Examen partiel du 22 octobre 2025 (durée: 2h30)

L'emploi de documents, calculatrices, etc. n'est pas autorisé. Le sujet comporte 4 exercices indépendants.

Exercice 1.

Soit H un espace de Hilbert et $T: H \to H$ une application linéaire continue et telle que $\langle T(x), x \rangle \ge ||x||^2$ pour tout $x \in H$.

- 1. Montrer que Im(T) est dense dans H.
- 2. Montrer que $||T(x)|| \ge ||x||$ pour tout $x \in H$, puis que Im(T) est fermé dans H.
- 3. Montrer que T est un isomorphisme et que T^{-1} est continu.

Exercice 2. Soit $f \in L^1(\mathbf{R})$.

- 1. Pour $x \in \mathbf{R}$ et $h \in \mathbf{R}_+$, exprimer $\int_x^{x+h} f(t) dt$ comme produit de convolution de f par une fonction φ_h .
- 2. Pour $x \in \mathbf{R}$ et $h \in \mathbf{R}_+^*$ on pose $F_h(x) = \frac{1}{h} \int_x^{x+h} f(t) dt$. Montrer que $F_h \xrightarrow[h \to 0]{} f$ dans $(L^1(\mathbf{R}), \|\cdot\|_1)$.

Exercice 3. Soit Ω un ouvert borné non vide de \mathbf{R}^d et $H=L^2(\Omega,\mathbf{R})$ muni de son produit scalaire usuel. On considère $C=\left\{f\in H:\int_\Omega f(t)\,dt\geq 1\right\}$.

- 1. Montrer que *C* est convexe et fermé dans *H*.
- 2. Soit $g \in H$. Déterminer le projeté de g sur C et calculer d(g, C).

Indication. Dans cet exercice il est utile de reformuler la définition de C à l'aide du produit scalaire de H, et de faire un dessin.

<u>Exercice 4.</u> Soit H un espace de Hilbert séparable, de dimension infinie. Soit $(e_n)_{n \in \mathbb{N}}$ et $(f_k)_{k \in \mathbb{N}}$ deux bases hilbertiennes de H. Soit T une application linéaire continue de H dans lui-même.

1. En appliquant l'égalité de Parseval à chaque $T(e_n)$ dans la base $(f_k)_{k \in \mathbb{N}}$, montrer que

$$\sum_{n=0}^{+\infty} ||T(e_n)||^2 = \sum_{k=0}^{+\infty} ||T^*(f_k)||^2$$

et en déduire que

$$\sum_{n=0}^{+\infty} ||T(e_n)||^2 = \sum_{k=0}^{+\infty} ||T(f_k)||^2.$$

On dit que T est un *opérateur de Hilbert–Schmidt* si $\sum_{n=0}^{+\infty} ||T(e_n)||^2 < +\infty$. On note HS l'ensemble des opérateurs de Hilbert–Schmidt.

2. Montrer qu'on obtient une norme sur HS en posant

$$||T||_{HS} = \left(\sum_{n=0}^{+\infty} ||T(e_n)||^2\right)^{\frac{1}{2}}$$

et que $||T|| \le ||T||_{HS}$ pour tout $T \in HS$.

- 3. Les normes $\|\cdot\|$ et $\|\cdot\|_{HS}$ sont-elles équivalentes sur HS?
- 4. On suppose que T est de Hilbert–Schmidt; montrer qu'alors il existe une suite d'opérateurs $(T_n)_{n\in\mathbb{N}}$ tels que $\dim(\operatorname{Im}(T_n))<+\infty$ pour tout $n\in\mathbb{N}$ et $T_n\xrightarrow[n\to+\infty]{}T$ dans $\mathcal{L}(H,H)$.
- 5. Soit $T \in HS$ et B la boule unité fermée de H. Montrer que $\overline{T(B)}$ est compact dans H.