 for all x ≥ 1 ; use this to show that

√
x ≤ x for all x ≥ 1.

(b) Let x1 ≥ 2 and xn+1 = 1+
√

xn − 1. Prove that (xn) is decreasing and bounded below by 2. Is this sequence
convergent ? If so, what is its limit ?
Correction. (a) For x ≥ 1, one has x2 = x.x ≥ x. Also, since

√
x.
√

x = x, we recover that
√

x has to be ≥ 1
if x is. Thus, we get x = (

√
x)2 ≥

√
x and we are done.

(b) Let us prove by induction that xn+1 ≤ xn and xn ≥ 2 for all n ∈ N. For n = 1, we know that x1 ≥ 2, so
we only need to check that x2 ≤ x1 ; using question (a), we get x2 = 1 +

√
x1 − 1 ≤ 1 + x1 − 1 = x1 (because

x1− 1 ≥ 1). Assume now that xn+1 ≤ xn and xn ≥ 2. Then xn− 1 ≥ 1, so xn+1 = 1 +
√

xn − 1 ≥ 1 +
√

1 = 2.
But then we also have xn+2 ≤ 1+xn+1−1 = xn+1 (because xn+1−1 ≥ 1) so we get what we wanted to prove.
We have shown that (xn) is a decreasing sequence, and it is bounded below by 2 : thus, it has to be convergent
to some real number l ≥ 2. But then, (xn+1) is also convergent to l ; given the de�nition of (xn), this yields
l = 1 +

√
l − 1. This implies that (l − 1)2 = l − 1, so l − 1 = 0 or 1. Given that l ≥ 2, we obtain l − 1 = 1, or

l = 2. So we have proven that lim(xn) = 2.

4. (15 points)
Let (xn) be a bounded sequence ; de�ne two sequences (sn), (tn) by the formulas sn = sup{xk : k ≥ n},
tn = inf{xk : k ≥ n}.
(a) Explain why these sequences are well-de�ned.
(b) Prove that for all n ∈ N, one has sn ≥ tn, sn ≥ sn+1, tn ≤ tn+1. Use this to show that the sequences (sn),
(tn) are convergent.
(c) Prove that if lim(sn) = lim(tn) = l then (xn) is convergent and lim(xn) = l.
(d) Show that there exist subsequences (xϕ(n)), (xψ(n)) such that lim(xϕ(n)) = lim(sn) and lim(xψ(n)) =
lim(tn). Use this to obtain the converse of the result in question (c). Can you use the results in this exercise
to obtain a new proof of the Bolzano-Weierstrass theorem ?
Correction. (a) Since (xn) is bounded, there exist real numbers m and M such that m ≤ xk ≤ M for all



k ∈ N. Then we see that m is a lower bound for {xk : k ≥ n}, and M is an upper bound for it (for any n ∈ N).
Thus, the completeness property of the reals implies that {xk : k ≥ n} admits an in�mum and a supremum
for all n ∈ N.
(b) Pick some natural integer n. Since tn is a lower bound of a nonempty set of which sn is an upper bound,
it is clear that sn ≥ tn. By de�nition, sn is an upper bound for {xk : k ≥ n}, so it is also an upper bound
for {xk : k ≥ n + 1}. By de�nition of a supremum, this implies that sup{xk : k ≥ n + 1} ≤ sn, in other words
sn+1 ≤ sn. Similarly, tn is a lower bound for {xk : k ≥ n + 1}, and this yields tn+1 ≥ tn.
Hence, the two sequences (sn), (tn) are monotone and bounded (by m,M of question (a)), so the monotone
convergence theorem implies that they are convergent.
(c) The de�nition of sn, tn implies that tn ≤ xn ≤ sn. Thus, the Squeeze theorem ensures that if lim(tn) =
lim(sn) = l then (xn) is convergent and lim(xn) = l.
(d)Let us prove that there exists a subsequence (xϕ(n)) such that lim(xϕ(n)) = lim(sn). To that end, we claim

that it is possible to build a strictly increasing sequence of integers (kn) such that skn+1 −
1
n
≤ xkn+1 for all

n ∈ N ; the idea here is just to �nd a condition which ensures that the (xkn
) will be increasingly close to the

limit of (sn). To do so, begin by picking k1 = 1. By de�nition of a supremum there must exist k2 such that
xk2 ≥ sup{xk : k ≥ 2} − 1. This gives us the second term of our sequence. Assume now that k1, . . . , kn have

been de�ned. By de�nition of skn+1, there must exist k ≥ kn + 1 such that xk ≥ skn+1 −
1
n
; set kn+1 = k and

go on to the next step.
The reasoning above shows that an induction process enables us to de�ne a suitable sequence of integers kn ;

setting ϕ(n) = kn, and using the fact that xn ≤ sn for all n ∈ N, we get sϕ(n)+1 −
1
n
≤ xϕ(n+1) ≤ sϕ(n+1).

Since (sn) is convergent, and subsequences of a convergent sequence converge to the same limit, the Squeeze
theorem ensures that (xϕ(n)) converges and that lim(xϕ(n)) = lim(sn).
A similar proof would work to show that there exists a subsequence (xψ(n)) such that lim(xψ(n)) = lim(tn).
This shows that, if (xn) is convergent, then lim(tn) = lim(sn), since both limits are equal to the limit of a
subsequence of (xn).
This also gives a new proof of the Bolzano-Weierstrass theorem : indeed, if (xn) is a bounded subsequence
then the sequence (sn) de�ned at the beginning of the exercise is convergent, and there exists a subsequence
of (xn) which converges to lim(sn). In particular, this proves that (xn) has a convergent subsequence.


